
Chapter 4
Unidirectional Solid Burst Correct-
ing Integer Codes

The contents of this chapter are based on the papers mentioned below:

• Pokhrel, N. K. and Das, P. K. Unidirectional solid burst correcting integer

codes. Journal of Applied Mathematics and Computing, 1-16, 2021,

doi:10.1007/s12190-021-01662-2.

• Pokhrel, N.K. and Das, P.K. Probability of erroneous decoding for integer

codes correcting burst asymmetric/unidirectional/symmetric errors within a

byte and up to double asymmetric errors between two bytes. Kuwait Journal

of Science, 2022, doi: 10.48129/kjs.online.

62

Chapter 4

Unidirectional Solid Burst Correcting In-

teger Codes

4.1 Overview

In LSI technology with memories, byte-per-card memory organisation is used rather

than bit-per-card memory organization, where a byte is a cluster of b-adjacent bits.

So to overcome the noise-affected errors in these memories, a proper error-correcting

correcting scheme becomes important. The chances of the occurrences of unidirec-

tional errors in these situations have been discussed in Section 1.3. These errors

may lead to system failure [74]. Similarly, the occurrence of solid bursts is also seen

in many storage systems, as discussed in Section 1.3 of Chapter 1.

In this chapter, we shall use Definition 1.9 for unidirectional solid bursts for con-

structing the integer codes capable of correcting unidirectional solid bursts. These

codes will be called as integer (UlSB)b codes. Figure 1.2 depicts the binary sym-

metric channel where these errors may occur with crossover probability ε. A brief

implementation on a quad-core processor is discussed, along with its memory con-

sumption in Section 4.3. Further, a comparison is made with linear codes and

integer codes correcting similar types of errors. The codes discussed here use in-

tegers and table look ups which makes them suitable for software implementation

in all processors. The construction process here identifies the repeating errors (in-

teger values) in symmetric channels and accordingly develops the error-correcting

63

procedure. Finally, the probability of erroneous decoding is determined.

4.2 Construction of codes

Suppose B = (xo, x1, . . . , xb−1) and B̄ = (x̄0, x̄1, . . . , x̄b−1) be the sent and received

messages respectively, then the set of unidirectional solid bursts of length t pertaining

to the nature 1 → 0 occurring within a b-bit byte will be eb,t = 2r(2t − 1), where

0 ≤ r ≤ b− t, here error is considered as sent-received. Similarly for the nature 0→

1, set of solid bursts of length t within a b-bit byte will be e′b,t = −2r(2t − 1), where

0 ≤ r ≤ b−t. By considering Eb,l = eb,1∪eb,2∪ . . .∪eb,l and E ′b,l = e′b,1∪e′b,2∪ . . .∪e′b,l,

the set of all unidirectional solid bursts up to length l will be εb,l = Eb,l ∪ E ′b,l.

Unlike the error patterns discussed earlier over the binary asymmetric channels,

the error patterns here have repetitions after attaining a certain length. Therefore,

to decode a sent message uniquely subject to the occurrence of a unidirectional

solid burst, the lemma below will be helpful to identify the common error patterns

occurring in the set.

Lemma 4.1. Elements within the error sets Eb,l and E ′b,l are unique. Further in the

error set εb,l, for all 1 ≤ t ≤ b − 1, 20(2t − 1) = −2t(2b−t − 1) and 2b−t(2t − 1) =

−20(2b−t − 1).

Proof. Since the ring Z2b−1 has no elements of order 2, so by proving elements in

Eb,l distinct clearly will imply the same for the set E ′b,l and vice-versa. As discussed

Eb,l = eb,1∪eb,2∪. . .∪eb,l and the highest possible element in the sets eb,t: 1 ≤ t ≤ l < b

can be written as 2b−t(2t − 1) = 2b−t(2t−1 + 2t−2 + . . . + 21 + 20) = 2b−1 + 2b−2 +

. . .+ 2b−t < 2b− 1. Again by using the fact that each element in Z2b−1 has a unique

binary representation, we can conclude the uniqueness among the elements within

the sets Eb,l and E ′b,l.

