Dedicated to Abba & Abba in law, Amma & Amma in law, Iftikar and Apu

DECLARATION

I hereby declare that the thesis entitled "Characterization of ambient Ozone (O_3) and its precursor compounds at a remote site of mid-Brahmaputra valley" is being submitted to Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in the Department of Environmental Science is a record of bonafide research work accomplished by me under the supervision of Prof. R. R. Hoque, Department of Environmental Science, Tezpur University.

The results obtained and related interpretations included in this thesis are based on my original work. All the helps received from various resources (books, research papers, websites etc.) when writing the thesis are acknowledged at the respective place in the text.

I would also like to mention that no part of this thesis has been submitted elsewhere for award of any other degree.

Date: Place: Tezpur University (Warisha Rahman)

(सर्वोत्तम विश्वविद्यालय के लिए कुलाध्यक्ष पुरस्कार,2016 औरभारत के 100श्रेष्ठ उच्च शिक्षण संस्थानों में पंचम स्थान प्राप्त विश्वविद्यालय) (Awardee of Visitor's Best University Award, 2016 and 5th among India's Top 100 Universities, MHRD-NIRF Ranking, 2016)

CERTIFICATE OF THE SUPERVISORS

This is to certify that the thesis entitled "Characterization of ambient Ozone (O_3) and its precursor compounds at a remote site of mid-Brahmaputra valley" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Environmental Science is a record of research work carried out by Ms. Warisha Rahman under our supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Supervisor

Date:

Place:

Prof. R.R.Hoque Professor Department of Environmental Science Tezpur University

AKNOWLEDGEMENTS

I would like to express my profound gratitude towards many individuals, as without their kind support and guidance, it would not have been possible for me to complete my PhD tenure.

At first, I want to thank my supervisor Prof. Raza Rafiqul Hoque for giving me the golden opportunity to work under him. I extend my sincere thanks to him for his guidance and constant supervision, support and encouragement during my entire research journey. He has helped me in every possible ways during my tenure i.e from writing scientific papers to doing software analyses. It was indeed a very wonderful experience working under him.

I would like to extend my gratitude towards my doctoral committee members, Prof. A.K.Das and Dr. A.Prakash for providing necessary information, feedbacks and support in completing my research work. I would also like to express my sincere thanks to all the faculty members of Department of Environmental Science, Tezpur University, Prof. K. K. Baruah, Prof.K.P.Sharma, Dr. A. L. Devi, Dr. N. Gogoi, Dr. S. S. Bhattacharya, Dr. S. Handique, Dr. N. Gogoi, Dr. S. Kalita and Dr. P. Deka for their kind co-operation and valuable suggestions during my entire research journey. I would also like to extend my gratitude towards the anonymous reviewers for the valuable comments which helped me in improving my thesis.

I also gratefully thank IITM —Pune (Ministry of Earth Sciences, GoI) for the setting up of the air quality monitoring station at Tezpur University under the MAPAN programme. I also acknowledge other logistics received from Tezpur University and UGC-MANF Fellowship by the UGC for providing the financial assistance for completion of my PhD work.

I also gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (http://www. ready. noaa. gov) used in this work. I also like to acknowledge the free availability of software, Meteoinfo and Trajstat, used in my research work. I express my sincere gratitude to Sahjahan Ali, station operator, MAPAN project for enabling the process of receiving the necessary data required for completion of my research work.

I would like to thank my lab mates Dr. Rebecca Daimari, Dr. Pratibha Deka, Dr. Karishma Hussain, Dr. Pranamika Bhuyan, Dr. Nivedita Barman, Jayanta Bora, Dharitri Gogoi, Sharfaa Hussain, Sahbaz Ahmed, Parijat Bharali, Barnali Kaushik, Nitu gupta and Priyanka kumari for their constant support and encouragement during my entire research journey.

I also like to thank all the official and technical staff of Department of Environmetal Science, Tezpur University and all the research scholars of my department for their help in carrying out my research work. My Sincere thanks goes to my friends, Nazneen, Mallika, Banya, Jahnobi, Debajani, Teena, Ruhi, June for their continuous moral support and encouragement during my entire PHd journey.

Words are not enough to express my heartfelt gratitude to my parents, my sister and my in laws for their extreme love and care and without whose support I would not be able to complete my journey. Their constant encouragements have helped me in accomplishing my goals. My exceptional and hearty thanks to my better half Iftikar Ali for being my moral support system during all the rough phases of my journey.

