
Chapter 5
Asymmetric Solid Burst Correcting
Integer Codes

The contents of this chapter are based on the paper mentioned below:

• Das, P. K. and Pokhrel, N. K. Asymmetric solid burst correcting integer codes.

Submitted for publication.

79

Chapter 5

Asymmetric Solid Burst Correcting Inte-

ger Codes

5.1 Overview

With the development of technology, the storage channels are getting smaller day

by day, so a noise factor may strike two consecutive cells leading to a multiple bit

upset (MBU) [76]. Some examples in this regard are observed in the case of static

random-access memory (SRAM) [8], dynamic random access-memory (DRAM) [52].

So, it becomes necessary to construct an error-correcting mechanism to deal with

these errors occurring between two adjacent bytes.

We have already discussed the occurrence of asymmetric patterns and solid bursts

in Chapters 2 and 4 respectively. To deal with the asymmetric solid bursts, in this

chapter, we have developed a class of integer codes that can correct asymmetric solid

bursts occurring within a b-bit byte as well as between two adjoining b-bit bytes. By

doing so, the code becomes capable of correcting asymmetric solid bursts occurring

anywhere in the codeword and the codes can be implemented without interleaving.

We name these codes as integer (AlSB)b codes. In Section 5.2, we present construc-

tion, encoding and decoding of (AlSB)b codes along with an example. Further, the

probability of erroneous decoding and conditions for undetected errors are derived in

Section 5.3. It is followed by the comparison of this class with other similar existing

classes in different aspects.

80

5.2 Construction of codes

For low-density asymmetric CT-bursts with l = w (burst length = weight) intro-

duced in Chapter 3, where bursts are considered anywhere within a b-bit byte, we

have eb,1 = {2i−1|1 ≤ i ≤ b} as the set of all asymmetric solid bursts of length

1. Similarly eb,2 = {2i−1 + 2i|1 ≤ i ≤ b − 1}, eb,3 = {2i−1 + 2i + 2i+1|1 ≤ i ≤

b− 2}, . . . , eb,l = {2i−1 + 2i + 2i+1 + . . .+ 2i+l−2|1 ≤ i ≤ b− l + 1} are the collection

of all asymmetric solid bursts of length 2, 3, . . . , l, in general, eb,t = 2i(2t − 1) for

0 ≤ i ≤ b − t. Thus by defining Eb,l =
l
∪
t=1
eb,t, we get the desired collection of all

asymmetric solid bursts up to length l occurring within a b-bit byte.

5.2.1 Encoding procedure

The encoding procedure is similar to the preceding chapters for errors occurring

within a b-bit byte. But, for the errors occurring across two adjoining b-bit bytes,

the procedure of finding coefficients changes. We now introduce the set of syndromes

to be used in the error-correcting procedure for the asymmetric solid bursts.

Definition 5.1. The set of all syndromes in integer (AlSB)b codes where errors

occur within a b-bit byte will be

S1 =
k+1
∪
i=1

[
− CiEb,l

]
(mod 2b − 1), (5.1)

and for errors occurring between two adjoining b-bit bytes, the set will be

S2 =
k
∪
i=1

[
CiUr + Ci+1Vs

]
(mod 2b − 1), (5.2)

where Ur = {−2b−1 − 2b−2 − . . . − 2b−r}, Vs = {−20 − 21 − . . . − 2s−1} such that

1 ≤ r, s ≤ l− 1, max{r + s} = l and the coefficient C1, C2, . . . , Ck are chosen from

Z2b−1\{0, 1} such that the sets −C1Eb,l,−C2Eb,l, . . . ,−CkEb,l, Eb,l and CiUr+Ci+1Vs

are all mutually disjoint.

The process of choosing coefficients can be done with the help of a computer

(python code provided in Appendix E). Upon the availability of coefficients for the

construction, we prepare look up table, LUT2 consisting of all the syndromes, error

81

locations and the corresponding errors within the prescribed limit and LUT1 contains

the coefficient Ci’s.

Lemma 5.2. The collection of asymmetric solid bursts occurring within a b-bit byte

in Z2b−1 is distinct.