But we have some pairs of elements between the sets Eb,l and E ′b,l having same

integer values in the ring Z2b−1. The equality 2r1(2l1 − 1) = −2r2(2l2 − 1) for

1 ≤ l1, l2 < b and 0 ≤ ri ≤ b− li can be further expressed as 2r1(20 + 21 + . . .+ 2l1 −

1) + 2r2(20 + 21 + . . .+ 2l2 − 1) = 0 =⇒ 2r1 + 2r1+1 + . . .+ 2r1+l1−1 + 2r2 + 2r2+1 +

64

. . .+ 2r2+l2−1 = 0, this is possible only if

(1) Case I: r1 = 0, r1 + 1 = 1, . . . , r1 + l1 − 1 = t − 1 and r2 = t, r2 + 1 =

t+1, . . . , r2 + l2−1 = b−1 =⇒ r1 = 0, l1−1 = t−1 and r2 = t, l2−1 = b−1,

thus 20(2t − 1) = −2t(2b−t − 1) for all 1 ≤ t ≤ b− 1.

(2) Case II: r2 = 0, r2 + 1 = 1, . . . , r2 + l2 − 1 = t − 1 and r1 = t, r1 + 1 =

t+1, . . . , r1+l1−1 = b−1, thus 2b−t(2t−1) = −20(2b−t−1) for all 1 ≤ t ≤ b−1.

Note: As per the discussion in the lemma above, for 1 ≤ l < d b2e the sets Eb,l
and E ′b,l will not have any common element. Also, for d b2e ≤ l < b, the common

elements occur between the pairs eb,i and e′b,b−i.

4.2.1 Encoding procedure

The encoding procedure, width representation of an encoded codeword, and process

for choosing the coefficients are similar to the processes discussed in Section 2.2

of Chapter 2. The definitions below gives us the syndrome sets used in the error-

correcting procedure.

Definition 4.2. The set of syndromes for integer codes correcting unidirectional

solid bursts is

S1 =
k+1
∪
i=1
− [Ciεb,l] (mod 2b − 1), (4.1)

where the coefficient Ck+1 = −1 and other coefficients C1, C2, . . . , Ck are chosen

from Z2b−1 \ {0, 1} such that the sets −C1εb,l,−C2εb,l, . . . ,−Ckεb,l and εb,l are all

mutually disjoint.

The Python programme used to find the coefficients is given in Appendix D. The-

orem below gives us the number of elements in the syndrome set used for decoding

a received message.

Theorem 4.3. A ((k+1)b, kb) integer (UlSB)b code can correct unidirectional solid

bursts up to length l within a b-bit byte for

65

1. 1 ≤ l < d b2e if there exist k distinct coefficients in Z2b−1 \ {0, 1} such that

|S1| = (k + 1)(2b− l + 1)l.

2. d b2e ≤ l < b if there exist k distinct coefficients in Z2b−1\{0, 1} such that |S1| =

(k+1)[(2b− l−3)l+2b−2] for even l and |S1| = (k+1)[(2b− l−3)l+4d b2e−4]

for odd l.

Proof. We know S1 = (−C1εb,l)∪(−C2εb,l)∪. . .∪(−Ckεb,l)∪(εb,l) and each of the sets

in the union above have same number of elements, also εb,l = Eb,l∪E ′b,l and both the

sets again have same number of elements, also coefficient Ci’s are chosen such that

the union sets in S1 are mutually disjoint. So to prove the theorem it is sufficient to

show that (1) |εb,l| = (2b− l + 1)l for 1 ≤ l < d b2e and (2) |εb,l| = (2b− l− 3)l + 2b− 2

or |εb,l| = (2b− l− 3)l + 4d b2e − 4 for d b2e ≤ l < b with even or odd l.

