
Chapter 3
Low-Density and High-Density Asym-
metric CT-Burst Correcting Inte-
ger Codes

The contents of this chapter are based on the paper mentioned below:

• Pokhrel, N. K. and Das, P. K. Low-density and high-density asymmetric CT-

burst correcting integer codes. Advances in Mathematics of Communications,

1-15, 2022, doi:10.3934/amc.2022030.

42

Chapter 3

Low-Density and High-Density Asymmet-

ric CT-Burst Correcting Integer Codes

3.1 Overview

Continuing with the asymmetric CT-burst correcting integer codes discussed in

Chapter 2, we study the codes applying the Hamming weight constraint. We make

use of the observation made by Wyner (refer Section 1.3) that not all components

may be affected by a burst. As discussed in Section 2.2 of Chapter 2, we categorise

these bursts based on the intensity of the affected components, viz., low-density and

high-density. The two classes of error-correcting codes are classified as follows:

• Integer codes capable of correcting low-density asymmetric CT-bursts of length

l with weight between 1 to b l
2c.

• Integer codes capable of correcting high-density asymmetric CT-bursts of length

l with weight between d l
2e to l.

Both types of errors considered lie in an asymmetric CT-burst of length l within

a b-bit byte. Continuing with Definition 1.12 having the values, m = 2b − 1,M = 1

and N = k + 1, two classes of integer codes correcting low-density and high-density

asymmetric CT-bursts within a b-bit byte have been presented in Section 3.2. In

Section 3.3, the proposed codes are compared with similar error-correcting codes in

terms of various properties, viz. memory consumption and number of table look

43

ups. The implementation of these codes in a quad-core processor is similar to the

implementation discussed in Chapter 2. This chapter winds up with the idea of

determining the probability of erroneous decoding and an approach for undetected

error probability in Section 3.3.

3.2 Construction of codes

Based on Definition 1.7-1.8 of low-density and high-density asymmetric CT-bursts

respectively, the definitions discussed below are for their integer values.

Definition 3.1. The collection of LACTBd/l errors within a single b-bit byte is

defined by

• εd/l,b =
b−l+1
∪
i=1

eid/l,b,

where eid/l,b =
{

2i−1 + p12i + p22i+1 + . . . + pl−12i+l−2 | p1, p2, . . . , pl−1 ∈ {0, 1}

are such that
l−1∑
j=1
pj ≤ b l

2c − 1
}

.

The integer codes capable of correcting all LACTBd/l errors occurring in b-bit

bytes are termed as integer LACTB(d/l,b)C codes.

Definition 3.2. The collection of HACTBh/l errors occurring within a single b-bit

byte is defined by

• εh/l,b =
b−l+1
∪
i=1

Ei
h/l,b,

where Ei
h/l,b = {2i−1 + p12i + p22i+1 + . . . + pl−12i+l−2 | p1, p2, . . . , pl−1 ∈ {0, 1}

are such that
l−1∑
j=1
pj ≥ d l

2e − 1}.

The integer codes capable of correcting all HACTBh/l errors occurring in b-bit

bytes are termed as integer HACTB(h/l,b)C codes.

3.2.1 Encoding procedure

Here, we describe the encoding and decoding procedures for both integer LACTB(d/l,b)C

and integer HACTB(h/l,b)C codes. The encoding procedure, width representation

44

of an encoded codeword, and process for choosing the coefficients are similar to the

processes discussed in Section 2.2 of Chapter 2. The definitions below give us the

syndrome sets used in the error-correcting procedure.

Definition 3.3. The set of syndromes for an integer code correcting low-density

asymmetric CT-bursts within a b-bit byte will be

S1 =
k+1
∪
i=1
− [Ciεd/l,b] (mod 2b − 1). (3.1)

Definition 3.4. The set of syndromes for an integer code correcting high-density

asymmetric CT-bursts within a b-bit byte will be

S2 =
k+1
∪
i=1
− [Ciεh/l,b] (mod 2b − 1). (3.2)

In both of the cases above, the condition for choosing coefficient Ci’s will be

same as Chapter 2. The Python programmes for finding the required coefficients for

both of the codes are given in Appendices B and C.

Since every error in the set εd/l,b or εh/l,b has a unique form in terms of its b-bit

representation and also each b-bit form corresponds to a unique element in the ring

Z2b−1, thus the sets εd/l,b and εh/l,b have no repetition, consequently the elements

within the Syndrome set (3.1)–(3.2) will not repeat making way for an ambiguity

free decoding. We take 2[m,r] as the incomplete binomial expansion of (1+1)m taken

up to (r+1)th term, viz. 2[m,r] =
(
m
0

)
+
(
m
1

)
+
(
m
2

)
+ . . .+

(
m
r

)
. Throughout the study,

we shall consider l ≥ 2 as l = 1 corresponds to single asymmetric error [80], theorems

discussed below help us to construct the look up table for decoding purpose.