Proof. We have Eb,l = eb,1 ∪ eb,2 ∪ . . . ∪ eb,l with eb,t = {2i(2t − 1) | 0 ≤ i ≤ b− t and

1 ≤ t ≤ l ≤ b− 1}.

• Case I: If possible, let 2i(2t − 1) = 2j(2t − 1), where 0 ≤ i < j ≤ b − t and

1 ≤ t ≤ b−1. Then 2i = 2j, which is possible only if i = j in the given interval

leading us to the distinctness within the collection eb,t.

• Case II: Suppose eb,t1 & eb,t2 have a common entry, where 1 ≤ t1, t2 ≤ b −

1. Without the loss of generality, suppose t1 < t2, then eb,t1 = 20(2t1 −

1), 21(2t1−1), . . . , 2b−t2(2t1−1), . . . , 2b−t1(2t1−1) and eb,t2 = 20(2t2−1), 21(2t2−

1), . . . , 2b−t2(2t2 − 1). If possible, let us suppose that 2i(2t1 − 1) = 2j(2t2 − 1),

where 0 ≤ i ≤ b− t1 , 0 ≤ j ≤ b− t2.

Subcase I: i = j, then 2t1 − 1 = 2t2 − 1, which is a contradiction.

Subcase II: i < j, then (2t1 − 1) = 2j−i(2t2 − 1) =⇒ 1 + 2 + . . . + 2t1−1 =

2j−i(2t2 − 1), which is again a contradiction as both L.H.S. and R.H.S. lie

within 1 and 2b − 1 but L.H.S. is odd and R.H.S. is even.

Subcase III: j < i, similar to Subcase II we get contradiction here also. Hence

we have distinctness within the collection Eb,l.

Remark 5.3. The approach discussed above may not be applicable in the case of

symmetric errors as both ± symbols are involved simultaneously and this method

of odd/even may not work in the ring Z2b−1. For instance in Z255, −20(23 − 1) =

23(25 − 1) = 248.

Note: For determining distinct syndromes pertaining to the asymmetric solid

bursts spread across two adjoining bytes, selection of coefficients play an important

82

role. Based on the discussions done so far for the construction of error and syndrome

sets along with Lemma 5.2, theorems below illustrate the number of elements/con-

ditions required for the construction.

Theorem 5.4. Integer (AlSB)b code can correct asymmetric solid bursts up to length

l occurring within a b-bit byte as well as spread across two adjacent b-bit bytes if there

exist coefficients C1, C2, . . . , Ck in Z2b−1 such that

1. |S1| = (k + 1)[l
2(2b− l + 1)].

2. |S2| = k l(l−1)
2 .

3. S1 ∩ S2 = φ.

Proof. 1. It is sufficient to show that |Eb,l| = l
2(2b − l + 1). Clearly eb,1 = 2i,

0 ≤ i ≤ b − 1 has b patterns, similarly eb,2 = 2i(22 − 1), 0 ≤ i ≤ b − 2 has

b − 1 patterns, by continuing this pattern for any l ≤ b − 1, eb,l has b − l + 1

patterns. Thus |Eb,l| = b+ b− 1 + . . .+ b− (l− 1) = bl− l(l−1)
2 = l

2(2b− l + 1).

2. For l = 2, CiU1 + Ci+1V1 gives the number of asymmetric solid bursts falling

under this category, which is 1. Similarly for l = 3, CiU1 +Ci+1V2 and CiU2 +

Ci+1V1 are the 2 choices, continuing this, for any random l ≤ b−1, we have l−1

different choices, viz., CiU1 +Ci+1Vl−1, . . . , CiUl−1 +Ci+1V1. Since a codeword

has (k+ 1) b-bit bytes, so asymmetric solid bursts spread across two adjoining

bytes have k possibilities. Thus the number of asymmetric solid bursts up to

length l in this category will be k l(l−1)
2 .

3. This condition is obvious as the criteria for constructing the code depends on

this specificity.

Theorem 5.5. By defining εb,l = S1∪S2, cardinality of the set of syndromes for an

integer (AlSB)b code will be kbl + l
2(2b− l + 1).

Proof. From Theorem 5.4, we have |εb,l| = k l
2(2b− l + 1) + l

2(2b− l +1) +k l
2(l−1) =

kbl + l
2(2b− l + 1).