(1) For 1 ≤ l < d b2e, set Eb,l consists of solid bursts up to length l within a b-bit byte

pertaining to the pattern 1 → 0. Solid bursts up to length l beginning from

1st position till (b− l + 1)th position will be l in numbers and after (b− l + 1)th

position, we will have l− 1 solid bursts and so on till the last position having

only one choice. Also from Lemma 4.1 for 1 ≤ l < d b2e, we have no repetition of

errors when written in integer form, thus |Eb,l| = (b−l+1)l+l−1+l−2+. . .+1 =
l
2(2b− l + 1) consequently |S1| = 2(k + 1) l

2(2b− l + 1) = (k + 1)(2b− l + 1)l.

(2) Once l ≥ d b2e, as discussed in Lemma 4.1, the integer values of the solid bursts

start repeating.

• Case I (l is even): For constructing an error set εb,l free of repetitions,

we remove two elements from the pairs eb,i and e′b,b−i with 1 ≤ i ≤ b− 1.

Thus for l ≥ b
2 , we need to remove 2 + 4(l − b

2) number of repeating

elements. After removal by following the steps discussed in 1 above, we

have |S1| = (k+1)[(2b− l+1)l−(2+4l−2b)] = (k+1)[(2b− l−3)+2b−2].

• Case II (l is odd): Similar to Case I by removing 4+4(l−d b2e) repeating

elements from the pairs ei and e′b−i with 1 ≤ i ≤ b − 1, we have |S1| =

(k + 1)[(2b− l + 1)l− 4 + 4(l− d b2e)] = (k + 1)[(2b− l− 3)l + 4d b2e − 4].

66

4.2.2 Decoding procedure

Again, the decoding procedure is similar to Chapter 2 with the LUT2 consuming

|S1|×(2b+dlog2(k+1)e) bits. Similarly, the error-correcting steps are similar to the

steps discussed in Chapter 2. Example 4.4 explains the error-correction procedure

for the discussed codes with 1 ≤ l < d b2e.

Example 4.4. Consider b = 8, l = 3, then C1 = 11, C2 = 13, further Table 4.1

depicts syndromes generated using Definition 4.2 with corresponding error positions

and errors. Suppose a message 11010111 01110011 is to be transmitted. After en-

coding the message becomes B1B2CB = 11010111 01110011 11000101. Message

received after transmission may have the following possibilities:

Case I (Data byte having unidirectional pattern 1 → 0): Suppose 11010000

01110011 11000101 is received, then CB̄ = [11 × 11 + 13 × 206] (mod 255) = 249,

thus syndrome S = [249 − 163] (mod 255) = 86 = (−11 × 224) (mod 255), from

this we conclude the data byte B1 affected by the unidirectional solid burst e =

(25 + 26 + 27) (mod 255). Hence the corrected data byte will be B1 = [11 + 224]

(mod 255) = 235 = 11010111.

Case II (Data byte having unidirectional pattern 0 → 1): Suppose 11010111

01111111 11000101 is received, then CB̄ = [11 × 235 + 13 × 254] (mod 255) = 22,

thus syndrome S = [22−163] (mod 255) = 114 = (−13×207) (mod 255), from this

we conclude the data byte B2 affected by the unidirectional solid burst e = −[24 + 25]

(mod 255). Therefore the corrected data byte will be B2 = [254 + 207] (mod 255) =

206 = 01110011.

Case III (Check byte having unidirectional pattern 1 → 0): Suppose 11010111

01110011 00000101 is received, then clearly CB̄ = CB and C̄B = 163, so syndrome

S = [163− 160] (mod 255) = 3, thus check byte CB is affected by the unidirectional

solid burst e = 3 = [20 + 21] (mod 255), hence the corrected check byte will be

[160 + 3] (mod 255) = 163 = 11000101.

