
Chapter 1

Introduction

In the realm of fluid mechanics, the study of viscous fluids is revolved around the

famous incompressible Navier-Stokes equations (NSEs) for more than a century now.

The system comprises of partial differential equations with prescribed boundary values

and in non-stationary case, with an initial value, and it represents fluid flows that

are governed by the Newton’s law of viscosity. The incompressible NSEs has been

studied extensively both in pure and applied fields for its wide range of applications

in engineering and scientific problems. However, a smooth solution of 3D NSEs still

eludes us and is part of the Millennium prize problem [50].

There have been several works devoted to the solution of the incompressible Navier-

Stokes system, starting with the work of Leray in 1934 [95, 96]. We want to bring to

notice the celebrated works of Ladyzhenskaya [90], where she has proved the uniqueness

for a large time without any restriction on the smallness of the given data or the domain

in two-dimensional case. Also, in a three-dimensional case, a unique solution has been

shown for all time under the condition that the given forces are derivable from potential

and the Reynold number is less than one at the initial time. If conditions are not met,

at least one solution exists, but it may not be unique. Uniqueness is proved only for

smooth initial data for a specific time interval. For more details, see [90].

However, the unique solvability of the three-dimensional boundary value problem

was still out of reach for a large time. And therefore, Ladyzhenskaya and her group

resorted to the study of some new regularized models of the NSEs, based on the

idea that the solvability of these models may lead to the solvability of the NSEs.

Extending this idea, her pupils, namely, Oskolkov, Kotsiolis, Karzeeva, Sobolevskii,
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etc., have worked on a few generalized problems. For example, in [111], Oskolkov has

considered a generalized problem where the solution approaches the solution of NSEs

but for smallness condition on the data. Furthermore, at the same time, it has been

recognized that these regularized models describe non-Newtonian fluids, fluids that

are no longer governed only by Newton’s law of viscosity. Again, in the work [110],

Oskolkov has stated that the model considered there describes the laminar motion

of aqueous solutions of polymers. The molecular interactions have been emphasized.

And it has been realized that these new regularized equations are, in fact, results

of some linearized rheological equations, equations that identify the underlying fluid.

One such model that first appeared in the work of Oldroyd [106] and has been studied

by Oskolkov et al. [110, 111] is a model that incorporates an integral term to NSEs, a

memory term to take into account the elastic property of an otherwise viscous fluid,

and is known as the Oldroyd model of order L, L > 0.

In this thesis, we will consider the model for L = 1 as the analysis for the general

case does not differ by much. And we will call it as Oldroyd model of order one.

This linear viscoelastic model represents a basic model for polymeric fluids such as

molten plastic, engine oils, paints, gels, ointment, etc. and biological fluids such as

egg white and blood. It is a non-Newtonian model which has been derived under

the assumptions that the material can be regarded as a single stationary macroscopic

element with small stress and strain rates, and finds applications in various industries,

like, paints, DNA suspensions, biological fluids and some chemical industries.

We present a brief discussion about the model in our next section, that is Section 1.1.

1.1 Oldroyd Model of Order One

The incompressible fluid flow in a bounded domain Ω in Rn, n = 2, 3 is represented

by the following system of differential equations:

∂u

∂t
−∇ · σ + u · ∇u +∇p = f(x, t), ∇ · u = 0, for t > 0 (1.1)

with appropriate initial and boundary conditions. Here, σ = (σik) denotes the deviator

of the stress tensor (also called the extra-stress tensor) with tr σ = 0, u = (u1, u2)

(or u = (u1, u2, u3)) represents the velocity vector, p is the pressure of the fluid and f

is the external force. A rheological equation defined via σ and D generally describes
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the underlying fluid where D is the tensor of deformation velocities and is defined as

D = (Dik) =
1

2
(uixk + ukxi).

For example, if we consider the rheological equation σ = 2νD, then we obtain the well

known Navier-Stokes equations

∂u

∂t
− ν∆u + u · ∇u +∇p = f(x, t), ∇ · u = 0.

Here ν > 0 is the kinematic coefficient of viscosity. However, in the case of non-

Newtonian fluids, this relation needs to take into consideration the molecular inter-

actions. For example, in polymer fluids, the presence of a long chain of molecules

changes the fluid dynamics. Keeping these things in mind, several new rheological

equations have been defined, incorporating the history of the fluids and are known to

describe linear viscoelastic fluids, or more precisely diluted polymeric solutions. One

such relation, describing a class of non-Newtonian fluids is given by [47, 87, 145](
1 +

L∑
l=1

λl
∂l

∂tl

)
σ = 2ν

(
1 +

M∑
m=1

κmν
−1 ∂

m

∂tm

)
D,

which represents linear viscoelastic fluids, namely, aqueous polymer solutions with

discrete modes of relaxation time {λl}, l = 1, 2, . . . , L and with retardation times

(delay times) {κmν−1}, m = 1, 2, . . . ,M .

