DEDICATION

This work is completely dedicated to my Dad (जुवा), my late Mom (मुमाँ), and Bipul (मुस-मुस), who constantly inspired me.

Also, towards all the women excelling in research to achieve their dreams.

"On days I hate being myself, days I want to disappear forever Let's make a door in your heart Open the door and this place will await It's okay to believe, the Magic Shop will comfort you While drinking a glass of hot tea And looking up at the Milky Way You'll be alright, oh, this here is the Magic Shop" -Jimin & Jin, Magic shop, BTS

"Who cares where happiness comes from? We're all a little weird, We're all a little wacky. Some more than others. But if it works, it works." -Dean Winchester, Supernatural

"The only person you are destined to become is the person you decide to be." - Ralph Waldo Emerson

DECLARATION

I, hereby declare that the thesis entitled "Computational insights into the central role of Xeroderma pigmentosum group A (XPA) protein in nucleotide excision repair (NER)" has been submitted to Tezpur University in the Department of Molecular Biology and Biotechnology under the School of Sciences for partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology.

I am the sole author of this thesis.

This is a true copy of an original work carried out by me including any required final revisions, as accepted by my examiners.

Further, I declare that no part of this work has been reproduced elsewhere for the award of any other degree.

Date:

Sushmita Pradhan

Place: Tezpur University, Tezpur

Registration No.: TZ189809 of 2018

TEZPUR UNIVERSITY (A Central University established by an Act of Parliament) DEPARTMENT OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY Tezpur-784 028, Assam, India

Dr. Venkata Satish Kumar Mattaparthi **Assistant Professor** E-mail: venkata@tezu.ernet.in

Ph.no.: +91-3712-275443 (O) +91-8811806866 (M) Fax : +91-3712-267005/6

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "Computational insights into the central role of Xeroderma pigmentosum group A (XPA) protein in nucleotide excision repair (NER)" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of original research work carried out by Ms. Sushmita Pradhan under my supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been reproduced elsewhere for award of any other degree.

Signature of

molle Supervisor:

Designation: Assistant Professor

School: Sciences

Department: Molecular Biology and Biotechnology

TEZPUR UNIVERSITY (A Central University established by an Act of Parliament) Tezpur-784 028, Assam, India

CERTIFICATE OF THE EXTERNAL EXAMINER

AND ODEC

This is to certify that the thesis entitled "Computational insights into the central role of Xeroderma pigmentosum group A (XPA) protein in nucleotide excision repair (NER)" submitted by Ms. Sushmita Pradhan to Tezpur University in the Department of Molecular Biology and Biotechnology under the School of Sciences in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology has been examined by us on 27/01/2023 and found to be satisfactory.

The committee recommends for the award of the degree of Doctor of Philosophy.

Signature of:

mollere

Principal Supervisor Date: 2710112023

/happ?

Dr. P. Manimaran Professor School of Physics University of Hyderabad Hyderabad 500 046 (TS) INDIA External examiner

Date: 27/01/2023

ACKNOWLDEDGEMENT

I would not have been able to complete this degree without the support of numerous people, and I wish to acknowledge their support. First of all, I would like to express my sincerest gratitude to my Supervisor Dr. Venkata Satish Kumar Mattaparthi, for mentoring and constantly encouraging me during my doctoral research program. He always had faith in me and using constructive criticism, he anchored me in the right direction whenever I was under duress. My heartfelt gratitude goes to him for all his help, dedication, and patience during the writing of this thesis.

I would also like to thank the Head of the Department of MBBT, Prof. Robin Doley, former HoDs: Prof. Suvendra Kumar Ray, Prof. Anand Marcus Ramteke, and my Doctoral Committee members - Prof. Suvendra Kumar Ray, Dr. Rupak Mukhopadhyay, and Dr. Suman Dasgupta, Department of MBBT, Tezpur University, for their insight, comments, and valuable suggestions during my Ph.D. tenure.

I would like to acknowledge all the faculty members, and the non-teaching staff from the Department of MBBT, Tezpur University for their help and encouragement. I would like to take this opportunity to thank Tezpur University for providing me

X

ACKNOWLDEDGEMENT

with the state-of-the-art infrastructure and facilities for my research. I would like to acknowledge the financial support provided by Tezpur University and DBT.

No words will be good enough in expressing my gratitude towards lab mates: Mary Di, Himakshi Di, Airy Di, Pundarikaksha, Priyanka, and Dorothy for their immense help and support. My heartfelt thanks to all the project (Integrated M.Sc. and M.Sc.) students: Barsha, Zeba, Sunanda, Ankit, Mridusmita, Gariyoshi, Pallar, and Krishna for their help and support.

I would also like to express my heartfelt gratitude to my batchmates, Mayuri, Minhaz, Pritam, Zaved, and Sayani for being there as my constant pillars of strength. A special thanks to my wall-mate, Anindita for being there during tough times in the hostel.

