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CHAPTER 1 

INTRODUCTION 

1.1:  Ambient Ozone (O3)  

Ozone (O3) is defined as a secondary pollutant in the ambient atmosphere which is harmful to 

the ecosystem. O3 is formed by series of chain reactions between its precursors, NOx and 

VOC in the presence of sunlight and other Meterological conditions. Ozone load in the 

troposphere is generally increasing due to increase of the concentration of its precursors 

(NOx and VOC) [1]. Ozone in the lower atmosphere is one of the important green house 

gases contributing highly to variations in climate change and global warming. [2-3]. O3 

variability is governed by various processes like photochemical behaviour, local and regional 

transport etc. [1]. NOx, one of the main precursor of O3 formation are also released in the 

lower troposphere by various sources like lightning, vehicular emissions, industrial effluents 

etc. [4-7]. Schematic diagram of O3 formation in the Troposphere is well depicted in figure 

1.1. 

In nature, O3 is highly reactive which has three key properties: (i) it is a strong oxidant; (ii) it 

is a strong absorber of ultraviolet (UV) radiation; and (iii) it is a participant in many 

important chemical reactions in the atmosphere [8]. Ozone formation in the ambient 

atmosphere mainly depends on absolute concentrations of NOx and VOCs, ratio of NOx to 

VOCs and the intensity of solar radiation [9]. The main factors contributed to formation of 

ozone is low wind speed, altitude, solar zenith angle, advection processes, temperature, 

abundant solar radiation, low relative humidity, rainfall. Other factors like cloud cover; wind 

direction and low wind speeds also contribute to the formation of ground level ozone. The 

levels of ozone are higher during the hottest part of the day. Ozone continues to increase for 

all day and decreases after sunset. During night time ozone reverts to other forms as it is 

highly reactive and dissipates quickly. 

Ozone in lower troposphere is formed by the reactions between nitrogen 

oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs) react in the 

presence of sunlight. The reactions begin with oxidation of CO with hydroxyl radical which 

led to the formation of a radical intermediate. This then rapidly reacts with oxygen to give a 

peroxy radical HO2
• [10] 
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 Reactions involved are:- 

•OH + CO → •HOCO                                   (1.1) 
•HOCO + O2 → HO2

• + CO2                         (1.2) 

 

 Peroxy radicals then go on to react with NO to give NO2 which is photolysed to give 

atomic oxygen and through reaction with oxygen a molecule of ozone: 

HO2
• + NO → •OH + NO2                            (1.3) 

NO2 + hν → NO + O (3P)                             (1.4) 

O (3P) + O2 → O3                                         (1.5) 

 

 The balance of this sequence of chemical reactions is: 

CO + 2O2 + hν → CO2 + O3                                              (1.6) 

1.1.1: Sink of Ozone 

Ozone concentration in the ambient atmosphere is due to various photochemical reactions 

and physical processes like impacts of Meterological parameters on O3, its geographical 

location, downward transport of O3 from stratosphere etc. [11-16]. The net budget of O3 

production from photochemical reaction in the troposphere was about 5000 Tg yr-1 [17-18] 

while the net budget of O3 source from stratospheric-Tropospheric exchange was about 

550±140 Tg yr-1 [19-20]. Ozone production through chemical reactions occurs mostly in 

upper tropospheric zone where the concentrations of the precursors are high and O3 removal 

processes is slow [21-23].Dry deposition to vegetation, ecosystem fluxes, meteorological 

conditions etc contributes to net removal of ground level O3 and is estimated upto 1000±200 

Tg yr-1 [17]. Destruction of O3 chemically is highest in the lower troposphere where 

concentration of water vapour is more and also in polluted environments where chemical 

titration of O3 takes place i.e. direction removal of O3 by reaction with NO [24]. Destruction 

of O3 occurs mainly in mid-troposphere where the concentration of O3 precursors is low and 

near marine boundary layers [24]. Although the production and destruction processes of O3 is 

much more diverse in nature but a very little change is observed since decades [21]. The main 

sinks of O3 in troposphere are solar radiation, ambient temperature, stomatal and non 

stomatal uptake, presence of water vapour, chemical titration of O3 by NO [24]. The sink of 

ozone in lower troposphere is shown in figure 1.2. 