83

Figure 5.1: Asymmetric solid burst within a b-bit byte

Syndrome element (S1) Error location (i) Corresponding error e

←− b bits −→ ←− dlog2(k + 1)e bits −→ ←− b bits −→

Figure 5.2: Asymmetric solid burst spread across two adjoining b-bit bytes

Syndrome element (S2) Error location (i) Error location (i + 1) Error vector e and e′

←− b bits −→ ←− dlog2ke bits −→ ←− dlog2ke bits −→ ←− 2(l− 1) bits −→

This class of code is also written as ((k + 1)b, kb) integer (AlSB)b code.

Corollary 5.6. For any ((k + 1)b, kb) integer (AlSB)b code, k ≤ 2b+1−4−2bl+l2−l
2bl .

Proof. Since all syndromes non-zero elements from the ring Z2b−1, thus from Theo-

rem 5.5, we have kbl + bl− l2
2 + l

2 ≤ 2b − 2 =⇒ k ≤ 2b+1−4−2bl+l2−l
2bl .

5.2.2 Decoding procedure

For decoding LUT2 is constructed with the help of (5.1) and (5.2), here the table

consists of Sl. No., syndrome value, error location(s) and the corresponding error(s).

Diagrammatic representation of a syndrome table entry in terms of bits is given in

Figure 5.1-5.2.

After receiving a message B̄1B̄2 . . . B̄kC̄B, decoder obtains the syndrome value

as S = [CB̄ − C̄B] (mod 2b − 1), then tries to match this value with the available

syndrome values in column 2 of LUT2. Since the elements in column 2 of the look

up table can be arranged in ascending order, so ηTL binary searches required for

this matching is given by 1 ≤ ηTL ≤ blog2|εb,l|c + 2 (refer [63]). If no such value

is available in the table, then it is assumed to be beyond the decoder’s capability.

However, this is only possible if the error occurred is either beyond the specified

length or of some other nature. Also the size of LUT2 will be |S1| × [2b+ dlog2(k +

1)e]+ |S2|× [b+2dlog2(k)e+2(l−1)] bits. Following steps are followed for decoding:

• For asymmetric solid bursts up to length l within an information byte i, 1 ≤

84

i ≤ k,

Bi = [B̄i + e] (mod 2b − 1), e ∈ Eb,l,

where syndrome S = −Ci × e (mod 2b − 1).

• For asymmetric solid burst up to length l within the check byte, CB,

CB = [C̄B + e] (mod 2b − 1), e ∈ Eb,l,

where syndrome S = e.

• For asymmetric solid burst of length up to l occurring between ith and (i+1)th

data byte (1 ≤ i ≤ k − 1):

Bi = [B̄i + e] (mod 2b − 1), e ∈ Eb,l, −e ∈ Ur;

Bi+1 = [B̄i+1 + e′] (mod 2b − 1), e′ ∈ Eb,l, −e′ ∈ Vs;

where syndrome S = [Ci(−e) + Ci+1(−e′)] (mod 2b − 1).

• For asymmetric burst of length up to l occurring between the last data byte

(kth byte) and the check byte:

Bk = [B̄k + e] (mod 2b − 1), e ∈ Eb,l, −e ∈ Ur;

CB = [C̄B + e′] (mod 2b − 1), e′ ∈ Eb,l, −e′ ∈ Vs;

where syndrome S = [Ck(−e) + e′] (mod 2b − 1).

Example 5.7. Let b = 9, l = 3, then C1 = 11, C2 = 19, C3 = 45 and C4 = −1 can be

considered for the transmission, syndrome entries generated using (5.1) and (5.2)

is given in Table 5.1. The message 111000011 100100011 010111011 is encoded

as 111000011 100100011 010111011 111001111, we may have the following error

possibilities:

Case I(Asymmetric solid burst within an information byte):

Suppose the message is received as 111000011 100100011 010000011 111001111,

then syndrome S = [11 − 487] (mod 511) = 35 = −45 × 56. Thus error 56 =

23+24+25 has occurred at 4th, 5th and 6th components of 3rd information byte. Hence

the corrected information byte will be B3 = [386+56] (mod 511) = 442 = 010111011.