A special thank you to Dr. Sangeetha Menon for introducing me to the world of bioinformatics! Furthermore, I would not have been able to stand here and defend my viva-voce, had it not been Dr. Praveen Somani (my psychiatrist), Mr. Bibhushan Regmi (therapist), and Prof. Shashi Baruah who made me accept my PTSD, made me come out of my shell and led me towards the path of healing and recovery.

ACKNOWLDEDGEMENT

I would also like to express my thankfulness to my family members: Kakas-Kakis, Ninis-Pajus, Tatahs-Venajus, Dadas-Tatajus, Nephews-Nieces, and my cousins. Nothing can surmount to measure up my thanks to these few people: my brother Bipul (मुस-मुस), and my bestest of friends, Sruthi, Mrinalini (Myke), Narmatha, Ritika (झ्याकने बुढ़िया), Krishna, Navin, Siddharth, Arpan, Jason, and Manish for always being there to cheer me up, for being my toughest critic, and pushing me to strive beyond the boundaries!!!

Above all, my indebted gratefulness goes to my Dad (बुवा) and my late Mom (मुमाँ) for always believing in me, supporting me, and for your unconditional love and blessings. Thank you for everything. Love you both!!

सुष्मिता प्रधान

	LIST OF FIGURES	
Table No.	CHAPTERS	Page No.
	Chapter 1	
1.1	Comparative DNA damage and repair mechanisms.	4
1.2	Schematic representation base excision (BER) pathway.	5
1.3	Comparison between prokaryotic and eukaryotic MMR pathways.	6
1.4	Illustration of double-strand break (DSB) pathway.	7
1.5	The chemical structures of DNA photoproducts are caused by sunlight.	8
1.6	Mechanism of eukaryotic nucleotide excision repair.	10
1.7	An overview of the damage recognition step of NER.	12
1.8	Schematic view of the damage verification step of NER and pre-incision complex formation.	14
1.9	Later stages of the NER pathway: dual incision, gap-filling, and ligation.	15
1.10	Symptoms of NER defects: (A) XP, (B) CS, and (C) TTD.	19
1.11	The protein sequences of XPA across seven diverse species.	23

1.12	Structure and mutations of the XPA gene.	23
1.13	NMR structure of XPA (aa98-219).	24
1.14	XPA domain and its NER interacting members.	24
1.15	Redefined DBD of XPA.	25
1.16	 (a) The highest-scoring pose for the XPA98– 219–ssDNA-RPA70 complex was predicted by the ClusPro online tool [124]. The XPA (PDB ID: 1XPA) is shown in green, the RPA70 in complex with the ssDNA strand (PDB ID:1JMC) are shown in cyan and orange, respectively; (b)) Side view into the three-body XPA98–219– ssDNA-RPA70 complex showing RPA70 Ser 173 and Asp 314 as a possible contact for XPA Lys 179 and Lys 167, respectively and (c) Y junction of the NER pre-incision complex is a three-body XPA98-219–ssDNA-RPA70 complex. 	26
1.17	Two Rad14 proteins bind to the DNA strand containing the lesion.	27
1.18	Proposed Model of some XPA interactions with NER incision complexes.	27
1.19	Model of XPA depicting known interacting domains, key residues, mutations, and post-translational modifications.	28

Chapter 2

2.1	Molecular interactions represent potential energies as a function of time for MD simulation.	45
2.2	Periodic boundary conditions in two dimensions.	46
2.3	Schematic representation of TIP3P water model.	49
2.4	Flowchart showing the steps involved in MD Simulation.	50
2.5	The process of energy minimization.	52
2.6	Computational plans based on MM/PBSA for the binding free energies.	58
2.7	Outline of the ClusPro algorithm. After each step, the number of structures retained is shown in a blue box.	63
2.8	Protein-protein interaction diagrams obtained from PDBsum server.	64
	Chapter 3	
3.1	Cartoon representation of the central globular DNA-binding domain of XPA.	70
3.2	(A) Temperature plot and (B) Energy plot for XPA ₉₈₋₂₁₀ homodimer.	74
3.3	(A) Temperature plot and (B) Energy plot for XPA ₉₈₋₂₃₉ homodimer.	74
3.4	Schematic representation of the thermodynamic cycle used for the calculation of binding free energies (BFE).	76
3.5	Structure validation of the modeled XPA ₉₈₋₂₃₉ monomer. (A) z-Score plot and (B) energy plot	79

obtained using ProsA server, (C) Ramachandran plot, and (D) Verify 3D plot for the modeled XPA₉₈₋₂₃₉ monomer.