 

Schematic diagram of O3 

Figure 1.1. Schematic representation of the interactions of 
(Source: EPA, 2009). 
 
Schematic diagram showing sink of O

Figure 1. 2. Schematic representation 

(Source: Monks et al., 2015)
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Schematic representation of the interactions of O3 in the Earth system 

showing sink of O3 in lower Troposphere 

Schematic representation for sink of ozone in lower troposphere

Monks et al., 2015) 
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1.2: Ozone and its precursors 

Volatile organic compounds (VOCs), carbon monoxide (CO) and nitrogen oxides (NOx) 

are important precursors for the formation of ground-level ozone. Incomplete 

combustion of fossil fuel and biomass burning are main sources of VOCs, CO and NOx, 

while oxidation of methane (CH4) and volatile organic compounds (VOCs) can 

significantly contribute to the atmospheric budget of CO [26]. Other anthropogenic 

sources of NOx include electric utilities, industrial, commercial, and residential sources 

that burn fuels [25]. Natural sources like bacterial and volcanic activity, lightning etc 

also contributes to NOx emissions [27].  

Oxides of Nitrogen (NOx) 

NOx formation in the lower atmosphere is centrally associated with local, regional and 

global change in the earth processes. Nitrogen oxide(NO2 +NO) are basically emitted as 

NO from anthropogenic emission sources but within almost regularly gets converted to 

NO2 which in the presence of ultraviolet radiation forms O3 [28]. Concentration of O3 

production depends on NO2 and NO reactions which are cycled catalytically and so O3 

production is greater than that of NOx concentrations [28]. The main emission sources of 

NOx are lightning, biomass burning, fossil fuel combustions, microbial activities in soil 

and stratospheric intrusions. 

Total non-methane hydrocarbon (TNMHC) 

Total non-methane hydrocarbons are defined as the organic species having high vapour 

pressure in ambient atmosphere. These are the main components in both polluted and 

non-polluted environments in lower troposphere. TNMHC are omnipresent and are 

important precursor of tropospheric O3. Total non-methane hydrocarbons are 

characterized as secondary pollutants which controls the oxidizing capacity of the lower 

atmosphere [29]. Large amount of TNMHC are emitted from vegetation, biomass 

burning, manmade sources like vehicular emissions, power plant emissions, landfills, 

hazardous waste, usage of solvents, transportation [30-33, 6-7].  

 

 

 



Introduction 

5 
 

Carbon monoxide (CO) 

Carbon monoxide plays an important role in the troposphere due to its influence on 

production and destruction of O3 [34]. CO has a relatively long lifespan in the ambient 

atmosphere and its reaction with OH radicals provides the sink of CO in the troposphere 

[35-37]. CO is also used as an inert tracer for air masses affecting anthropogenic 

emissions [38]. The main sources of CO are vehicular emissions, emissions from natural 

hydrocarbons etc [38-39]. 

1.3: Effects of O3 on Environment  

Ozone in the lower atmosphere is termed as ‘bad’ O3 for its adverse effects on health and 

environment. It was termed as lung irritant soon after its discovery [40]. Health effects of 

increased concentration of O3 include reduction of lung functions, increased respiratory 

problems, inflammation. Long term exposure will ultimately lead to chronic damage of 

the lungs in vertebrates [41]. Ambient O3 is a secondary air pollutant which also has 

adverse effects on plants. Increased concentration of O3 leads to loss of plant 

productivity by decreasing photosynthetic rate and plant growth. Although stomatal 

uptake is considered as an important sink of tropospheric O3 but it has adverse effect on 

environment by increasing level of CO2, thereby contributing to global warming [42]. 

Rising concentration of ambient O3 has negative effect on natural ecosystem, agricultural 

crops and forests [43-44]. 

1.4: Effect of meteorology on ambient O3 

Meterological conditions like high ambient temperature, low relative humidity, higher 

intensity of solar radiation, high wind speed etc. contributes to O3 formation in lower 

troposphere. The concentrations of O3 against the calm conditions are seen to be low 

[45].  As observed by [46-47] temperature and solar radiation are important factors of O3 

formation. Tropospheric O3 shows a strong correlation with ambient temperature even in 

hot climatic conditions [48-53]. 

