
Chapter 7

Conclusion and Future Work

In this chapter, we summarize the results derived in this thesis. Then we discuss

possible extensions or new works in this direction.

7.1 Concluding Remarks

The main objective of this thesis has been to study and analyse a few finite element

methods for the Oldroyd model of order one, and then to substantiate our findings by

means of numerical computations. Since our model is a time-dependent problem, each

finite element scheme further needs to be discretized in time for numerical simulation.

We have therefore analysed the backward Euler method, a first-order time-discrete

scheme at the very outset and then have gone on work on various finite element

methods.

In Chapter 2, we have investigated the backward Euler method applying to the

semidiscrete Galerkin approximation of the Oldroyd model of order one with non-

smooth initial data, that is, u0 ∈ H1
0. We have employed the right rectangle rule

to approximate the integral term and have preserved the positivity property of the

memory term. The consistent scheme has been shown to be stable by obtaining new

uniform a priori bounds for the fully discrete solution Un, 1 ≤ n ≤ N .(
‖Un‖2 + µe−2αtnk

n∑
i=1

e2αti‖∇Ui‖2
)

+ ‖∇Un‖2 + τ ∗(tn)‖∆̃hU
n‖2 ≤ C,

where k is the time step and C is a positive constant depending on the given data but

not on time; that is, bound is uniform in time.
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We then have derived the following optimal error estimates for the velocity

‖uh(tn)−Un‖ ≤ CeCtnt−1/2
n k, 1 ≤ n ≤ N < +∞,

where uh is the semidiscrete solution and Un is the fully discrete solution. This

has improved the existing results in the following sense: (i) this is for less regular

initial data (ii) improved order of convergence, by an order of
(

log 1
k

)3/4
. Under the

uniqueness condition, we have shown this error is uniform in time. The analysis has

been done for the nonsmooth initial data, and the proofs are more involved than the

smooth case. Our numerical results conform to our theoretical results, especially the

rate of convergence in both space and temporal directions with smooth and nonsmooth

initial data. We have also verified the unconditional stability of the scheme and uniform

in time bounds numerically.

A three-step two-grid finite element method is applied to the Oldroyd model of

order one in Chapter 3. We solve a nonlinear problem in a coarse grid in the first step.

Then, using this coarse grid solution, we linearize the problem and solve it in a fine

grid by using one Newton iteration in the second step. In the third step, we correct

the solution on the fine grid. Optimal error estimates for the velocity and the pressure

have been obtained in the final step as

‖(u− uh)(t)‖ ≤ K(t)(h2t−1/2 +H4−`t−1),

‖∇(u− uh)(t)‖ ≤ K(t)(ht−1/2 +H3−`t−1),

‖(p− ph)‖L2/Nh ≤ K(t)(ht−1/2 +H3−`t−1),

where ` > 0 is arbitrary small and K(t) = CeCt. (u, p) and (uh, ph) are the continuous

solution and the semidiscrete solution in step 3, respectively. We have proved that the

largest scaling between the coarse mesh size H and fine mesh size h is h = O(H2−`)

for optimal error estimates for velocity in L∞(L2)-norm and it is h = O(H3−`) for

velocity in L∞(H1)-norm and for pressure in L∞(L2)-norm, for arbitrary small ` > 0.

In the second part of Chapter 3, we have used backward Euler method for temporal

discretization to the three step two-grid finite element approximations. We have ob-

tained a priori estimates for the fully discrete solutions and have derived the following

error estimates for the velocity and the pressure

‖uh(tn)−Un
h‖ ≤ Knk(1 + log

1

k
)
1
2 t−1/2
n ,
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‖∇(uh(tn)−Un
h)‖+ ‖ph(tn)− P n

h )‖ ≤ Knk
1
2 (1 + log

1

k
)
1
2 t−1/2
n ,

where Kn = CeCtn and (uh, ph) and (Un
h, P

n
h ) are the solutions of the semidiscrete and

fully discrete cases, respectively. Moreover, under the uniqueness condition, the above

estimates are uniform in time, that is, Kn = C. We have provided some numerical

examples that validate our theoretical results. We have compared the CPU time for

a standard Galerkin solution and two-grid solution, which indicates that the two-grid

solution reduce the computation time by around 50%. Hence, it is a time-efficient and

effective method.