- 3.6 Redefined DNA binding domain of XPA (aa98-239) along with the fourth helix.
- 3.7 (A) Docked structures of XPA₉₈₋₂₁₀ homodimer. 80
 (B) Docked structures of XPA₉₈₋₂₃₉ homodimer.
- 3.8 Root-mean-square deviation (RMSD) values of 82 all Cα-atoms concerning their starting structure.
 (A) Comparative RMSD analyses for monomers and dimers of XPA98-210/239. (B) RMSDs for the monomers of XPA98-210 homodimer. (C) RMSDs for the monomers of XPA98-239 homodimer
- 3.9 Radius of Gyration (Rg) values of all Cα-atoms 83 with respect to their starting structure. (A) Comparative Rg analyses for monomers and dimers of XPA98-210/239. (B) Rg for the monomers of XPA98-210 homodimer. (C) Rg for the monomers of XPA98-239 homodimer.
- 3.10 Solvent accessible surface area (SASA) values of 84 all Cα-atoms with respect to their starting structure. (A) Comparative SASA analyses for monomers and dimers of XPA98-210/239. (B) SASA analysis for the monomers of XPA98-210 homodimer. (C) SASA analysis for the monomers of XPA98-239 homodimer.

LIST OF FIGURES						
3.11	Comparative snapshots for (A) XPA ₉₈₋₂₁₀ monomer and (B) XPA ₉₈₋₂₃₉ monomer as a function of time.	85				
3.12	Comparative snapshots for (A) XPA ₉₈₋₂₁₀ homodimer and (B) XPA ₉₈₋₂₃₉ homodimer as a function of time.	85				
3.13	Distance between the monomeric units of (A) XPA98-210 homodimer and (B) XPA98-239 homodimer as a function of time	86				
3.14	Inter-molecular hydrogen bond analyses of (A) XPA ₉₈₋₂₁₀ homodimer, and (B) XPA ₉₈₋₂₃₉ homodimer as a function of time.	87				
3.15	The lowest energy conformers of XPA _{98-210/239} homodimers. (A) Cartoon structure XPA ₉₈₋₂₁₀ homodimer (B) Surface diagram of XPA ₉₈₋₂₁₀ homodimer showing the interface site of both monomers. (C) Cartoon structure XPA ₉₈₋₂₃₉ homodimer (B) Surface diagram of XPA ₉₈₋₂₃₉ homodimer showing the interface site of both monomers	89				
31.6	Intermolecular interactions between the monomers of. (A) XPA ₉₈₋₂₁₀ homodimer, and (B) XPA ₉₈₋₂₃₉ homodimer.	90				
	Chapter 4A					
4A.1	XPA ₉₈₋₂₁₀ : DNA bound system: (A) Docked Structure obtained from Hex Dock8.0.0 Software, (B) Surface structure of XPA ₉₈₋₂₁₀ with the DNA showing their closely bound stature.	107				

4A.2 109 Graphical representation of the interaction between Xeroderma Pigmentosum A (XPA₉₈₋₂₁₀) protein with DNA. The strands are shown in green triangles, loops in blue squares, and helix in red circles. HA1 is helix 1 and HA3 helix 3. (A) Cartoon structure of the XPA₉₈₋₂₁₀-DNA complex showing helices and loop residues in the red opaque color that interacts with the DNA. (B) Polar contact map for XPA98-210-DNA complex. Mostly loop and helices are involved in the interaction with the minor groove (mG), major groove (MG), and backbone regions of the curved helical DNA, with their contribution, restricted to one side of the structure. (C) Nucleotide-residue contact map, showing loop and helix residues interacting with DNA backbone and both grooves.

4A.3 Comparative MD analyses of XPA98-210- DNA free and DNA bound form. (A) RMSD values for XPA98-210-Apo and XPA98-210-DNA complexes relative to the starting structure during MD simulation. (B) The radius of Gyration (Rg) values of XPA98-210-Apo and XPA98-210-DNA complex. (C) Solvent accessible surface area (SASA) values for XPA98-210-Apo and XPA98-210-DNA complex. (D) B-factor distribution for XPA98-210-Apo and XPA98-210-Apo and XPA98-210-Apo and XPA98-210-DNA complex.

4A.4 Comparative snapshots for XPA₉₈₋₂₁₀- DNA-free 120 and DNA-bound forms relative to the equilibrated structure at 10, 20, 30, and 40 ns respectively.