High relative humidity helps removal of O3 [54] and on the other hand, high temperature 

facilitates O3 formation provided other meteorological conditions are favourable [55].  

Increased water vapor may increase ozone loss by the reaction sequence: 

O3 + hv O2 +O (1 D)                                                                     (1.7) 

O (1D) + H2O 2• OH                                                                     (1.8) 
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•OH + O3 HOO• +O2                                                                                                       (1.9) 

HOO• + O3 • OH + 2O2                                                                                                 (1.10) 

The excited oxygen atom O (1D) of Eq (1.7) may compete with reaction of N2 or O2, 

stabilizing O (1D) to the ground-state atom O (3 P), which eventually reacts with O2 to 

return ozone. But, the •OH released from Eq (1.8) proceed with removing O3 through Eq 

(1.9) and Eq (1.10) [56]. Under polluted conditions, however, this effect is more 

complicated, because the • OH radicals produced by Eq (1.8) would react with VOCs and 

CO to produce more ozone, while also competing to converting NO2 to HNO3. 

1.5: Importance of the Study 

Understanding the chemical and physical dynamics of ozone and other trace gases is 

becoming increasingly urgent as world population rises and economic activity increases 

among developing nations. Increased combustion of fossil fuels, which produces 

chemicals that contribute to ozone formation ("precursors”), accompanies that economic 

activity.  

Governments need to adopt a global perspective when designing a strategy to meet 

regional air quality objectives for limiting ozone. The real-time and long-term 

measurements of Ozone from South Asia though are rather sparse. Thus, studies need to 

be designed to understand the characteristics of ground level atmospheric ozone, and its 

precursors over Indian Sub-continent.  

Tropospheric ozone turns out to be an intercontinental traveler, crossing geographic and 

political boundaries. Furthermore, ground-level ozone is part of a complex relationship 

among several air pollutants and other factors such as climatic and meteorological 

conditions and nutrient balances.  

Present study is an attempt to understand the characteristics of ground level atmospheric 

Ozone in a rural site of Brahmaputra Valley of Assam. Tezpur is one of the small towns 

situated in Brahmaputra Valley and there is rarely such recorded study on ground level 

atmospheric Ozone from this site. Therefore, this study in Brahmaputra Valley is taken 

up. A higher concentration of O3 is harmful for agriculture and crops as the growth of 

plants decreases in presence of higher concentration of ozone.   
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1.6: Research Hypotheses 

 

The study on tropospheric O3 over the mid-Brahmaputra region in a rural receptor site 

has been undertaken by considering the following research hypotheses: 

1. Remote locations have very low concentrations of O3 and its precursors but still 

shows significant temporal variabilities 

2.  Inter relationship of O3 and its precursors show a definite pattern.  

3.  Relationship of ambient O3 with meteorology shows an important changing 

pattern 
 

1.7: Research Objectives 

The proposed work has been envisaged to understand all factors influencing ozone 

formation over mid-Brahmaputra region with the following objectives 

 To characterize ambient ozone and its selected precursors over mid-Brahmaputra 

region.  

 To investigate the relationship of ozone with its dominant precursor compounds. 

 To quantify the role of atmospheric transport on local ozone concentration.  

1.8: Scope of the study 

Studies of tropospheric ozone is going on throughout the world, however Studies related 

to tropospheric ozone and its precursors  in India is infrequent and mostly concentrated 

in major cities. Moreover very less works are done on air quality measurements in rural 

sites of India which are receptors of emission from the city and industrial centre’s. With 

this background the present study was designed to understand the characteristics of 

ground level atmospheric ozone and its precursors at Tezpur, a rural receptor site of 

North east India. The present study will mainly focus on characterization of trends 

present in ozone and its precursor series using statistical analysis. Moreover the 

relationships of ozone with its precursors will also be analyzed. Meterological 

parameters and its effects on Ozone formation will also be analyzed to understand the 

Ozone trends. 
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