Case IV (Check byte having unidirectional pattern 0 → 1): Suppose 11010111

01110011 11111101 is received, then CB̄ = CB and C̄B = 191, so syndrome S =

67

[163− 191] (mod 255) = 227, thus check byte is affected by the unidirectional solid

burst e = 227 = −[22 + 23 + 24] (mod 255), hence the corrected check byte will be

[191 + 227] (mod 255) = 11000101.

Note: If the syndrome obtained for a received message is not in the look up

table, then it is beyond the scope of the decoder. However, this is possible only

when the occurred error is not unidirectional solid burst or has length exceeding

l. Example 4.5 illustrates the capability of these codes dealing with longer burst

lengths.

Example 4.5. Consider b = 8 and l = 6, then C1 = 11, after removing 10 repeating

integer values, viz., 3, 7, 15, 31, 63, 192, 224, 240, 248, 252, we have |ε8,6| = 56, conse-

quently |S1| = 112. Encoding and decoding procedure for non-repeating elements is

similar to Example 4.4, we shall elaborate the decoding of two error patterns having a

common integer value. Suppose 11111110 is encoded as 11111110 01011110 and af-

ter transmission it is received as 00011110 01011110, then syndrome S = [CB̄− C̄B]

(mod 2b − 1) = [45− 122] (mod 255) = 178 = [−11× 7] (mod 255). Thus we have

error e = 7 but 7 pertains to two error patterns, viz., [20 + 21 + 22] (mod 255) and

[−23−24−25−26−27] (mod 255). For error e = [20 +21 +22] (mod 255), the sent

message is decoded as B1 = [B̄1 + e] (mod 2b − 1) = [120 + 7] (mod 255) = 127 =

11111110, similarly for e = 7 = [−23 − 24 − 25 − 26 − 27] (mod 255), we get the

same result. But by matching the received message 00011110 with error 11100000,

we observe unidirectional solid burst of nature 1 → 0 occurring from 1st to 3rd po-

sition during the transmission whereas matching error 000− 1− 1− 1− 1− 1 with

the received message 00011110 doesn’t give us a solid burst of unidirectional nature.

So we consider error e = 11100000 and ascertain the sent message as 11111110.

Again let the message 01100000 be encoded and transmitted as 01100000 01000010.

Suppose it is received as 01111111 01000010, then syndrome S = [244−66] (mod 255)

= 178 = [−11 × 7] (mod 255), again we have error 7 = [−23 − 24 − 25 − 26 − 27]

(mod 255) and [20 +21 +22] (mod 255). But in this case error 000−1−1−1−1−1

matches with the received message 01100000 and allows us to ascertain a solid

burst occurring from 4th to 8th position with nature 0 → 1. Whereas the error

68

11100000 doesn’t match with the received message to ascertain the occurrence of

a solid burst of unidirectional type, hence the corrected data byte B1 = [254 + 7]

(mod 255) = 6 = 01100000.

Same approach is applicable in case of repeating integer values for error detection

and correction in the check byte or other data bytes (in case of existence).

Remark 4.6. For two error patterns having a common integer value, we match the

patterns with the received message so as to decide exactly which unidirectional solid

burst may have occurred during transmission. However in case of symmetric bursts

(refer Definition 1.18) this approach may not always work.

Table 4.1: LUT2 for (24,16) integer (U3SB)8 code

Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S1) Loc. (e) No. (S1) Loc. (e)

1 1 3 1 64 128 3 128

2 2 3 2 65 132 1 243

3 3 3 3 66 133 1 127

4 4 3 4 67 134 2 127

5 6 3 6 68 141 2 48

6 7 3 7 69 143 3 143

7 8 3 8 70 146 2 28

8 9 1 231 71 148 2 224

9 11 1 254 72 149 1 56

10 12 3 12 73 151 2 8

11 13 2 254 74 154 1 241

12 14 3 14 75 156 2 243

13 16 3 16 76 158 1 32

14 18 1 207 77 159 3 159

15 22 1 253 78 161 2 223

16 24 3 24 79 164 2 7

17 26 2 253 80 167 1 8

Contd...
69

Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S1) Loc. (e) No. (S1) Loc. (e)