Theorem 3.5. A necessary and sufficient condition of a ((k + 1)b, kb) integer

LACTB(d/l,b)C code is that there exist k distinct coefficients from the set Z2b−1\{0, 1}

such that |S1| = (k + 1)(b− l + 1)2[l−1,b l
2 c−1].

Proof. Since the sets −Ciεd/l,b (mod 2b− 1), 1 ≤ i ≤ k+ 1 are all mutually disjoint,

so it is sufficient to show that |εd/l,b| = (b− l + 1)2[l−1,b l
2 c−1].

The bursts considered for low-density have weight at most b l
2c with length l, so

there are (b− l + 1) different beginning positions having same number of bursts as

elaborated earlier. For bursts of weight at most b l
2c beginning from first position,

45

we have 1 (or
(

l−1
0

)
) burst of weight 1 and length l, viz. 20, l− 1(or

(
l−1
1

)
) bursts of

weight 2 and length l, viz. 20 + 21, 20 + 22, . . . , 20 + 2l−1. Continuing this, we have(
l−1
b l

2 c−1

)
bursts of weight b l

2c and length l beginning from the 1st position. Thus the

number of bursts up to weight b l
2c of length l beginning from the first position will

be
(

l−1
0

)
+
(

l−1
1

)
+ . . .+

(
l−1
b l

2 c−1

)
=
b l

2 c−1∑
j=0

(
l−1
j

)
. We have b− l + 1 beginning positions

for the bursts discussed, viz. the bursts with 20, 21, . . . , 2b−l beginning values, thus

the total number of error patterns in εd/l,b will be (b − l + 1)2[l−1,b l
2 c−1]. Therefore,

the cardinality of S1 is |S1| = (k + 1)(b− l + 1)2[l−1,b l
2 c−1].

Remark 3.6. Since the last component of a CT-burst may be zero, so the length of

a CT-burst may be increased provided it has sufficient number of components for it.

For instance, CT-burst (01011000) may be considered of length 4, 5, 6 or 7, whereas

the CT-burst (00010110) can only be considered of length 4 or 5. This approach will

not be valid in case of a burst as the last component should be necessarily non-zero.

Theorem 3.7. A necessary and sufficient condition of a (kb+ b, kb) integer

HACTB(h/l,b)C code is that there exist k distinct coefficient Ci’s from the set Z2b−1\

{0, 1} such that |S2| = (k + 1)(b− l + 1)(2l−1 − 2[l−1,d l
2 e−2]).

Proof. Since S2 = (−C1εh/l,b) ∪ . . . ∪ (−Ckεh/l,b) ∪ (εh/l,b), and coefficient Ci’s are

chosen such that the sets in the union above are all mutually disjoint, so it sufficient

to show that εh/l,b = (b − l + 1)
(
2l−1 − 2[l−1,d l

2 e−2]
)
. We determine the number of

errors of this type as discussed in Theorem 3.5. For CT-bursts beginning from the 1st

position having weight d l
2e and length l, there are

(
l−1
d l

2 e−1

)
possibilities, similarly there

are
(

l−1
d l

2 e

)
CT-bursts of weight d l

2e+1 and length l, continuing this we have
(

l−1
l−1

)
CT-

bursts of length and weight l beginning from the 1st position. Since there are exactly

(b − l + 1) beginning positions for the discussed type of CT-bursts, and the total

number of CT-bursts of length l for these beginning positions is 2l−1, hence |εh/l,b| =

(b− l + 1)[2l−1−{
(

l−1
0

)
+
(

l−1
1

)
+ . . .+

(
l−1
d l

2 e−2

)
}] = (b− l + 1)

(
2l−1− 2[l-1,d l

2 e−2]
)
.

46

3.2.2 Decoding procedure

Again, the decoding procedure is similar to Chapter 2 with the LUT2’s consuming

|S1|×(2b+dlog2(k+1)e) and |S2|×(2b+dlog2(k+1)e) bits, respectively, for the low-

density and high-density cases. Likewise, the steps for decoding are also analogous

to the preceding chapter. We shall now explain the error-correcting procedures for

both the codes with the help of suitable examples. Example 3.8 is for low-density

and Example 3.10 is for high-density.