In Chapter 4, a penalized Oldroyd model of order one has been analyzed for non-

smooth initial data, that is, uε0 ∈ H1
0. Based on penalized Stokes operator and

appropriate application of weighted time estimates with the positivity of the memory

term, new regularity results have been established for the penalized problem, which

are valid uniformly in time as t→∞ and in penalty parameter ε as it tends to zero.

It is then followed by the semidiscrete analysis of the model based on the conforming

finite element method. With the help of discrete penalty Stokes operator and uniform

Gronwall’s Lemma, uniform in time bound for the discrete velocity in the Dirichlet

norm is derived. Subsequently, the following optimal error estimates for the velocity

in L∞(L2)-norm as well as L∞(H1)-norm and for the pressure in L∞(L2)-norm have

been established

‖(uε − uεh)(t)‖+ h‖∇(uε − uεh)(t)‖+ h‖(pε − pεh)(t)‖ ≤ K(t)h2t−
1
2 ,

where (uε, pε) and (uεh, pεh) are the solution of penalized system and semidiscrte pe-

nalized system, respectively. These estimates are valid uniformly with respect to the

penalty parameter as it goes to zero and in time under the smallness conditions on

given data. Our analysis relies on the application of the inverse penalized Stokes oper-

ator with its discrete version, the penalized Stokes-Volterra projection, weighted time

estimates, and positivity of the memory term. Then, we have applied the backward

Euler method to the semidiscrete penalized system and have derived a priori bounds

for the fully discrete penalized solution in L2 and Dirichlet norm. The following opti-

mal error estimates have been established for the velocity and pressure:

‖uεh(tn)−Un
ε‖ ≤ Knkt

−1/2
n ,
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‖∇(uεh(tn)−Un
ε )‖+ ‖pεh(tn)− P n

ε ‖ ≤ Knkt
−1
n ,

where (Un
ε , P

n
ε ) is the solution of the fully discrete penalized system. Under the unique-

ness condition, these bounds are shown uniform in time. We have presented some

numerical simulations to validate our theoretical findings, mainly the convergence rate

for nonsmooth initial data. Moreover, several numerical experiments are conducted

on benchmark problems and for various small values of µ and γ.

In Chapter 5, we have considered an inf-sup stable mixed finite element method for

the Oldroyd model of order one with grad-div stabilization. We have first investigated

the stability of the discrete solution, observing that the scheme is valid only for a finite

time when the discrete solution does not grow with high Reynold’s number. We have

obtained the error estimates for the velocity and the pressure in the semidiscrete case

as well as in the fully discrete case with the error bounds independent of the inverse

power of µ. We have carried out our analysis for both sufficiently smooth initial data

(u0 ∈ H1
0 ∩Hm, m > 2) and smooth initial data (u0 ∈ H1

0 ∩H2). The following error

bounds have been obtained

‖u(tn)−Un‖2 + e−2αtnk
n∑
i=1

e2αti‖p(tn)− P n‖2 ≤ Kn(h2m + k2),

where m is the degree of the polynomial approximate the velocity space. We have ver-

ified our theoretical results by performing some numerical simulations. The numerical

experiments have been presented for very small values of µ which confirm that the

error bounds constant independent of the inverse power of µ. We also have conducted

a few numerical simulations to find a suitable choice of grad-div parameter for the

Oldroyd model of order one.

We have applied the nonconforming finite element method to the Oldroyd model of

order one in Chapter 6. To discretize the velocity space, we have used P1 nonconform-

ing finite element space, and for the pressure space, we have used piecewise constant

space. The following optimal error estimates have been derived for nonsmooth initial

data:

‖(u− uh)(t)‖+ h‖∇h(u− uh)(t)‖ ≤ K(t)h2t−
1
2 ,

where ∇h is the discrete gradient operator. Under uniqueness condition, these esti-

mates are shown uniformly in time.
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Then, an incremental pressure correction scheme has been applied to the Oldroyd

model of order one to discretize in the temporal direction. For the space discretization,

we have considered above mentioned nonconforming finite element spaces. Stability

analysis of the scheme has also been performed. We have derived optimal error bounds

for fully discrete approximation with nonsmooth initial data. We have considered a

few numerical examples for the numerical validation and have presented some results

that support our theoretical findings.

7.2 Future Plan

In future, we would continue working on the Oldroyd model of order one and then

would like to move on to coupled problems and to other related problems.