118

LIST OF FIGURES						
4A.5	Lysine residues K168 and K179 are depicted in a	120				
	navy-blue ball and stick form present in the site for β -sheets formation					
4A.6	Superimposed Structure of XPA ₉₈₋₂₁₀ : DNA bound and DNA Free obtained at 40ns. XPA ₉₈₋₂₁₀ –Apo (dark-red) showed short stretches of β -sheets while XPA ₉₈₋₂₁₀ -DNA bound (XPA ₉₈₋₂₁₀ displayed in olive-green and DNA in deep-blue color) presented longer stretches of β -sheets in complex with DNA.	121				
4A.7	Probable Secondary Structure Graph of XPA ₉₈₋₂₁₀ : (A) XPA ₉₈₋₂₁₀ - DNA Free; (B) XPA ₉₈₋₂₁₀ - DNA Bound system	122				
	Chapter 4B					
4B.1	Cartoon representation of the (A) computationally modeled structure, (B) crystal structure, and (C) electron microscopy determined structure of the redefined DBD of XPA; (D) computationally generated redefined DBD of XPA superimposed against its crystal structure and electron microscopically determined structure; RMSD between (A) and (B)=1.088 Å, and RMSD between (A) and (C)= 1.129 Å.	130				

- 4B.2 Top five docked conformations of XPA 135 homodimer-DNA complex.
- 4B.3 Equilibration plots of (A) energy, (B) 136 temperature, (C) pressure, (D) density, and (E) volume plots for XPA homodimer-DNA complex as a function of time.
- 4B.4 (A) RMSD, (B) R_g , and (C) SASA plot for XPA 137

homodimer-DNA complex as a function of time.

4B.5	RMSF	plots	for	(A)	monomer	1	and	(B)	139
	monom	er 2 of	XPA	hom	odimer.				

- 4B.6 (A) Polar contact map, (B) nucleotide-residue 140 contact map for XPA homodimer-DNA complex, where the numbers 1, and 2 prefixed before residues indicate monomer 1 and 2, respectively. (C) Surface and (D) cartoon representation for the lowest energy conformer of XPA homodimer-DNA complex.
- 4B.7Conformational snapshots of XPA homodimer-140DNA complex at different time intervals.
- 4B.8 Intermolecular hydrogen bond analyses between 142
 (A) monomer 1 and DNA, (B) monomer 2 and DNA, and (C) monomer 1 and monomer 2 of XPA homodimer as a function of time.
- 4B.9 PPI between monomer 1 and monomer 2 of XPA 148 homodimer.
- 4B.10 (A) \triangle ASA and (B) δ ASA values for the interface 155 residues of monomer 1, and (C) \triangle ASA and (D) δ ASA values for the interface residues of monomer 2 of XPA homodimer.
- 4B.11 Interface residues (ball and stick form) of XPA 155 homodimer show a partner attraction effect with DNA. The residue K221 (deep blue) and K224 (dark green) from monomers 1 and 2 of XPA homodimer for B state, while K221 (cyan) and K224 (sea green) from monomers 1 and 2 of XPA homodimer for U state. The ASA increased from 84.64 to 140.83 Å², and 65.1 to 121.92 Å²

for the residues K221, and K224, respectively.

4B.12 PRED plots for the interface residues of (A) 158 monomer 1 and (B) monomer 2 of XPA homodimer involved in the DPI.

Chapter 5A

5A.1	Top five models generated for XPA ₁₈₅₋₂₂₆ by I-TASSER server.	169
5A.2	Structure validation of the modeled XPA ₁₈₅₋₂₂₆ : (A) Ramachandran plot as obtained from Rampage server, and (B) Z-score plot energy plot as determined by the ProSA-web server.	170
5A.3	Top ten representative docked models for XPA ₁₈₅₋₂₂₅ -XPE complex generated by ClusPro server along with their rankings based on the highly populated cluster numbers and their lowest energy weighted scores.	172
5A.4	Molecular docking of XPA ₁₈₅₋₂₂₆ and XPE.	173
5A.5	RMSD plot of C α carbon atoms of XPA ₁₈₅₋₂₂₆ - XPE complex as a function of time.	174

- 5A.6 SASA plot for XPA₁₈₅₋₂₂₆ -XPE complex as a 175 function of time.
- 5A.7 Conformational snapshots of XPA₁₈₅₋₂₂₆-XPE 176 complex at different time intervals
- 5A.8 Intermolecular hydrogen bond analyses of XPA-185-226-XPE complex as a function of time.
- 5A.9 (A) representation 182 Cartoon and **(B)** Intermolecular interactions between Model 1 of XPA₁₈₅₋₂₂₆-XPE complex. (C) Cartoon representation (D) Intermolecular and

interactions between Model 2 of XPA₁₈₅₋₂₂₆-XPE complex. (E) Cartoon representation and (F) Intermolecular interactions between Model 3 of XPA₁₈₅₋₂₂₆-XPE complex.

- 5A.10 Cartoon representation of the XPA₉₈₋₂₃₉-XPE 195 complex at (A) 0 ns, and (B) 40 ns. (C) Intermolecular interactions between XPA₉₈₋₂₃₉-XPE complex
- 5A.11 Per-residue energy decomposition (PRED) plots 207 for the interface residues of (A) XPA₁₈₅₋₂₂₆ and (B) XPE.