Example 3.8. Let b = 8, l = 6, then b l
2c = 3 and C1 = 2, Table 3.1 enumerates the

syndrome elements for decoding a message. Suppose a message 11010111 is trans-

mitted, then the corresponding check byte CB = 11101011, so 11010111 11101011

will be the encoded message. For an asymmetric CT-burst of length 6 within an

8-bit byte having weight at most 3, we may have the following cases.

Case I (Low-density asymmetric CT-burst in data byte): If the received message

is 10000101 11101011, then syndrome S = [CB̄− C̄B] (mod 2b−1) = [2×161−215]

(mod 255) = 107 = [−2 × 74] (mod 255). Hence data byte B1 has an error e =

21 +23 +26, so the corrected data byte will be B1 = [B̄1 +e] (mod 2b−1) = [161+74]

(mod 255) = 235 = 11010111.

Case II (Low-density asymmetric CT-burst in check byte): If the received mes-

sage is 11010111 11001000, then syndrome S = [CB̄− C̄B] (mod 2b−1) = [215−19]

(mod 255) = 196. Hence check byte has an error e = 22 + 26 + 27, so the corrected

check byte will be CB = [C̄B + e] (mod 2b − 1) = [196 + 19] (mod 255) = 215 =

11101011.

Case III (Error pattern beyond specification): If the received message is 11000000

11101011, then syndrome S = [CB̄ − C̄B] (mod 2b − 1) = [6 − 215] (mod 255) =

46 6= 0. Since the syndrome value is not in the LUT2, the decoder will declare an

uncorrectable error.

Remark 3.9. It is interesting to note that for l = 6 and b = 8, we do not obtain

Ci’s for asymmetric CT-bursts (refer Chapter 2), correspondingly we cannot trans-

mit messages. But by choosing low-density asymmetric CT-bursts of weight up to

47

3 inside an asymmetric CT-burst of length 6, we can construct codes conveniently.

Case I in Example 3.8 reflects the beauty of this method, where a low-density asym-

metric CT-burst up to weight 3 and length 6 is easily detected as well as corrected.

This would not have been possible otherwise.

Table 3.1: LUT2 for (16,8) integer LACTB(3/6,8)C code

Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S1) Loc. (i) (e) No. (S1) Loc. (i) (e)

1 1 2 1 49 107 1 74

2 2 2 2 50 115 1 70

3 3 2 3 51 118 1 196

4 4 2 4 52 119 1 68

5 5 2 5 53 123 1 66

6 6 2 6 54 132 2 132

7 7 2 7 55 140 2 140

8 9 2 9 56 148 2 148

9 10 2 10 57 151 1 52

10 11 2 11 58 155 1 50

11 12 2 12 59 157 1 49

12 13 2 13 60 164 2 164

13 14 2 14 61 167 1 44

14 17 2 17 62 171 1 42

15 18 2 18 63 173 1 41

16 19 2 19 64 179 1 38

17 20 2 20 65 181 1 37

18 21 2 21 66 182 1 164

19 22 2 22 67 183 1 36

20 25 2 25 68 185 1 35

21 26 2 26 69 187 1 34

22 28 2 28 70 189 1 33

Contd...

48

Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S1) Loc. (i) (e) No. (S1) Loc. (i) (e)

23 33 2 33 71 196 2 196

24 34 2 34 72 199 1 28

25 35 2 35 73 203 1 26

26 36 2 36 74 205 1 25

27 37 2 37 75 211 1 22

28 38 2 38 76 213 1 21

29 41 2 41 77 214 1 148

30 42 2 42 78 215 1 20

31 44 2 44 79 217 1 19

32 49 2 49 80 219 1 18

33 50 2 50 81 221 1 17

34 52 2 52 82 227 1 14

35 55 1 100 83 229 1 13

36 59 1 98 84 230 1 140

37 66 2 66 85 231 1 12

38 68 2 68 86 233 1 11

39 70 2 70 87 235 1 10

40 74 2 74 88 237 1 9

41 76 2 76 89 241 1 7

42 82 2 82 90 243 1 6

43 84 2 84 91 245 1 5

44 87 1 84 92 246 1 132

45 91 1 82 93 247 1 4

46 98 2 98 94 249 1 3

47 100 2 100 95 251 1 2

48 103 1 76 96 253 1 1

Example 3.10 illustrates an integer HACTB(2/4,8)C code with the help of Table

3.2 prepared using (3.2).