Case II(Asymmetric solid burst within the check byte):

85

Suppose message 111000011 100100011 010111011 001001111 is received, then syn-

drome S = [487− 484] (mod 511) = 3. Thus error 3 = 21 + 22 has occurred in the

check byte CB at 1st and 2nd components. Hence the corrected check byte will be

CB = [484 + 3] (mod 511) = 487 = 111001111.

Case III(Asymmetric solid burst occurring between two adjoining information

bytes):

Suppose message 111000000 000100011 010111011 111001111 is received, then syn-

drome S = [332−487] (mod 511) = 356. Since 356 = [11(127)+19(510)] (mod 511) =

[11(−384)+19(−1)] (mod 511), thus error e = 384 = 27 +28 has occurred at 8th and

9th components of 1st information byte and error e′ = 1 = 20 has occurred at 1st com-

ponent of 2nd information byte. So the corrected information bytes are B1 = [7+384]

(mod 511) = 391 = 111000011 and B2 = [392 + 1] (mod 511) = 393 = 100100011.

Case IV(Asymmetric solid burst occurring between last information byte and

check byte):

Suppose message 111000011 100100011 010111010 011001111 is received, then syn-

drome S = [209 − 486] (mod 511) = 234 = [45(255) + (−1)(510)] (mod 511) =

[45(−256) + (−1)(−1)] (mod 511). Thus error e = 256 = 28 has occurred at 9th

component of 3rd information byte and error e′ = 1 = 20 has occurred at 1st com-

ponent of the check byte. So the corrected information byte is B3 = [186 + 256]

(mod 511) = 442 = 010111011 and check byte is CB = [486+1] (mod 511) = 487 =

111001111.

Case V(Error type not as per specification):

Suppose 111000011 100000000 010111011 111001111 is received, then syndrome S =

[193 − 487] (mod 511) = 217. Since syndrome value 217 is not available in LUT2,

so it is beyond the scope of the decoder.

86

Table 5.1: LUT2 for (36,27) integer (A3SB)9 code

Sl. Syndrome Error Loc. Error Error Loc. Error

No. (ε9,3) (i) (e) (i+ 1) (e′)

1 1 4 1 0 0

2 2 4 2 0 0

3 3 4 3 0 0

4 4 4 4 0 0

5 6 4 6 0 0

6 7 4 7 0 0

7 8 4 8 0 0

8 12 4 12 0 0

9 14 4 14 0 0

10 16 4 16 0 0

11 24 4 24 0 0

12 28 4 28 0 0

13 32 4 32 0 0

14 35 3 56 0 0

15 47 3 192 0 0

16 48 4 48 0 0

17 55 2 24 0 0

18 56 4 56 0 0

19 64 4 64 0 0

20 70 3 112 0 0

21 91 1 224 0 0

22 93 3 32 0 0

23 94 3 384 0 0

24 95 3 384 4 1

25 96 4 96 0 0

26 110 2 48 0 0

Contd...

87

Sl. Syndrome Error Loc. Error Error Loc. Error

No. (ε9,3) (i) (e) (i+ 1) (e′)

27 111 2 256 3 3

28 112 4 112 0 0

29 123 2 128 0 0

30 125 1 128 0 0

31 128 4 128 0 0

32 140 3 224 0 0

33 151 3 8 0 0

34 159 1 32 0 0

35 175 2 448 0 0

36 182 1 448 0 0

37 186 3 64 0 0

38 192 4 192 0 0

39 193 1 256 2 3

40 196 3 7 0 0

41 201 2 256 3 1

42 203 1 28 0 0

43 207 2 16 0 0

44 220 2 96 0 0

45 224 4 224 0 0

46 231 1 256 2 1

47 233 3 256 0 0

48 234 3 256 4 1

49 236 3 256 4 3

50 241 3 6 0 0

51 245 2 14 0 0

52 246 2 256 0 0

53 247 1 24 0 0

54 250 1 256 0 0

Contd...