18 27 2 96 81 169 1 31

19 28 3 28 82 176 1 239

20 31 3 31 83 177 2 6

21 32 3 32 84 178 1 7

22 33 1 252 85 181 2 143

23 36 1 159 86 182 2 241

24 37 2 56 87 183 1 192

25 39 2 252 88 188 2 64

26 43 1 112 89 189 1 6

27 44 1 251 90 191 3 191

28 47 2 16 91 192 3 192

29 48 3 48 92 194 1 191

30 52 2 251 93 198 2 24

31 53 1 227 94 199 3 199

32 54 2 192 95 201 2 63

33 56 3 56 96 202 1 28

34 57 2 231 97 203 2 4

35 61 1 64 98 207 3 207

36 63 3 63 99 208 2 239

37 64 3 64 100 211 1 4

38 66 1 249 101 212 1 143

39 67 2 191 102 216 2 3

40 72 1 63 103 218 2 199

41 73 2 14 104 219 1 96

42 74 2 112 105 222 1 3

43 77 1 248 106 223 3 223

44 78 2 249 107 224 3 224

45 79 1 16 108 227 3 227

Contd...

70

Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S1) Loc. (e) No. (S1) Loc. (e)

46 86 1 224 109 228 2 159

47 88 1 247 110 229 2 2

48 91 2 248 111 231 3 231

49 94 2 32 112 233 1 2

50 96 3 96 113 237 1 48

51 97 1 223 114 239 3 239

52 99 2 12 115 241 3 241

53 101 1 14 116 242 2 1

54 104 2 247 117 243 3 243

55 106 1 199 118 244 1 1

56 107 2 31 119 246 1 24

57 109 2 227 120 247 3 247

58 112 3 112 121 248 3 248

59 114 2 207 122 249 3 249

60 121 2 128 123 251 3 251

61 122 1 128 124 252 3 252

62 123 1 12 125 253 3 253

63 127 3 127 126 254 3 254

4.3 Evaluation and comparison

In this section, we discuss the implementation, comparison, and probability.

4.3.1 Implementation and comparison

For implementation of these codes in a quad-core processor we refer to Chapter 2.

Table 4.3 depicts the memory consumed by the look up tables to store the coefficients

and syndromes. The codes are constructed upon the availability of coefficients (Table

71

4.2) determined using the computer search results (Appendix D).

Table 4.2: Coefficients for some integer (UlSB)b codes

b l First possible 32 coefficients

6 2 Not available

6 3 Not available

7 2 5, 9, 13

7 3 11

7 4 11

7 5 11

8 2 7, 9

8 3 11, 13

8 4 11

8 5 11

8 6 11

8 7 11

9 2 5, 7, 9, 11, 13, 19, 23, 25, 29, 35, 51

9 3 5, 11, 19

9 4 11, 19, 45

9 5 11, 19, 45

9 6 11, 19, 45

9 7 11, 19, 45

9 8 11, 19, 45

10 3 5, 13, 17, 19, 23, 25, 29, 43, 47, 49, 83, 101, 103, 107

10 4 13, 19, 23, 35, 49

10 5 13, 27

10 9 13, 27

16 4 9, 11, 13, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53,

59, 61, 67, 71, 73, 79, 83, 89, 97, 99, 101, 103, 107, 109,

113, 117, 121

Contd...