49

Table 3.2: LUT2 for (16,8) integer HACTB(2/4,8)C code

Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S2) Loc. (i) (e) No. (S2) Loc. (i) (e)

1 3 2 3 36 76 1 14

2 5 2 5 37 77 1 88

3 6 2 6 38 80 2 80

4 7 2 7 39 83 1 22

5 9 2 9 40 88 2 88

6 10 2 10 41 90 1 30

7 11 2 11 42 91 1 104

8 12 2 12 43 98 1 112

9 13 2 13 44 100 1 5

10 14 2 14 45 104 2 104

11 15 2 15 46 105 1 120

12 18 2 18 47 107 1 13

13 20 2 20 48 112 2 112

14 21 1 24 49 120 2 120

15 22 2 22 50 126 1 144

16 24 2 24 51 138 1 12

17 26 2 26 52 144 2 144

18 28 2 28 53 145 1 20

19 30 2 30 54 152 1 28

20 35 1 40 55 154 1 176

21 36 2 36 56 159 1 36

22 38 1 7 57 162 1 3

23 40 2 40 58 166 1 44

24 42 1 48 59 169 1 11

25 44 2 44 60 173 1 52

26 45 1 15 61 176 2 176

Contd...

50

Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S2) Loc. (i) (e) No. (S2) Loc. (i) (e)

27 48 2 48 62 180 1 60

28 49 1 56 63 182 1 208

29 52 2 52 64 200 1 10

30 56 2 56 65 207 1 18

31 60 2 60 66 208 2 208

32 63 1 72 67 210 1 240

33 69 1 6 68 214 1 26

34 70 1 80 69 231 1 9

35 72 2 72 70 240 2 240

Example 3.10. Let b = 8, l = 4, then d l
2e = 2 and C1 = 31, so the syndrome set

will have 70 elements as listed in Table 3.2. Suppose we want to transmit message

11111100, then the encoded message will be 11111100 00010101. For an asymmetric

CT-burst of length 4 within an 8-bit byte having weight at least 2, we consider the

following cases.

Case I (Data byte having error): Suppose the transmitted message 11111100

01011101 is received as 11000000 01011101, then syndrome value S = [CB̄ − C̄B]

(mod 2b − 1) = [3× 31− 168] (mod 255) = 180 = −31× 60, thus 1st data byte has

error e = 60 = (22 +23 +24 +25) (mod 255), hence corrected data byte B1 = [B̄1 +e]

(mod 2b − 1) = [3 + 60] (mod 255) = 63 = 11111100.

Case II (Check byte having error): Suppose the message is received as 11111100

00000001, then syndrome S = [CB̄−C̄B] (mod 2b−1) = [168−128] (mod 255) = 40,

thus the check byte has error e = 40 = (23+25) (mod 255), hence the corrected check

byte will be CB = [C̄B + e] (mod 2b− 1) = [128 + 40] (mod 255) = 168 = 00010101.

Case III (Error pattern beyond specification): Suppose the message is received

as 11111100 00010100, then syndrome S = [CB̄ − C̄B] (mod 2b − 1) = [168 − 40]

(mod 255) = 128 6= 0. Since the syndrome value is not in the LUT2, the decoder

will declare an uncorrectable error.

51

Remark 3.11. In case of asymmetric CT-bursts of length 4 with b = 8, we do not

find coefficients for the construction (refer Chapter 2). But by considering weight

greater than or equal to 2 within length 4, we get the desired code as discussed above.

3.3 Evaluation and comparison

In this section, we will analyse the implementation strategy, the probability of erro-

neous decoding, Bit Error Rate as well as undetected errors for the proposed codes.

3.3.1 Implementation and comparison

For implementation of these codes in a quad-core processor, we refer to Chapter 2.

Table 3.3: First 32 possible coefficients for integer LACTB(d/l,b)C codes

b l b l
2c Coefficients

7 5 2 2, 33, 47, 100

8 4 2 2

8 6 3 2

10 4 2 2, 7, 13, 15, 23, 37, 41, 47, 49, 83

10 6 3 2, 135

10 7 3 2

16 4 2 2, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49,

53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 91, 97, 101, 105, 107, 109

16 5 2 2, 7, 11, 13, 15, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53,

59, 67, 71, 73, 77, 79, 81, 83, 89, 97, 101, 105, 107, 109, 121,

125, 127

16 6 3 2, 15, 23, 29, 31, 43, 47, 53, 59, 67, 71, 73, 77, 79, 83, 89,

97, 101, 107, 117, 131, 137, 139, 149, 157, 163, 167, 181, 199, 227,

233, 251

16 8 4 2, 31, 61, 207, 776, 7769

Contd...