At last, I would like to express my gratitude to all the individuals who directly or indirectly have helped me in completing my research journey. I also sincerely apologize to those if I might have unknowingly missed out any name. However, I would like to mention that any disparity or error in the thesis is my sole responsibility.

Warisha Rahman

LIST OF TABLES

Table No.	Table Title	Page no.
4.1	Monthly daylight average concentrations (ppb) of O ₃ , NOx,	52
	NO ₂ and NO during May 2013-May2015.	
4.2.1	Comparative table of the concentration of O_3 with other	54-55
	locations of India as well as from other reported studies	
	elsewhere in the World.	
4.2.2	Comparative table of the concentration of NOx with other	56
	locations of India as well as from other reported studies	
	elsewhere in the World.	
4.3	Average monthly concentrations of O_3 (ppb) for each year	59
	(2013-17) at Tezpur	
4.4	Average monthly concentrations of NOx (ppb) for each year	64
	(2013-17) at Tezpur	
4.5	Ambient O ₃ and NOx (ppb) observed during one day before	82
	eclipse and on eclipse day for the year (A) 2014 and (B) 2015.	
4.6	Changes observed in ambient O ₃ , NOx, SR, AT and RH	84
	during eclipse day during the year (A) 2014 and (B) 2015	
4.7.1	Monthly average, minimum and maximum temperature of	88
	Tezpur during the study period 2013-2017	
4.7.2	Monthly average, minimum and maximum relative humidity	90
	of Tezpur during the study period 2013-2017	

LIST OF FIGURES

Figure No.	Title	Page No.
1.1	Schematic representation of the interactions of O ₃ in the Earth	3
	system	
1.2	Schematic representation for sink of ozone in lower troposphere	3
3.1	(A) Map showing Tezpur and the Brahmaputra Valley region	39
	along with the neighboring regions (B) Map of Tezpur University	
	study site	
	Concentrations: Box plot for the year (A) 2013-2014. (B) 2014-	
	2015 (C) 2015-2016 and (D) 2016-2017	
4.2	Concentrations: Box plot for the year (A) 2013-2014. (B) 2014-	50
	2015 (C) 2015-2016 and (D) 2016-2017	
4.3	Diel and monthly Variations in the concentrations of O_3 (average	58
	conditions): (A) For the year 2013-2014 (B) 2014-2015 (C) 2015-	
	2016 (D) 2016-2017.	
4.4	Seasonal variations in the diel concentration changes of ozone	60
	through the day during the Year (A) 2013- 2014; (B) 2014-2015;	
	(C) 2015-2016; (D)2016-2017	
4.5	Calendar plot of the averaged data's of O ₃ with annotations	61
	showing wind angle scaled to wind speed i.e. the longer the	
	arrow, the higher the wind speed during the study period.	
4.6	Diel and monthly Variations in the concentrations of NOx	63
	(average conditions): (A) For the year 2013-2014 (B) 2014-2015	
	(C) 2015-2016 (D) 2016-2017	
4.7	Seasonal variations in the diel concentration changes of NOx	65
	through the day during the Year (A) 2013-2014; (B) 2014-2015;	
	(C) 2015-2016; (D) 2016-2017.	
4.8	Calendar plot of the averaged data's of NOx with annotations	66
	showing wind angle scaled to wind speed.	
4.9	(A) Daily profile of OX during 2013(May) to 2014(May); (B)	67
	Monthly variation of OX during 2013(May) to 2014(April).	
4.10	Daylight hourly-average concentrations of O_3 , NO and NO_2	68