88

Sl. Syndrome Error Loc. Error Error Loc. Error

No. (ε9,3) (i) (e) (i+ 1) (e′)

55 256 4 256 0 0

56 273 3 28 0 0

57 279 3 96 0 0

58 280 3 448 0 0

59 283 2 12 0 0

60 301 1 112 0 0

61 302 3 16 0 0

62 317 2 64 0 0

63 318 1 64 0 0

64 324 2 384 3 1

65 331 3 4 0 0

66 335 1 16 0 0

67 343 2 224 0 0

68 356 1 384 2 1

69 357 1 14 0 0

70 359 2 8 0 0

71 369 2 384 0 0

72 372 3 128 0 0

73 375 1 384 0 0

74 376 3 3 0 0

75 378 2 7 0 0

76 379 1 12 0 0

77 384 4 384 0 0

78 392 3 14 0 0

79 395 3 48 0 0

80 397 2 6 0 0

81 406 1 56 0 0

82 414 2 32 0 0

Contd...

89

Sl. Syndrome Error Loc. Error Error Loc. Error

No. (ε9,3) (i) (e) (i+ 1) (e′)

83 421 3 2 0 0

84 423 1 8 0 0

85 427 2 112 0 0

86 434 1 7 0 0

87 435 2 4 0 0

88 440 2 192 0 0

89 443 1 192 0 0

90 445 1 6 0 0

91 448 4 448 0 0

92 453 3 24 0 0

93 454 2 3 0 0

94 466 3 1 0 0

95 467 1 4 0 0

96 469 2 56 0 0

97 473 2 2 0 0

98 477 1 96 0 0

99 478 1 3 0 0

100 482 3 12 0 0

101 489 1 2 0 0

102 490 2 28 0 0

103 492 2 1 0 0

104 494 1 48 0 0

105 500 1 1 0 0

For implementation of the codes on multi-core processors, we refer to the im-

plementation discussed in Chapter 2. The memory required for storing the look up

tables is given in Table 5.3. The codes considered here are constructed with the

help of coefficients listed in Table 5.2.

90

Table 5.2: Possible coefficients for the construction of integer (AlSB)b

codes up to k = 32

b l Coefficients

7 2 7, 13, 19

7 3 Not possible

8 2 5, 7, 9, 29, 37

8 3 2, 29

9 3 11, 19, 45

10 2 7, 13, 25, 29, 31, 35, 49, 53, 71, 73, 79, 89, 115, 125, 127, 149, 205

10 3 17, 23, 47, 71, 107, 125, 191, 205, 239, 251

10 4 29, 35, 71, 167

12 3 9, 11, 19, 29, 45, 53, 69, 81, 85, 97, 99, 121, 127, 143, 155, 199,

209, 213, 249, 281, 303, 489, 957

12 6 11

14 4 17, 47, 71, 73, 81, 107, 109, 117, 121, 131, 143, 151, 167, 179, 187,

191, 199, 207, 209, 211, 221, 223, 229, 233, 241, 247, 253, 263, 271, 281,

289, 307

14 7 51, 61, 111

16 2 5, 7, 9, 11, 23, 35, 37, 41, 43, 45, 47, 49, 53, 55, 59, 61, 63, 65, 67,

71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 99, 103

16 4 31, 37, 49, 61, 67, 71, 73, 79, 81, 83, 89, 97, 99, 101, 103, 107, 109,

113, 117, 121, 127, 131, 137, 143, 149, 151, 153, 157, 163, 169, 179, 181

16 7 45, 67, 97, 131, 197, 219, 223, 241, 289, 317, 347, 349, 353, 361,

401, 437, 443, 449, 451, 459, 475, 481, 509, 563, 569, 573, 595, 599,

601, 619, 625, 643

20 2 5, 7, 9, 11, 23, 35, 37, 41, 43, 45, 47, 49, 53, 55, 59, 61, 63, 65,

67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 99, 103

25 3 5, 7, 9, 11, 23, 35, 37, 41, 43, 45, 47, 49, 53, 55, 59, 61, 63, 65,

67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 99, 103

Contd...