52

b l b l
2c Coefficients

16 9 4 2, 31, 413, 1536, 16904

32 6 3 2, 15, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 81,

83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163

32 7 3 2, 15, 29, 31, 43, 47, 53, 59, 61, 71, 77, 79, 83, 89,

101, 103, 107, 109, 113, 117, 127, 131, 137, 139, 149, 151, 157, 163,

167, 173, 179, 181

32 8 4 2, 31, 61, 63, 79, 95, 103, 107, 121, 127, 151, 157, 167, 173, 179,

181, 191, 199, 211, 221, 223, 227, 229, 233, 239, 241, 251, 257, 263,

269, 271, 277

Table 3.5-3.6 represent the look up table sizes and the corresponding number

of look ups required, codes in these tables are constructed upon the existence of

coefficients as depicted in Table 3.3-3.4.

Table 3.4: First 32 possible coefficients for integer HACTB(h/l,b)C codes

b l d l
2e Coefficients

8 3 2 2, 3, 29, 37

8 4 2 31

8 5 3 239

10 4 2 2, 13, 41

10 6 3 991

16 5 3 2, 5, 11, 17, 35, 37, 39, 43, 47, 53,

59, 61, 67, 71, 73, 77, 79, 83, 97, 101, 107, 113, 119, 127,

131, 137, 149, 151, 157, 163, 169, 173

16 6 3 2, 11, 67, 71, 73, 79, 95, 103, 129, 137,

179, 193, 217, 267, 293, 311, 327, 373, 389, 393, 449, 461,

517, 725, 761, 1001, 2501, 2527, 2999, 3481, 3643, 4517

16 7 4 2, 9, 43, 131, 139, 163, 183, 197, 199, 209, 251, 491, 2477, 4727

Contd...

53

b l d l
2e Coefficients

16 8 4 7, 61, 22447

16 9 5 2389, 21769, 65279

32 6 3 2, 11, 17, 65, 67, 69, 71, 73, 79, 83, 89, 97, 101, 103, 107,

109, 113, 121, 127, 131, 133, 137, 139, 149,

151, 157, 163, 167, 173, 179, 181, 187

32 8 4 2, 19, 87, 97, 131, 137, 161, 193, 257, 263, 265,

269, 271, 277, 281, 283, 289, 293, 307, 311, 313, 317, 331, 337,

341, 347, 349, 353, 359, 361, 367, 373

32 9 5 2, 17, 47, 77, 129, 131, 139, 193, 197, 257, 263,

265, 269, 277, 281, 289, 293, 321, 337, 353, 389, 401, 449, 521,

523, 529, 531, 533, 541, 547, 551, 557

Table 3.5: Lookup sizes for integer LACTB(d/l,b)C codes

Codes b l b l
2c LUT1 size LUT2 size No of table look ups

(144,128) 16 4 2 4× 16B 2.11 KB 1 ≤ ηTL ≤ 10

(528,512) 16 5 2 4× 64B 9.41 KB 1 ≤ ηTL ≤ 12

(512,480) 32 6 3 4× 60B 58.75 KB 1 ≤ ηTL ≤ 14

(1056,1024) 32 8 4 4× 128B 0.46 MB 1 ≤ ηTL ≤ 17

Table 3.6: Lookup sizes for integer HACTB(h/l,b)C codes

Codes b l d l
2e LUT1 size LUT2 size No of table look ups

(240, 224) 16 7 4 4× 28 B 28.35 KB 1 ≤ ηTL ≤ 14

(512, 496) 16 6 3 4× 62 B 42.33 KB 1 ≤ ηTL ≤ 15

(544, 512) 32 6 3 4× 64 B 0.1 MB 1 ≤ ηTL ≤ 15

(1056, 1024) 32 8 4 4× 128 B 0.71 MB 1 ≤ ηTL ≤ 18

To the best of our knowledge, no error-correcting and detecting code has been

developed for low-density and high-density asymmetric CT-burst errors, therefore we

shall consider some similar codes in this regard and try to compare them by matching

54

the parameters on same lines. In [31], linear codes correcting low-density CT-bursts

are discussed with fixed burst length, upon existence consider a ((k+ 1)b, kb) linear

code with q = 2 capable of correcting CT-bursts up to weight d of length l satisfying

d ≤ l < b
2 . This linear code will have k + 1 blocks of length b each, thus the

number of error patterns will be equal to (k + 1)(b− l + 1)2[l−1,d−1]. By considering

same parameters in the proposed code, we observe same number of error patterns.