72

b l First possible 32 coefficients

16 6 11, 13, 19, 23, 25, 27, 29, 35, 37, 41, 43, 45, 47, 49, 53,

59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109,

113, 121, 131, 137

16 7 11, 13, 19, 23, 25, 27, 29, 35, 37, 41, 43, 45, 47, 49, 53,

59, 61, 67, 71, 79, 83, 89, 97, 101, 107, 109, 113,

121, 131, 143, 149, 151

16 8 11, 13, 19, 23, 25, 27, 37, 43, 45, 59, 97, 113, 121, 145, 209

16 10 11, 13, 19, 23, 25, 27, 37, 43, 45, 59, 97, 113, 121, 145, 209

16 13 11, 13, 19, 23, 25, 27, 37, 43, 45, 59, 97, 113, 121, 145, 209

16 15 11, 13, 19, 23, 25, 27, 37, 43, 45, 59, 97, 113, 121, 145, 209

32 6 11, 13, 17, 19, 23, 25, 29, 35, 37, 41, 43, 45, 47, 49, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97,

101, 103, 107, 109, 113, 121, 127, 131

32 8 11, 13, 19, 23, 25, 27, 29, 35, 37, 41, 43, 45, 47, 49, 51, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97,101, 103, 107, 109,

113, 121, 131

32 12 11, 13, 19, 23, 25, 27, 29, 35, 37, 41, 43, 45, 49, 51, 53, 61,

67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113,

121, 131, 137, 139, 143

32 15 11, 13, 19, 23, 25, 27, 29, 35, 37, 41, 43, 45, 47, 49, 51, 53,

59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113,

121, 131, 137

32 16 11, 13, 19, 23, 25, 27, 29, 35, 37, 41, 43, 45, 47, 49, 51, 53,

59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113,

121, 131, 137

32 20 11, 13, 19, 23, 25, 27, 29, 35, 37, 41, 43, 45, 47, 49, 51, 53, 59,

61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113,

121, 131, 137

Bose and Al-Bassam [19] have discussed byte unidirectional error detecting and

73

Table 4.3: Memory requirement for some integer (UlSB)b codes

Codes b l LUT1 LUT2 Number of table

size size look ups

(272,256) 16 6 4× 32B 12.74 KB 1 ≤ ηTL ≤ 13

(256,240) 16 8 4× 30B 14.26 KB 1 ≤ ηTL ≤ 13

(256,240) 16 10 4× 30B 15.84KB 1 ≤ ηTL ≤ 13

(544,512) 32 12 4× 64B 93.25 KB 1 ≤ ηTL ≤ 15

(1056,1024) 32 16 4× 128B 0.23 MB 1 ≤ ηTL ≤ 16

(1056,1024) 32 20 4× 128B 0.25 MB 1 ≤ ηTL ≤ 16

correcting codes, where a codeword is of the form IB1 IB2 . . . IBk PB ARC. IBi are

k information b-bit bytes, whereas PB and ARC (parity byte and arithmetic residue

check) are two check bytes respectively of b and s bits obtained using some XOR

operations upon the information bits. The value of s depends upon the smallest

prime p such that p−1
2 ≥ k and p > b or p > max (2k, b), clearly 1 < s < b. Now,

by using Result 1.50 for redundancy, we have R2(rate of this code) = bk
(b+1)k+s <

bk
(b+1)k = R1 (rate for the proposed code). Since table look ups are not used in [19],

so we abstain from comparing.

Similarly by matching the proposed codes on the lines of the binary codes intro-

duced by Shiva and Sheng [100] with bk information bits correcting solid bursts of

length l, we observe the code rate R3 (for [100]) = bk
bk(2l+1)+2l . Since bk+ 2bkl + 2l >

bk + b, hence R3 <
bk
bk+b = R1. Although the existence of the codes in [100] depend

on the availability of at least 2l + 1 runs of 1’s unlike the existence determined by

computer search results for the proposed codes.