91

b l Coefficients

32 2 5, 7, 9, 11, 23, 35, 37, 41, 43, 45, 47, 49, 53, 55, 59, 61, 63, 65,

67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 99, 103

32 3 17, 37, 41, 47, 49, 53, 59, 61, 65, 67, 71, 73, 79, 81, 83, 85, 89,

95, 97, 99, 101, 103, 107, 109, 113, 115, 117, 121, 125, 127, 131, 139

32 10 45, 71, 83, 97, 101, 103, 109, 113, 121, 137, 139, 143, 149, 151,

157, 163, 167, 169, 179, 181, 193, 197, 199, 209, 211, 223, 229, 233, 239,

247, 257

Table 5.3: Bits required for some integer (AlSB)b codes

Codes b l LUT1 size LUT2 size Number of table look ups

(528, 512) 16 2 64B 4.98 KB 1 ≤ ηTL ≤ 12

(528, 512) 16 7 64B 17.46 KB 1 ≤ ηTL ≤ 13

(660, 640) 20 2 80B 7.53 KB 1 ≤ ηTL ≤ 12

(1056, 1024) 32 3 128B 27.41KB 1 ≤ ηTL ≤ 13

(1056, 1024) 32 10 128B 90.21 KB 1 ≤ ηTL ≤ 15

5.3 Undetected errors, erroneous decoding prob-

ability and comparison

In this section, we derive two conditions for deciding undetected errors, followed by

the probability of erroneous decoding and BER for the proposed codes and a few

graphs are constructed. Also, we are going to compare the proposed codes with

some linear and integer codes having similar error-correcting capability.

92

5.3.1 Undetected asymmetric solid bursts

An error is undetected if the resulting syndrome obtained after the occurrence of

that error is equal to 0, in such situation, one may wrongly conclude the message

to be error free. For any asymmetric solid burst to go undetected by an integer

(AlSB)b code, the length must be longer than l. In the following two results, LCM

means Least Common Multiple.

Theorem 5.8. An asymmetric solid burst with length r (> l) within a b-bit byte

will go undetected by a (kb + b, kb) integer (AlSB)b code with parity check matrix

H = (C1C2 . . . Ck − 1) if and only if 2b − 1 divides LCM (Ci, 2r − 1).

Proof. Consider an asymmetric solid burst of length r within ith byte. An asym-

metric solid burst (Er) of length r will go undetected by the integer (AlSB)b code

if and only if

CiEr = 0 (mod 2b − 1). (5.3)

The binary representation of Er is 2p + 2p+1 + . . . + 2p+r−1 (for 0 ≤ p ≤ b − r)

which is equal to 2p(20 + 21 + . . .+ 2r−1) = 2p(2r − 1). So, from (5.3), we have

Ci2p(2r − 1) = 0 (mod 2b − 1).

As 2p and 2b − 1 are relatively prime, so

Ci(2r − 1) = 0 (mod 2b − 1).

This implies 2b − 1 divides LCM of Ci and 2r − 1.

Theorem 5.9. An asymmetric solid bursts with length r = s1 + s2 (> l) affecting

s1 and s2 consecutive components in two adjoining b-bit bytes will go undetected by

a (kb+ b, kb) integer (AlSB)b code with parity check matrix H = (C1C2 . . . Ck − 1)

if 2b − 1 divides both LCM(Ci, 2s1 − 1) and LCM(Ci+1, 2s2 − 1).

Proof. Consider an asymmetric solid burst (Er) of length r occurring in adjoining

two b-bit bytes where the first part Us1 of length s1 of Er is in ith byte and second part

93

Vs2 of length s2 in (i+ 1)th byte. The asymmetric solid burst Er will go undetected

by the integer (AlSB)b code if

CiUs1 + Ci+1Vs2 = 0 (mod 2b − 1). (5.4)

As Us1 can be written as 2b−s1(2s1 − 1) and Vs2 as 2s2 − 1. So, from (5.4), we

have

Ci2b−s1(2s1 − 1) + Ci+1(2s2 − 1) = 0 (mod 2b − 1). (5.5)

As 2b−s1 and 2b − 1 are relatively prime, and 2b − 1 divides both LCM(Ci, 2s1 − 1)

and LCM(Ci+1, 2s2 − 1), so (5.5) is true. Hence such asymmetric solid burst will go

undetected.