	against NOx at remote site (Tezpur) during the study period.	
4.11	Variation of O_3 concentration with the NO2 /NO.	69
4.12	(A)Variation of mean values of O_3 with NO during (A) Daytime	
	(B) Nighttime and Variation of mean values of with NO ₂ (C)	70
	during daytime (D) Nighttime.	
4.13	Variation of mean values of NOx with (A) NO2; (B) NO during	71
	Daytime.	
4.14	Variation of mean values of NOx with (A) NO ₂ ; (B) NO during	72
	Nighttime.	
4.15	Variation of mean values of OX with NO ₂ during (A) daytime;	73
	(B) Nighttime.	
4.16	Trends of ambient O3 during the days of Diwali festivals for the	75
	years (A) 2013 (B) 2014 (C) 2016 and (D) 2017.	
4.17	Trends of NO_2 during the Diwali festival for the year (A) 2013	77
	(B) 2014 (C) 2016 and (D) 2017.	
4.18	Relationship of ambient O_3 with NO_2 during Diwali festival in	78-80
	the year (A) 2013 (B) 2014 (C) 2016 (D) 2017	
4.19	Variations in ambient ozone observed during solar eclipse day	81
	and normal days for the year (A) 2014 and (B) 2015.	
4.20	Variations in (A) NO2, (B) NO and (C) NOx concentrations	83-84
	observed during Solar eclipse day and normal days during the	
	year 2014 and 2015.	
4.21	Variations in (A) AT, (B) RH and (C) SR observed during solar	85-86
	eclipse day and normal days during the year 2014 and 2015.	
4.22	Scatter plot showing relationship between (A) O ₃ and Solar	87
	radiation (SR) (B) O_3 and NOx on the solar eclipse day.	
4.23	Variation of O3 with maximum temperature	89
4.24	Variation of O3 with Relative humidity.	91
4.25	net O3 (measured concentrations) and J1/k3 plotted against time	94
	of the day in different seasons: (a) Pre-monsoon; (b) Monsoon;	
	and (c) Post-monsoon, (d) winter	
4.26	Ventilation Coefficient (VC) during winter period (January	96
	2014). VC was calculated as VC = MH x WS; MH was	

calculated by HYSPLIT

4.27	Polar plots of O3 (a-d: premonsoon, monsoon, postmonsoon,	98
	winter), and NO ₂ (e-h: premonsoon, monsoon, postmonsoon,	
	winter)	
4.28	Pollution rose of O_3 for the year 2014-2017	99
	CPF and CBPF plots for O3 in Tezpur during the year 2014-	101
4.29	2017.	
4.30	Daily Variation of Values of OX with respect to NOx during the	102
	period of May 2013-2014.	
4.31	Trajectory clusters reaching the city of Tezpur at 500 m AGL	105-108
	during the year (A)2014 (B)2015 (C)2016 and (D)2017	
4.32	PSCF density maps of O_3 concentration for Tezpur during the	109-112
	year (A)2014 (B)2015 (C)2016 (D)2017	
4.33	Trajectory clusters of NO ₂ reaching the city of at 500 m AGL	114-117
	Tezpur during the year (A)2014 (B)2015 (C)2016 (D)2017	
4.34	PSCF density maps of NO ₂ concentration for Tezpur during the	118-121
	year (A)2014 (B)2015 (C)2016 (D)2017	
4.35	Concentration weighted trajectories (CWT) of O3 for four years	122-126
	(2014-2017) together and separately season wise for (A)2014	
	(B)2015 (C)2016 (D) 2017	
4.36	Concentration weighted trajectories (CWT) of NO ₂ for four years	127-129
	(2014-2017) together and separately season wise for (A)2014	
	(B)2015 (C)2016 (D) 2017	

ACRONYMS AND ABBREVIATIONS

Abbreviations Full Form

µg/m3	Microgram per meter cube
%	Percentage
AT	Ambient Temperature
ARL	Air Resources Laboratory
O3	Ozone
NOx	Oxides of Nitrogen
СО	Carbon Monoxide
TNMHC	Total non methane hydrocarbon
NO	Nitric Oxide
NO2	Nitrogen di oxide
0 C	Degree Celsius
CAAQMS	Combined Ambient Air Quality Monitoring Station
CBPF	Conditional Bivariate Probability Function
CPF	Conditional probability function
DoE	Department of Environment
EPA	Environmental Protection Agency
HYSPLIT	Hybrid Single Particle Lagrangian Integrated Trajectory Model
IITM	Indian Institute of Tropical Meteorology
IMD	India Meteorological Department
MAPAN	Modeling Air Pollution and Networking
MMH	Maximum Mixing Height
NOAA	National Oceanic and Atmospheric Administration
RH	Relative Humidity
SPSS	Statistical Package for the Social Sciences
USEPA	United States Environmental Protection Agency
WD	Wind Direction
WS	Wind Speed
WHO	World Health Organization
PSCF	Potential Source Contribution factor
CWT	Concentrated Weighted Trajectory