Chapter 5B

5B.1	Schematic representation of the thermodynamic	221
	cycle used for the calculation of binding free	
	energies (BFE).	
5B.2	Top five models generated for XPA ₁₈₅₋₂₇₃ by the	223
	I-TASSER server.	
5B.3	Structure validation of the modeled XPA ₁₈₅₋₂₇₃ :	223
	(A) Ramachandran plot as obtained from the	
	Rampage server, and (B) Z-score plot energy	
	plot as determined by the ProSA-web server.	
5B.4	Preparation of the WT and R207G XPA	225
	structures, and their molecular docking with	
	XPE.	
5B.5	Top ten representative docked models for the	226
	WT-XPE complex generated by the ClusPro	
	server along with their rankings based on the	
	highly populated cluster numbers and their	
	lowest energy weighted scores.	

	LIST OF FIGURES	
5B.6	Top ten representative docked models for the R207G-XPE complex generated by the ClusPro server along with their rankings based on the highly populated cluster numbers and their lowest energy weighted scores.	227
5B.7	(A) Temperature plot, (B) Pressure, and (B)energy plot for the WT-XPE complex. (D)Temperature plot, (E) Pressure, and (F) energyplot for the R207G-XPE complex.	228
5B.8	. Comparative RMSD analyses for (A) WT-XPE and R207G-XPE complexes, (B) monomeric units of the WT-XPE and R207G-XPE complexes, and (C) WT R207 and mutated G207 amino acids.	230
5B.9	Comparative RMSF analyses for (A) R207G and WT XPA, (B) XPE_{WC} and XPE_{MC} .	231
5B.10	Comparative snapshots for (A) WT-XPE and (B) R207G-XPE complexes	232
5B.11	Comparative BFE analyses for the WT-XPE and R207G-XPE complex.	234
	Chapter 6	
6.1	Molecular docking of the XPA monomer with other members of PIC.	242
6.2	Molecular docking of the XPA homodimer with other members of PIC.	242
6.3	Top five models generated for full-length XPA by I-TASSER server.	244
6.4	Full-length XPA (A) before minimization, (B) after minimization.	245

6.5	Structure validation of the modeled XPA: (A)	245
	Ramachandran plot, (B) energy plot, (C) Z-score	
	of XPA before minimization; and (D)	
	Ramachandran plot, and (B) energy plot, (F) Z-	
	score of XPA after minimization.	
6.6	(A) cartoon representation and (B) surface	249
	diagram of the docked structure. of XPA	
	monomer with the members of PIC. (C)	
	Schematic diagram of PPI between the members	
	of PIC as obtained from PDBsum server.	
	of the as obtained from the businessiver.	
6.7	Schematic diagram of PPI between the XPA	250
	monomer and the members	
6.8	(A) cartoon representation and (B) surface	252
	diagram of the docked structure. of XPA	
	homodimer with the members of PIC. (C)	
	Schematic diagram of PPI between the members	
	of PIC as obtained from PDBsum server.	
6.9	Schematic diagram of PPI between the XPA	253
	homodimer and the members of PIC as obtained	
	from PDBsum server.	

LISTS OF TABLES

Table

No.

CHAPTERS

Page No.

Chapter 1

1.1	Enzymes and genes in DNA repair mechanisms	5				
1.1	Enzymes and genes in DNA repair meenanisms					
1.2	Functions, and main interactions of NER core members.					
1.3	Comparison between XP, CS, XP/CS complex, and TTD.	16				
1 /	Comparison of clinical features of patients with XP,	17				
1.4	XP neurological disease, XP/CS, and CS.	17				
1.5	Loci and genes associated with XP complementation	18				
1.3	groups and XP variants.	10				
1.6	Clinical signs of XP based on complementation groups.	18				
1.7	Drugs used in the treatment of XP.					
1.8	XPA mutations and their effects.					
1.9	Mutations of XPA and their effects.					
1.0	SNPs of XPA with respect to its cancer outcomes.	35				
	Chapter 3					
3.1	Intermolecular hydrogen bond occupancy of	87-88				
	XPA _{98-210/239} homodimer.					
3.1A	Intermolecular hydrogen bond occupancy of	87-88				
3.1A	XPA ₉₈₋₂₁₀ homodimer.	0/-00				
3.1B	Intermolecular hydrogen bond occupancy of XPA98-239	88				
3.1D	homodimer.					
3.2	Interface statistics for XPA homodimers.					
2.2	Intermolecular interactions across the monomer-					
3.3	monomer interface of XPA98-210 homodimer	90-92				