5.3.2 Erroneous decoding probability

Since the codes are studied over the Z-channel, we consider the probability of 1→ 0

as ε and 0 → 1 as 0. Theorem below determines the probability of erroneous

decoding (Pd(ASB)) for integer (AlSB)b codes.

Theorem 5.10. The probability of erroneous decoding Pd(ASB) of a ((k + 1)b, kb)

integer (AlSB)b code is ((k+1)b− l+1)
l∑

i=1
εi(1− ε)(k+1)b−i+

l−1∑
i=1

(l− i)εi(1− ε)(k+1)b−i.

Proof. To prove this result, we shall use the beginning positions of the asymmetric

solid bursts. For an asymmetric solid burst of length 1 beginning from the 1st

position of the 1st data byte B1, the number of non-erroneous bits will be (k+1)b−1,

so the corresponding probability will be ε1(1−ε)(k+1)b−1. Similarly for an asymmetric

solid burst of length 2 beginning from the 1st position of B1, the probability will be

ε2(1 − ε)(k+1)b−2, by continuing this, the probability for asymmetric solid burst of

length l beginning from the 1st position of B1 will be εl(1−ε)(k+1)b−l. For asymmetric

solid bursts up to length l occurring anywhere (i.e. within a b-bit byte or spread

across two adjoining b-bit bytes), there are kb+ b− l + 1 beginning positions. Thus

the probability of erroneous decoding for asymmetric solid bursts beginning from

these positions will be ((k+1)b− l+1)
l∑

i=1
εi(1−ε)(k+1)b−i. Now we are left with a few

asymmetric solid bursts in the last b-bit byte CB (check byte) having length shorter

94

than l occurring after (b − l + 1)th position. The probability of asymmetric solid

bursts having length at most l−1 beginning from (b− l + 2)th position in CB will be
l−1∑
i=1
εi(1− ε)(k+1)b−i, similarly for asymmetric solid bursts having length at most l− 2

beginning from (b− l+3)th position in CB, the probability will be
l−2∑
i=1
εi(1−ε)(k+1)b−i.

Continuing this, we end up with asymmetric solid burst of length 1 beginning from

the bth position in CB. Thus the total probability of erroneous decoding

Pd(ASB) = ((k + 1)b− l + 1)
l∑

i=1
εi(1− ε)(k+1)b−i +

l−1∑
i=1
εi(1− ε)(k+1)b−i

+
l−2∑
i=1
εi(1− ε)(k+1)b−i + . . .+

2∑
i=1
εi(1− ε)(k+1)b−i +

1∑
i=1
εi(1− ε)(k+1)b−i

=((k + 1)b− l + 1)
l∑

i=1
εi(1− ε)(k+1)b−i + {ε1(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

+ . . .+ εl−1(1− ε)(k+1)b−(l−1)}+ {ε1(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2 + . . .

+ εl−2(1− ε)(k+1)b−(l−2)}+ . . .+ {ε1(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2}

+ {ε1(1− ε)(k+1)b−1}

=((k + 1)b− l + 1)
l∑

i=1
εi(1− ε)(k+1)b−i + (l− 1)ε1(1− ε)(k+1)b−1

+ (l− 2)ε2(1− ε)(k+1)b−2 + . . .+ (l− (l− 1))εl−1(1− ε)(k+1)b−(l−1)

=((k + 1)b− l + 1)
l∑

i=1
εi(1− ε)(k+1)b−i +

l−1∑
i=1

(l− i)εi(1− ε)(k+1)b−i.

Remark 5.11. If we determine the probability of erroneous decoding for asymmetric

solid bursts separately based on the occurrence, i.e., within a b-bit byte and between

adjoining b-bit bytes, and add up the probabilities, we will obtain the same result as

discussed above.

Similar to the preceding chapters, the BER here will be
1+2+...+l

l
(k+1)b = l(l+1)

2bl(k+1) =
l+1

2b(k+1) . A few graphs are plotted in Figure 5.3 to analyse the change in probability

of erroneous decoding and BER with respect to different code rates, ε = 0.1 is

considered. In all of the cases it can be observed that both probability Pd(ASB)

and BER decrease with the increase in the code rate.