Sharma and Dass [99] have discussed solid burst correcting binary codes (per-

fect), here table operations are done for error detection/correction purpose. A look

up table here has three columns, viz., sl. no., error pattern and the corresponding

syndromes. Upon existence of a linear code in [99] and by drawing the parameters on

the lines with the proposed ((k+1)b, kb) codes correcting solid bursts of length l, the

required memory for codes in [99] is X × [2b+ kb] whereas memory required for the

74

Table 4.4: Various integer codes with information rate 512
544

Codes Error type b l LUT2 Maximum # of

size table look ups

Proposed Unidirectional 32 3 27.28 KB 13

solid bursts

Result 1.31 Double and 32 3 7.81 MB 21

triple adjacent

Proposed Unidirectional 32 9 73.9 KB 15

solid bursts

Result 1.36 Asymmetric burst and 32 9 3.35 MB 19

double asymmetric

Result 1.19 Symmetric bursts 32 9 15.01 MB 19

Result 1.24 Double asymmetric 32 NA 1.96 MB 19

proposed codes is X×[2b+dlog2(k+1)e], here X denotes the number of possible error

patterns of the discussed type. We observe thatX×[2b+kb] > X×[2b+dlog2(k+1)e],

implying the proposed codes consume less memory. The codes discussed here have

a few more benefits than the integer (DEC − (TAEC)b) codes (refer [78]), which

already have many additional benefits compared to other adjacent error-correcting

codes defined over finite fields. A few major benefits can be highlighted as follows:

• Capability to correct adjacent bursts (rather than confined up to 3 adjacent)

with maximum possible length within a b-bit byte.

• Less consumption of memory with fewer table look ups, etc.

Table 4.4 compares some integer codes capable of correcting different types of errors

in terms of LUT2 sizes and # of table look ups.

75

Figure 4.1: Change in probability and BER for different code rates

(a) (U4SB)16 code

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

5 · 10−2

0.1

0.15

0.2

0.25

Code rate

BER
Probability

(b) (U8SB)16 code

0.7 0.75 0.8 0.85 0.9 0.95
0

2

4

6

8

·10−2

Code rate

BER
Probability

(c) (U6SB)16 code

0.7 0.75 0.8 0.85 0.9 0.95
0

2

4

6

8
·10−2

Code rate

BER
Probability

(d) (U20SB)32 code

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

5 · 10−2

0.1

0.15

Code rate

BER
Probability

4.3.2 Probability and BER

We consider the probability of 1 → 0 and 0 → 1 equal to ε because the codes are

investigated over a binary symmetric channel (refer Figure 1.2). The next theorem

determines the probability of erroneous decoding for integer (UlSB)b codes.

Theorem 4.7. The probability of erroneous decoding Pd(UB) for a ((k + 1)b, kb)

integer (UlSB)b code is

2(k+1)
b
 ε(1−ε)(k+1)b

(
1−(ε

1−ε)
l
)

1−2ε

−
 ε(1−ε)(k+1)b+1

(
(l−1)(ε

1−ε)
l+1
−l(ε

1−ε)
l
+(ε

1−ε)
)

(1−2ε)2


, where

ε is the crossover probability.

Proof. Similar to the theorem earlier, an encoded codeword from the ((k + 1)b, kb)

integer (UlSB)b code has (k + 1) b-bit blocks, and the code is capable to correct

a unidirectional solid burst up to length l occurring within a b-bit byte at a time.

Once the length of the unidirectional solid burst becomes greater than d l
2e − 1, we

begin to observe common integer values (refer Lemma 4.1 and Theorem 4.3) even

76

though the patterns are different. But, for the purpose of determining probability,

it makes no difference because we calculate probability based on error patterns

rather than integer values. Since there are 2b number of unidirectional solid bursts

of length 1 within a b-bit byte, thus the probability in this case will be 2bε(1 −

ε)(k+1)b−1. Similarly for unidirectional solid bursts of length 2, the probability will

be 2(b− 1)ε2(1− ε)(k+1)b−2. Continuing this, the probability of erroneous decoding

for a unidirectional solid burst of length l will be 2(b− l + 1)εl(1− ε)(k+1)b−l. Thus

the probability of erroneous decoding for unidirectional solid bursts up to length l

occurring within a b-bit byte will be

2
[
bε(1− ε)(k+1)b−1 + (b− 1)ε2(1− ε)(k+1)b−2 + . . .+ (b− l + 1)εl(1− ε)(k+1)b−l