Since the syndrome table in [31] consists of error patterns and the corresponding

syndromes, so the code requires storage of (k + 1)(b − l + 1)2[l−1,d−1](kb + 2b) bits

for decoding purpose. Whereas the bit requirement for the proposed low-density

integer codes is (k + 1)(b− l + 1)2[l−1,d−1](dlog2(k + 1)e+ 2b), which clearly justifies

less memory requirement for the proposed codes. For example in [31], consider code

length = 20, redundancy = 10, burst length = 4, weight (inverted bits) ≤ 2, number

of blocks = 2 and t = 10. Now using the necessary and sufficient conditions from [31]

(refer Result 1.46-1.47), we can construct a (20, 10) linear code with the parameters

specified above. Similarly by using Table 3.3, we can construct a (20, 10) integer

LACTB(2/4,10)C code, where each codeword is of same bit-width similar to the linear

counterpart. Thus both codes will have 56 error patterns of length 4 with weight

up to 2, hence the bit requirement for syndrome table will be 1680 and 1176 bits

respectively for linear and integer codes. It may also be noted that the existence of

error-correcting capability of the linear codes is restricted for d ≤ l < b
2 , whereas for

the proposed code we do not have such restriction, in fact from Table 3.3 we have

many codes surpassing this constraint.

Similarly, the bit requirement for high-density asymmetric CT-bursts can be

shown lesser in number compared to the linear codes discussed in [32]. This can

be done by just considering parameters having same number of error patterns and

replicating the steps followed above for low-density case. From Table 3.4 and Result

1.48-1.49, it is evident that (16, 8) codes exist for both cases by considering burst

length 4, weight ≥ 2. Memory consumed by linear code with these parameters is

2× 35× (16 + 8) = 1680 bits whereas by proposed integer code it will be 2× 35×

(16 + 1) = 1190 bits. Also, the entries for a linear code can not be arranged in an

increasing order, so the number of table look ups will be ηTL, where 1 ≤ ηTL ≤ |X|

55

(see [63]), where |X| denotes the number of error patterns for both [31] and [32].

Thus the number of table look ups in linear codes is significantly higher than the

proposed codes. Memory consumed by LUT2 of integer codes correcting different

types of errors along with their range of table look ups are portrayed in Table 3.7.

The integer codes discussed in the table are capable of correcting different types of

errors in different ways, so it will facilitate in choosing a suitable code as per the

error-correcting requirement and its cost effectiveness before its implementation.

Table 3.7: Comparison of some integer codes with 32 information bytes

Codes Error b l LUT2 No of table

patterns size look ups

LACTB(d/l,b)C Proposed low-density 32 8 0.46 MB 1 ≤ ηTL ≤ 17

HACTB(h/l,b)C Proposed high-density 32 8 0.71 MB 1 ≤ ηTL ≤ 18

(CTlB)b Asymmetric CT-bursts 32 8 0.96 MB 1 ≤ ηTL ≤ 18

(Chapter 2)

Definition 1.20 Symmetric bursts 32 8 3.84 MB 1 ≤ ηTL ≤ 20

Result 1.39 Bursts and 32 8 2.32 MB 1 ≤ ηTL ≤ 20

random asymmetric

Result 1.36 Asymmetric bursts and 32 8 8.91 MB 1 ≤ ηTL ≤ 21

double random asymmetric

3.3.2 The probability of erroneous decoding

Since the codes are studied over a Z-channel, so consider probability of the occur-

rence of the pattern 1 → 0 per bit be ε, thus the probability of the occurrence of

1 → 1 and 0 → 1 will become 1 − ε and 0 respectively. Probability of erroneous

decoding for both the codes are discussed in the theorems below.

Theorem 3.12. For transition probability ε pertaining to 1 → 0, the erroneous

decoding probability Pd(LD) for a (kb + b, kb) integer LACTB(d/l,b)C code will be

(k + 1)(b− l + 1)
b l

2 c−1∑
i=0

(
l−1
i

)
εi+1(1− ε)(k+1)b−i−1.

56

Proof. A transmitted codeword here is of (k+1)b bits divided into (k+1) equal b-bit

bytes and the code is capable of correcting one asymmetric CT-burst having length

l and weight at most b l
2c. So a sent message affected by an asymmetric CT-burst of

weight 1 in the first b-bit byte will have (k + 1)b− 1 non-corrupted bits, hence the

probability of erroneous decoding in this case will be
(

l−1
0

)
ε1(1−ε)(k+1)b−1. Similarly

the probability of erroneous decoding for an asymmetric CT-burst of weight 2 and

length l in the first b-bit byte will be
(

l−1
1

)
ε2(1 − ε)(k+1)b−2, continuing this, the

probability of erroneous decoding for an asymmetric CT-burst of length l having

weight b l
2c will be

(
l−1
b l

2 c−1

)
εb

l
2 c(1− ε)(k+1)b−b l

2 c. Since there are (b− l + 1) beginning

positions for asymmetric CT-bursts in the first b-bit byte of length l having weight up

to b l
2c, so the probability in this case will be (b− l+1)

b l
2 c−1∑
i=0

(
l−1
i

)
εi+1(1− ε)(k+1)b−i−1.