	LISTS OF TABLES					
3.3A	Intermolecular hydrogen bond formation	90-91				
3.3B	Intermolecular salt ridge formation.	91				
3.3C	Intermolecular non-bonded contacts.	91-92				
3.4	Intermolecular interactions across the monomer- monomer interface of XPA ₉₈₋₂₃₉ homodimer	92-93				
3.4A	Intermolecular hydrogen bond formation.	92				
3.4B	Intermolecular salt bridge formation	92				
3.4C	Intermolecular non-bonded contacts.	92-93				
3.5	BFE (kcal mol ⁻¹) analysis for XPA homodimers.	96-97				
3.5A	BFE (kcal mol ⁻¹) analysis for XPA ₉₈₋₂₁₀ homodimer.	96				
3.5B	BFE (kcal mol ⁻¹) analysis for XPA98-239 homodimer	96-97				
	Chapter 4A					
	Residues involved in β -sheets formation in					
4A.1	XPA98-210 systems: DNA bound and DNA free during	111				
	the simulation					
4 4 - 2	Residues involved in Xeroderma Pigmentosum A					
4A.2	(XPA) protein-DNA interaction	111-116				
4A.2A	Polar Contact Map of XPA-DNA.	111-112				
4A.2B	Linear Contact Map of XPA-DNA.	112-114				
4B.2C	Nucleotide-residue contact map.	114-116				
	Chapter 4B					
4B.1	The system parameterization using Xleap.	131				
4B.2	Average properties of XPA homodimer in B and U states.	138				

LISTS OF TABLES

4B.3	Intermolecular interactions between DNA and monomer 1 of XPA homodimer.	142-143	
4B.4	Intermolecular interactions between DNA and 143-1 monomer 2 of XPA homodimer.		
4B.5	Intermolecular interactions between monomer 1 of 144-147 XPA homodimer and DNA.		
4B.5A	Intermolecular hydrogen bonds. 144		
4B.5B	Non-bonded contacts. 144-14		
4B.6	Intermolecular interactions between monomer 2 of 145-147 XPA homodimer and DNA		
4B.6A	Intermolecular hydrogen bonds. 145-146		
4B.6B	Non-bonded contacts. 146		
4B.7	Interface statistics for XPA homodimer.		
4B.8	Intermolecular interactions between monomer 1 and 2 of XPA homodimer.	149-151	
4B.8A	Intermolecular hydrogen bonds 149		
4B.8B	Salt bridges 149		
4B.8C	Non-bonded contacts		
4B.9	Comparative interface statistics of XPA homodimer in B and U states.		
4B.10	Δ ASA and δ ASA values of XPA homodimer in B and U states		
4B.10A	Δ ASA and δ ASA values of monomer 1 of 0A XPA homodimer in B and U states.		
4B.10B	$\Delta ASA \text{ and } \delta ASA \text{ values of monomer 2 of XPA}$ homodimer in B and U states. 154		

	LISTS OF TABLES		
4B.11	Binding free energy (BFE) analysis for XPA	156 157	
4 D .11	homodimer-DNA complex.	156-157	
	Chapter 5A		
C 4 1	MolProbity summary statistics for the modeled	170-171	
5A.1	XPA ₁₈₅₋₂₂₆ protein.		
5A.2A	Intermolecular hydrogen bond occupancy for Model 1 of XPA ₁₈₅₋₂₂₆ -XPE complex.	177-176	
5A.2B	Intermolecular hydrogen bond occupancy for Model 2 of XPA ₁₈₅₋₂₂₆ -XPE complex.	178-179	
5A.2C	Intermolecular hydrogen bond occupancy for model 3 of XPA ₁₈₅₋₂₂₆ -XPE complex.	179-180	
5A.3	Interface statistics for XPA ₁₈₅₋₂₂₆ -XPE protein complex.	181	
5A.4	Intermolecular hydrogen bond between XPA185-226 and	100 100	
JA.4	XPE protein complex.	182-193	
5A.4A	Intermolecular hydrogen bond between XPA185-226 and	182-183	
JA.4A	XPE protein complex.		
5A.4B	Intermolecular salt bridge formation between XPA ₁₈₅₋₂₂₆ and XPE protein complex	184	
5A.4C	Intermolecular non-bonded contacts formed	104 102	
JA.4C	between XPA ₁₈₅₋₂₂₆ and XPE protein complex.	184-193	
5A.5A.	Intermolecular interactions across XPA98-239 - XPE	195	
JA.JA.	interface	195	
5A.5B	Intermolecular hydrogen bond between XPA ₉₈₋₂₃₉ and XPE protein complex.	196	
5A.5C	Intermolecular salt bridge formation between XPA98-239 and XPE protein complex.	196	