]
= 2

[
b

l∑
i=1
εi(1− ε)(k+1)b−i −

l−1∑
i=1
iεi+1(1− ε)(k+1)b−i−1

]

= 2
b
 ε(1−ε)(k+1)b−1

(
1−(ε

1−ε)
l
)

1− ε
1−ε

− l−1∑
i=1
iεi+1(1− ε)(k+1)b−i−1


= 2

b
 ε(1−ε)(k+1)b

(
1−(ε

1−ε)
l
)

1−2ε

− ε(1− ε)(k+1)b−1
l−1∑
i=1
i
(

ε
1−ε

)i.

Since ε << 0.5, so

l−1∑
i=1

(
ε

1− ε

)i
=

(
ε

1−ε

)(
1−

(
ε

1−ε

)l−1
)

(
1− ε

1−ε

) .

Now by differentiating both sides with respect to
(

ε
1−ε

)
, we have

l−1∑
i=1
i
(

ε

1− ε

)i−1
=

l
(

ε
1−ε

)l
− l

(
ε

1−ε

)l−1
−
(

ε
1−ε

)l
+ 1(

1−2ε
1−ε

)2 .

Again by multiplying both sides with ε
1−ε , we have

l−1∑
i=1
i
(

ε

1− ε

)i
=

(1− ε)2
[
l
(

ε
1−ε

)l+1
− l

(
ε

1−ε

)l
−
(

ε
1−ε

)l+1
+
(

ε
1−ε

)]
(1− 2ε)2 .

Now by substituting this value in the probability of erroneous decoding within

a b-bit byte, we obtain the probability as

2
b
 ε(1−ε)(k+1)b

(
1−(ε

1−ε)
l
)

1−2ε

−
 ε(1−ε)(k+1)b+1

(
(l−1)(ε

1−ε)
l+1
−l(ε

1−ε)
l
+(ε

1−ε)
)

(1−2ε)2


.

Since the integer (UlSB)b codes are capable of correcting one unidirectional solid

burst at a time within a b-bit byte and there are k + 1 such b-bit bytes, thus the

77

total probability will be

Pb(UB) = 2(k+1)
b{ ε(1−ε)(k+1)b

(
1−(ε

1−ε)
l
)

1−2ε

}
−
{ ε(1−ε)(k+1)b+1

(
(l−1)(ε

1−ε)
l+1
−l(ε

1−ε)
l
+(ε

1−ε)
)

(1−2ε)2

}.

As discussed in Subsection 3.3.2, we determine

BER = 1
l

[
1

(k + 1)b + 2
(k + 1)b + . . .+ l

(k + 1)b

]

= 1
(k + 1)bl

[
l(l + 1)

2

]

= l + 1
2(k + 1)b.

In Figure 4.1, the change in BER and probability is shown with a changing code rate

for different integer (UlSB)b codes. It is evident from Table 4.2 and Appendix D that

the codes are capable of correcting the discussed bursts up to maximum possible

length. Therefore, while implementing these codes in a channel where this type

of bursts are prevalent, the chances of unidirectional solid bursts going undetected

become negligible. So we refrain from discussing the conditions of such errors going

undetected.

4.4 Conclusion

In this chapter, we have presented a class of integer codes capable of correcting

unidirectional solid bursts occurring within a b-bit byte. Also, it is compared with

some similar error-correcting codes and found suitable in many ways. We discovered

that the probability and BER of these codes decrease as the code rate increases.

Similar error-correcting procedures can be analysed for symmetric channels having

different crossover probabilities for 1→ 0 and 0→ 1.

78

	08_chapter 4