As there are k + 1 b-bit bytes in a transmitted codeword, so the total probability

of erroneous decoding for the integer LACTB(d/l,b)C code will be Pd(LD) = (k +

1)(b− l + 1)
b l

2 c−1∑
i=0

(
l−1
i

)
εi+1(1− ε)(k+1)b−i−1.

Theorem 3.13. For transition probability ε pertaining to 1 → 0, the erroneous

decoding probability Pd(HD) for a (kb + b, kb) integer HACTB(h/l,b)C code will be

(k + 1)(b− l + 1)
l−1∑

i=d l
2 e−1

(
l−1
i

)
εi+1(1− ε)(k+1)b−i−1.

Proof. Structure of a transmitted codeword here will be similar to Theorem 3.12,

however the occurrence of CT-bursts will be different. Here an asymmetric CT-

burst in the first b-bit byte of length l having weight d l
2e will have (k + 1)b − d l

2e

non-corrupted bits, so the corresponding probability of erroneous decoding will be(
l−1
d l

2 e−1

)
εi+1(1 − ε)(k+1)b−i−1. Analogous to the discussion done in Theorem 3.12,

the probability of erroneous decoding for asymmetric CT-bursts of length l having

weight at least d l
2e will be (b− l + 1)

l−1∑
i=d l

2 e−1

(
l−1
i

)
εi+1(1− ε)(k+1)b−i−1. Again as there

are (k + 1) b-bit bytes in a transmitted message, our claim gets proved.

Bit Error Rate (BER) is the number of bits affected by error divided by the

total number of bits received during a transmission. In the case of the proposed

low-density and high-density codes, as the number of bits affected lie between 0

to b l
2c and d l

2e to l respectively, so we consider the average of the number of er-

57

Figure 3.1: Code rate vs BER and probability

(a) LACTB(2/4,10)C code

0.7 0.75 0.8 0.85 0.9 0.95
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Code rate

BER
Probability

(b) LACTB(2/5,16)C code

0.7 0.75 0.8 0.85 0.9 0.95
0

1

2

3

·10−2

Code rate

BER
Probability

(c) HACTB(3/5,16)C code

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Code rate

BER
Probability

(d) HACTB(4/7,16)C code

0.5 0.55 0.6 0.65 0.7 0.75

5 · 10−2

0.1

0.15

Code rate

BER
Probability

roneous bits for calculating BER. Thus BER for the proposed low-density will be
1

(k+1)b
1+2+...+b l

2 c
b l

2 c
= b l

2 c+1
2b(k+1) . Similarly the BER for proposed high-density will be

(d l
2 e)+(d l

2 e+1)+...+(d l
2 e+l−d l

2 e)
b(k+1)(l−d l

2 e+1) = (l−d l
2 e+1)d l

2 e+1+2+...+l−d l
2 e

b(k+1)(l−d l
2 e+1) = 2(l−d l

2 e+1)d l
2 e+(l−d l

2 e)(l−d
l
2 e+1)

2b(k+1)(l−d l
2 e+1)

= d l
2 e+l

2b(k+1) . A few graphs are plotted in Fig 3.1 where BER and probability of erro-

neous decoding vs code rate is considered for both proposed codes, here transition

probability ε = 0.1 is considered. We observe that as the code rate increases, BER

and probability of erroneous decoding decrease.

So far, study of determining the probability of erroneous decoding has been done.

But sometimes an error may go undetected, for instance, due to an error e′ /∈ εd/l,b

or e′ /∈ εh/l,b, sometimes the resultant syndrome S = −Ci × e′ (mod 2b − 1) = 0,

1 ≤ i ≤ k+ 1. In such situation we call the error as undetected, however this is not

possible for the errors occurred as per our specification. For example in the integer

HACTB(2/4,8)C code, for coefficient C2 = 3, we have −3×85 (mod 255) = −3×170

(mod 255) = 0, both the errors 85 = (10101010) and 170 = (01010101) are of length

7 and weight 4. Since the syndrome values of the proposed codes depend upon

the coefficient Ci’s, which are obtained by a computer search result and do not

58

follow any particular pattern, so to determine the exact probability of undetected

error becomes an open problem. For an error e′ to remain undetected, −Ci × e′

(mod 2b − 1) = 0, as Ci’s are fixed during transmission, so to have this undetected

error, the value of e′ can not be a unit, so the probability of undetected errors will

lie in the interval [0, 2b−2−ϕ(2b−1)−|εd/l,b|
2b−2] and [0, 2b−2−ϕ(2b−1)−|εh/l,b|

2b−2], where ϕ(2b − 1)

is the Euler’s phi function [23]. Now we give below an approach to determine the

maximum probability of undetected errors with respect to asymmetric CT-burst

whose length is longer than the specified value for the proposed codes.