LISTS OF TABLES

	Intermolecular Non-bonded Contacts formed			
5A.5D	between XPA ₉₈₋₂₃₉ and XPE protein complex.	197-205		
5 4 (Per-residue energy decomposition (PRED) analysis	207 209		
5A.6	of the interface residues of XPA ₁₈₅₋₂₂₆ -XPE complex.	207-208		
5A.7	Binding free energy (BFE) analysis of XPA ₁₈₅₋₂₂₆ – XPE complex.			
Chapter 5B				
5B.1	The system parameterization using Xleap.	219		
5B.2	MolProbity summary statistics for the modeled XPA ₁₈₅₋₂₇₃ protein.			
5B.3	Binding free energy (BFE) analyses for the WT- XPE and R207G-XPE complex.			
Chapter 6				
6.1	MolProbity summary for the modeled structure of full-length XPA before and after minimization.	245-246		
6.2	Interface statistics for XPA monomer with PIC.	247-248		

6.3 Interface statistics for XPA homodimer with PIC. 251

LIST OF ABBREVIATIONS

6-4PP	:	6-4 photoproducts
Å	:	Angstrom
ACE	:	Atomic contact Energy
AMBER	:	Assisted Model Building with Energy Refinement
ATR	:	ataxia telangiectasia and Rad3-related protein
BFE	:	Binding free energy
CHARMM	:	Chemistry at HARvard Macromolecular Mechanics
СОМ	:	Centre of Mass
CPD	:	Cyclobutane pyrimidine dimer
CPPTRAJ	:	A rewrite of PTRAJ in C++
CS	:	Cockayne syndrome
CSP	:	Chemical shift perturbation
3-D	:	3-Dimensional
DBD	:	DNA-binding domain
DDB2/XPE	:	Damaged DNA binding protein 2
DNA	:	Deoxyribonucleic Acid
DPC	:	DNA-protein complex
DPI	:	DNA-protein interaction
FF99SB	:	Force-field 99 Stony Brook
ERCC1/XPF	:	Excision-repair cross-complementing group 1
FFT	:	Fast Fourier Transform
GAFF	:	General Amber force field
GB	:	Generalized Born
GG-NER	:	Global-genome NER
HA	:	Hydrogen acceptor
HD	:	Hydrogen donor
IDP	:	Intrinsically Disordered Protein

LIST OF ABBREVIATIONS

I-TASSER	:	Iterative Threading ASSembly Refinement
KoBaMIN	:	Knowledge-based minimization
MD	:	Molecular Dynamics
MM	:	Molecular Mechanics
NAMD	:	Nanoscale Molecular Dynamics
NER	:	Nucleotide excision repair
ns	:	nanosecond
NMR	:	Nuclear Magnetic Resonance Spectroscopy
PARP-1	:	Poly [ADP-ribose] polymerase 1
ps	:	picosecond
PB	:	Poisson-Boltzmann
PBC	:	Periodic boundary conditions
PCNA	:	Proliferating cell nuclear antigen
PDB	:	Protein Data Bank
PIC	:	Pre-incision complex
PISA	:	Proteins, Interfaces, Structures and Assemblies
PLC	:	Protein-lipid complex
PME	:	Particle Mesh Ewald
PPC	:	Protein-protein complex
PPI	:	Protein-protein interaction
PRED	:	Per-residue energy decomposition
ProSA	:	Protein structure assessment
PTRAJ	:	Short for Process TRAJectory
Rg	:	Radius of Gyration
RMSD	:	Root Mean Square Deviation
RMSF	:	Root Mean Square Fluctuation
RPA	:	Replication protein A
SASA	:	Solvent-accessible surface area

LIST OF ABBREVIATIONS

SV40	:	Simian vacuolating virus 40
TC-NER	:	Transcription-coupled NER
TFIIH	:	Transcription factor II H
ТМ	:	Template modeling
TPPI	:	Transient PPI
TTD	:	Trichothiodystrophy
TIP3P	:	Transferable Intermolecular Potential Three-point
UCSF	:	University of California, San Francisco
UniProt	:	Universal Protein Resource
UVr	:	Ultraviolet radiation
VMD	:	Visual Molecular Dynamics
XAB	:	XPA binding proteins
XP	:	Xeroderma pigmentosum
XPA	:	Xeroderma pigmentosum complementation group A
XPB	:	Xeroderma pigmentosum complementation group B
XPC	:	Xeroderma pigmentosum complementation group C
XPD	:	Xeroderma pigmentosum complementation group D
XPE	:	Xeroderma pigmentosum complementation group E
XPF	:	Xeroderma pigmentosum complementation group F
XPG	:	Xeroderma pigmentosum complementation group G
XPV	:	Xeroderma pigmentosum complementation group V

This thesis is partly based on the following original communications:

- Pradhan, S., Das, P., and Mattaparthi, V. S. K. Characterizing the binding interactions between DNA binding proteins, XPA and XPE: A molecular dynamics approach. *ACS Omega*, 3: 15442-15454, 2018. (Impact factor: 4.132)
- Pradhan, S., Sarma, H., and Mattaparthi, V. S. K. Investigation of the probable homo-dimer model of the Xeroderma pigmentosum complementation group A (XPA) protein to represent the DNA binding core. *Journal of Biomolecular Structure and Dynamics*, 37: 3322-3336, 2019. (Impact factor 3.392)
- Pradhan, S. and Mattaparthi, V. S. K. Structural dynamics and interactions of Xeroderma pigmentosum complementation group A (XPA98–210) with damaged DNA. *Journal of Biomolecular Structure and Dynamics*, 36: 3341-3353, 2018. (Impact factor 3.392)

Other publications:

 Pradhan, S., Sarma, H., Bharadwaz, B., and Mattaparthi, V. S. K. Comparative Study on the Binding Affinity of Methimazole and Propylthiouracil to Thyroid Peroxidase as an Anti-Thyroid Drug: An *in silico* Approach. Journal of Molecular Imaging and Dynamics, 7(131), 2017. DOI: doi.org/10.4172/2155-9937.1000131 (Impact factor 2.8)

Book chapter:

 Sarma, H., Pradhan, S., Kaushik, S., and Mattaparthi, V. S. K. Phylogenetic analysis: Early evolution of life. In Encyclopedia of Bioinformatics and Computational Biology. Elsevier, ISBN: 9780128114148, 3: 938-952, 2019.

Communicated manuscripts

 Pradhan, S., and Mattaparthi, V. S. K. Investigation on the DNA binding property of Xeroderma pigmentosum complementation group A (XPA) homodimer protein. PROTEINS: Structure, Function, and Bioinformatics, 2022. (Manuscript submitted)

LIST OF PUBLICATIONS

 Pradhan, S., Das, P., Borah, P., and Mattaparthi, V. S. K. Computational Investigation of R207G mutation in Xeroderma pigmentosum complementation group A (XPA) on its interaction with Xeroderma pigmentosum complementation group E (XPE). Current Science, 2022 (Manuscript submitted)

In addition, this thesis also contains unpublished data.

CONFERENCE PROCEEDINGS

- Pradhan, S., Das, P., and Mattaparthi, V. S. K. Characterizing the binding interactions between DNA binding proteins, XPA and XPE: A molecular dynamics approach. Assam Science Festival 2019, March 23rd-25th, 2019, Assam Science, Technology and Environment Council in collaboration with Tezpur University, Tezpur, Assam, India. (Poster Presentation).
- Participated in the National Workshop on "Whole Genome Data Analysis using Computational Framework and Tools" organized by DBT supported Bioinformatics Infrastructure Facility Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India on 24th-25th January, 2019.
- Participated in the Institutional Biotech Hub seminar on "Careers in Science and Biotechnology" sponsored by DBT, GoI and was held on 27th March, 2018 at Tezpur University, Tezpur, Assam, India.
- Participated in the National Workshop on "Whole Genome Data Analysis using Computational Framework and Tools" organized by DBT supported Bioinformatics Infrastructure Facility Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India on 24th-25th January, 2019.
- <u>Pradhan, S.</u> and Mattaparthi, V. S. K. "Structural Dynamics and Interactions of Xeroderma Pigmentosum complementation group A (XPA) with UV-Damaged DNA". International conference on "Emerging Trends in Chemical Sciences" (ETCS-2018) held at Department of Chemistry, Dibrugarh University, Assam, India, held on 26th -28th February, 2018. (Poster presentation)
- 6. Participated as a core committee member and attended lecture series and hands-on training on International Seminar cum Workshop on "Computer Aided Drug Design for Human Pathogen" at Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India, held on 12th-17th February, 2018.
- 7. <u>Pradhan, S.</u> and Mattaparthi, V. S. K. "Structural Dynamics and Interactions of Xeroderma Pigmentosum complementation group A

CONFERENCE PROCEEDINGS

(XPA) with UV-Damaged DNA". Research conclave on "Recent Innovations in Science and Engineering 2017" at NIT Silchar, Assam, India held on 24th - 26th March 2017. (Oral Presentation)

- Attended a National workshop on "Basic Bioinformatics Tools and Techniques in Structural Biology" held on March 18-19th, 2017 at Tezpur University, Tezpur, Assam, India.
- Attended a National workshop on "Networks in Biological Systems" held on February 18-19th, 2017 at Tezpur University, Tezpur, Assam, India.
- Sarma, H., <u>Pradhan, S.</u>, and Mattaparthi, V. S. K. Unveiling the transient Protein-Protein interactions that modulate the activity of Estrogen Receptor (ER)-α by Human Lemur Tyrosine Kinase-3 (LMTK3) domain: An *in silico* study, 9th North-East Bioinformatics Network (NEBInet) Annual Meet, Tezpur University, Tezpur, Assam, India held on 17th 19th January, 2017. (Poster Presentation)