95

Figure 5.3: BER and probability vs code rate

(a) (A2SB)16 code

0.7 0.75 0.8 0.85 0.9 0.95
0

1

2

3

4
·10−2

Code rate

BER
Probability

(b) (A7SB)16 code

0.5 0.6 0.7 0.8 0.9
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Code rate

BER
Probability

(c) (A2SB)20 code

0.5 0.6 0.7 0.8 0.9
0

2

4

6

·10−2

Code rate

BER
Probability

(d) (A3SB)32 code

0.5 0.6 0.7 0.8 0.9
0

1

2

3
·10−2

Code rate

BER
Probability

5.3.3 Comparison

To the best of our knowledge, no error-correcting codes have been developed for

the discussed type of error over any type of ring. In fact, over the ring Z2b−1, with

byte-oriented codes, no codes have been developed capable of correcting burst errors

occurring anywhere in the codeword. Linear codes of dimension (2k′+1, k′− t+1
2) are

discussed in Result 1.51, which are capable of correcting solid bursts up to length t+

2. As solid bursts are mainly studied for double and triple adjacent, so we substitute

t = 1 in this comparison, therefore the dimension will be (2k′ + 1, k′ − 1). Drawing

the parameters on same lines with equal number of bits to be transmitted before

encoding, the proposed codes can transmit the message maintaining significantly

lower redundancy. This results to a much higher code rate for the proposed codes.

This can be justified by the following argument:

Let (2k′ + 1, k′ − 1) be the dimension of the code discussed in Result 1.51 and

((k+ 1)b, kb) be the dimension of the proposed codes, then by equating the number

96

Table 5.4: Comparison of some burst and adjacent error-correcting integer

codes

Codes Error-correction type b l LUT2 No of table

Size look ups

(544, 512) Asymmetric solid bursts 32 3 13.9 KB 1 ≤ ηTL ≤ 12

(Proposed)

(544, 512) Double and triple adjacent 32 3 7.81 MB 1 ≤ ηTL ≤ 21

Result 1.31

(1056, 1024) Asymmetric solid bursts 32 6 0.05 MB 1 ≤ ηTL ≤ 13

(Proposed)

(1056, 1024) Asymmetric CT-bursts 32 6 0.26 MB 1 ≤ ηTL ≤ 16

Theorem 2.2

(1056, 1024) Unidirectional solid bursts 32 6 0.1 MB 1 ≤ ηTL ≤ 15

Theorem 4.3

(1056, 1024) Symmetric bursts 32 6 0.52 MB 1 ≤ ηTL ≤ 17

Result 1.19

(1056, 1024) Only asymmetric bursts 32 6 0.26 MB 1 ≤ ηTL ≤ 16

Result 1.39

97

of components to be sent, we have k′ − 1 = kb =⇒ k′ = kb + 1 and k = k′−1
b

,

clearly k′ > b and k + 1 = k′−1+b
b

. So (k + 1)b = k′ + b − 1, since k′ > b, so

2k′ + 1 > k′ + b − 1. Hence the proposed codes can transmit same number of

components with less redundancy. Table 5.5 exhibits a few cases for this comparison.

Table 5.5: Comparison of code rates

Codes in Result 1.51 Proposed codes

Dimension Rate Dimension Rate

(35, 16) 0.46 (24, 16) 0.66

(57, 27) 0.47 (36, 27) 0.75

(203, 100) 0.5 (110, 100) 0.91

(555, 276) 0.5 (288, 276) 0.96

In Table 5.4, bit requirement and the number of table look ups in a few integer

codes capable of correcting bursts and adjacent errors are given; all of the existing

codes considered are capable of correcting errors only within a b-bit byte.

5.4 Conclusion

In this chapter, we have constructed a class of integer codes capable of correcting

asymmetric solid bursts occurring within a b-bit byte as well as between two ad-

joining b-bit bytes. Extending the error-correcting capability of integer codes to

adjoining b-bit bytes makes this class suitable for implementation in communica-

tion channels having multiple bit units. Since the existence of this class depends

on computer search results, so to determine a necessary and sufficient condition

mathematically for the existence can be considered as a further course of action.

98

	09_chapter 5