Theorem 3.14. The probability of asymmetric CT-bursts with length r (> l) having

weight at most b l
2c that can be undetected within a b-bit byte by a (kb+ b, kb) integer

LACTB(d/l,b)C code with parity check matrix H = (C1C2 . . . Ck − 1) is at most
2pi+r−b+1

2[r−1,b l
2 c−1]

, where pi is the highest power of 2 in the binary representation of Ci.

Proof. Consider an asymmetric CT-burst of length r with weight at most b l
2c start-

ing at jth position and ending at (j + r − 1)th position in any b-bit byte. An

asymmetric CT-burst (Er) of length r having weight at most b l
2c with beginning

position as specified above will go undetected by the integer LACTB(d/l,b)C code if

CiEr (mod 2b − 1) = 0, i.e., 2b − 1 divides CiEr. (3.3)

The binary representation of 2b − 1 is 1 + 2 + 22 + · · · + 2b−1, and let Ci(2) and

Er(2) be the binary representations corresponding to Ci and Er respectively. As

Er(2) represents an asymmetric CT-burst of length r with weight b l
2c or less, so

Er(2) = 2iE ′r(2), 0 ≤ i ≤ b−r where highest power of 2 in the binary representation

of E ′r(2) = r − 1 and the number of non-zero components in E ′r(2) ≤ b l
2c. So for a

particular beginning position,

of Er(2) = # of E ′r(2) = 2[r−1,b l
2 c−1]. (3.4)

From (3.3), 1+2+22 + · · ·+2b−1 divides Ci(2)Er(2), i.e., Ci(2)2iE ′r(2), and since

1 + 2 + 22 + · · ·+ 2b−1 and 2i are relatively prime, so

(1 + 2 + 22 + · · ·+ 2b−1)|Ci(2)E ′r(2).

59

This means

Ci(2)E ′r(2) = mi(2)(1 + 2 + 22 + · · ·+ 2b−1) for some binary representation mi(2).

If the highest power of 2 in the binary representation of Ci(2) = pi, then the highest

possible power of 2 for mi(2) will be pi + r − 1 − b + 1 = pi + r − b. Thus the

maximum possible number of mi(2) here will be

2pi+r−b+1. (3.5)

Dividing (3.5) by (3.4) proves the theorem.

Similarly, an analogous result for high-density asymmetric CT-burst is derived

below.

Theorem 3.15. The probability of an asymmetric CT-bursts with length r (> l)

having weight at least d l
2e that can be undetected within a b-bit byte by a (kb +

b, kb) integer HACTB(h/l,b)C code with parity check matrix H = (C1C2 . . . Ck − 1)

is at most 2pi+r−b+1

2r−1 − 2[r−1,d l
2 e−1]

, where pi is the highest possible power in the binary

representation of Ci.

Proof. Consider Er be a high-density asymmetric CT-burst of length r having weight

between d l
2e and l occurring within a b-bit byte. If such burst begins at jth position,

then it ends at (j + r − 1)th position in any b-bit byte. As discussed in Theorem

3.14, the burst Er will go undetected in ith b-bit byte if CiEr (mod 2b − 1) = 0.

Since there are (2r−1 − 2[r−1,d l2 e−2]) possibilities for Er in any beginning position, so

by following the approach similar to Theorem 3.14, we have the desired probability

at most 2pi+r−b+1

2r−1 − 2[r−1,d l
2 e−1]

.

3.4 Conclusion

In this chapter, we have presented two classes of integer codes capable of correct-

ing low-density and high-density asymmetric CT-bursts within a b-bit byte using

weight constraint, also a probabilistic approach has been developed for such errors.

Compared to similar codes, the proposed ones require less memory, use a smaller

60

number of table look ups, and have a better code rate. This work can be further

carried out for such CT-bursts which are spread over adjacent b-bit bytes. We can

also look for similar works on moderate-density CT-bursts.

61

	07_chapter 3