For higher-order finite element approximations, it is desirable to use higher-order

time schemes. We therefore plan to employ a couple of time discretizations of second-

order to the Oldroyd model order one. Also combinations of explicit and implicit time

schemes are often more effective than the individual scheme itself and we plan to study

a few of them for our model. We will carry out stability and convergence analysis for

these time schemes for nonsmooth data. Stability of various first-order scheme has

been carried out in [150] and the Crank-Nicolson/Adams-Bashforth, a second order

time discrete scheme, has been applied for our model in [69]. However the first work

does not address the second order schemes and the second work is limited to a specific

scheme. Also these work do not take into account less regular data.

The combination of incompressible flow and porous media flow is getting popular in

the present day [32, 43, 93]. Such complicated phenomena have practical applications

in different areas: Geosciences (modeling river-groundwater interactions, simulating

the effect of flooding in dry areas), health sciences (filtration of blood via vessel walls,

modeling blood flow and organs), industry (petroleum extraction, air or oil filters),

and so on. Predicting how pollution dumped into rivers, lakes, and streams makes its

way into the water supply is one of these problems. The coupling is also crucial in

filtration-related technical applications. In order to simulate such physical phenomena,

various systems of partial differential equations must be considered in each subregion

of the domain of interest. The Navier-Stokes equations (or Stokes equations) in the
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fluid region are typically coupled across an interface with the Darcy equations for

the filtration velocity in the porous media to provide a model that is most accessible

to large-scale computations. As a result, the coupled system of equations of various

orders in a different region causes mathematical complications.

For literature involving the coupled Stokes/Darcy model, we refer to [52, 58, 93,

103, 118, 119, 123] and for the steady-state coupled Navier-Stokes/Darcy equations,

we refer to [23, 32, 33, 44–46, 57], and references therein. The unsteady case, being

of interest, we note that it has been studied in the following context: existence and

uniqueness of time-dependent problem [29], finite element methods [27], discontinu-

ous Galerkin finite element methods [28, 30], partitioned time-stepping method [84],

characteristic finite element methods [26, 85], mortar finite element methods [31], mod-

ular grad-div method [135], incremental pressure correction method [143], to name a

few. There are several other schemes such as two-grid or multi-grid method, projec-

tion method, penalty method, stabilized method, etc. that can be analysed for the

time-dependent Navier-Stokes/Darcy coupled model. In [23, 83, 154] a two-grid or

multi-grid method have been applied for the steady Navier-Stokes/Darcy model, but

there are no results for the unsteady Navier-Stokes/Darcy problem. Since there are a

few basic works on unsteady problem using discontinuous Galerkin method [28, 30] and

modular grad-div method [135], hence, there is a huge scope for analyzing this model

in this direction. Recently, a second-order incremental pressure correction method for

solving the Navier-Stokes/Darcy equation can be seen in [143]. But there are none on

velocity correction or splitting scheme or non-incremental pressure correction scheme.

Apart from Navier-Stokes/Darcy, one can find Cahn-Hilliard/Navier-Stokes model,

Cahn-Hilliard/ Navier-Stokes/Darcy model, Navier-Stokes/Forchheimer model which

are very popular in these present days and we plan to look at them as well.

Furthermore, we would like to look into stabilized schemes, namely, pressure robust

mixed finite element methods which are of interest in the research community these

days. In case of standard mixed finite element method, the velocity error depends on

the continuous pressure with coefficient 1/ν (ν be the coefficient of viscosity) and the

divergence constraints are not robust against large irrotational forces in the momen-

tum balance. But, in pressure robust method, it is possible to find the velocity error

which is pressure independent. In recent years, there are several works have been found
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in the literature based on pressure robust scheme for the time-dependent incompress-

ible Navier-Stokes equations like H(div)-conforming discontinuous Galerkin method

[72, 149], divergence-free reconstruction for Taylor-Hood elements and high order hy-

bridizable discontinuous Galerkin methods [94], inf-sup stable FEM [122], divergence-

free FEM [121] and so on. This motivates us to analyse this robust scheme for a

possible study in combination with two-grid/multi-grid method, different stabilized

methods like grad-div stabilization, pressure stabilized scheme, equal order stabilized

scheme, (local) discontinuous Galerkin method and so on, for NSE and Oldroyd model.
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