In its simplistic version, that is, in the case of single-mode, the above equation

gives rise to three fluid models. For L = 1,M = 0, we recover the Maxwell fluid,

in which case, the stress does not vanish immediately; it decreases like e−λ
−1
1 t after

the termination of the motion (λ1 is called the relaxation time). Moreover, for L =

0,M = 1, we obtain the Kelvin-Voigt fluid. This type of fluid is characterized by an

exponential condensation of delay deformation with the rate e−κ
−1
1 νt after removal of

the stress (κ−1
1 ν is called the retardation time). When L = 1 and M = 1, the resulting

fluid is known as Oldroyd fluid which exhibits both the characteristics, that is, after

instantaneous cessation of motion, the stresses in the fluid do not vanish immediately,

but die out like e−λ
−1
1 t, and after instantaneous removal of stresses, the velocity of the

fluid does not vanish immediately, but dies out like e−κ
−1
1 νt.

In general, when M = L in the above rheological equation, we find a linear vis-

coelastic fluid model that is called the Oldroyd model of order L. For L = 1, it is called
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the Oldroyd model of order one. This model was first proposed and developed by Ol-

droyd (see [106]) in the mid-twentieth century. It is based on the following defining

rheological equation (M = L = 1)(
1 + λ

∂

∂t

)
σ = 2ν

(
1 + κν−1 ∂

∂t

)
D, (1.2)

where ν > 0 is the kinematic coefficient of viscosity, λ > 0 is the relaxation time and

κν−1 > 0 is the retardation time with ν − κλ−1 > 0. Model was later developed to

take into account a discretely distributed relaxation and retardation times and thus

developed it for various order with rheological equation(
1 +

L∑
l=1

λl
∂l

∂tl

)
σ = 2ν

(
1 +

L∑
l=1

κlν
−1 ∂

l

∂tl

)
D,

where L = 1, 2, 3, . . . . The analysis for the general case does not differ much to that

of the L = 1 case, and hence, we propose to analyse the model for order one (L = 1)

only.

As mentioned earlier, in this dissertation, we consider the Oldroyd model of order one,

that is, L = 1. From the rheological equation (1.2), one can find

σ = 2µD + 2

∫ t

0

β(t− s)D(s)ds, (1.3)

where µ = κλ−1 > 0, the kernel β(t) = γ exp(−δt), γ = λ−1(ν−κλ−1) > 0, δ = λ−1 >

0, and ν > 0 is the kinematic coefficient of viscosity, λ > 0 is the relaxation time

and κ > 0 is the retardation time. Combining (1.1) and (1.3), we find the following

equation of motion arising for the Oldroyd model of order one as:

∂u

∂t
− µ∆u + u · ∇u−

∫ t

0

β(t− s)∆u(s) ds+∇p = f , in Ω, t > 0 (1.4)

with incompressibility condition

∇ · u = 0, on Ω, t > 0, (1.5)

and initial and boundary conditions

u(x, 0) = u0 in Ω, u = 0, on ∂Ω, t ≥ 0. (1.6)

Here, Ω is a bounded domain in R2 with boundary ∂Ω. Unknowns u and p represent

the velocity and the pressure of the fluid, respectively. Further, the forcing term f and
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initial velocity u0 are given functions in their respective domains of definition. For

more details on the model, we refer to [87, 106].

We would like to end this section by reminding ourselves that the Oldroyd model

of order one was conceived and studied as a regularized model of NSEs and is an

integral perturbation of NSEs where the integral term takes into account the memory

effects of the viscoelastic fluid. When the parameter γ = 0, the system reduces to the

well-known Navier-Stokes flows and as such numerical schemes and related results for

both the models should be comparable. This motivates us to work on the Oldroyd

model whenever satisfactory results are available for the NSEs and motivate us further

if none exists for either of the model.

There are practical motivations, the model being a linear viscoelastic fluid flow

model. However as a system of differential equations, it comes with own set of prob-

lems. Problem (1.4)-(1.6) represents a system of nonlinear partial differential equa-

tions which are always difficult to solve. In general, nonlinearity is handled by means

of successive approximation like Newton’s iterative method which work very well un-

der restrictive environment; however many a times, they are not suitable for complex

problems, since they are time consuming and hence computationally inefficient. Also

the problem (1.4)-(1.6) is a coupled one; there is coupling of the velocity and the pres-

sure by the incompressibility condition div u = 0 along with the momentum equation.

This forces us to employ the mixed finite element methods imposing restrictions on

the finite element spaces. The finite dimensional spaces that approximate velocity and

pressure, need to satisfy the discrete inf-sup (LBB) condition. In general, the equal

order (like (P1, P1)) or lower order (like (P1, P0)) finite element spaces do not satisfy

the discrete inf-sup condition. Hence we can not use these conforming spaces for stable

numerical approximation although being lower order they are easy to implement and

cost effective. Another difficulty arises when the co-efficient of viscosity, in our case,

value of µ, becomes very small. The difficulty is due to the domination of the nonlinear

convection term on the viscous term, which typically arises for small values of µ, and

this plays a very important role in modelling turbulence.

Based on the difficulties identified above, in this thesis, we have analyzed our prob-

lem, the Oldroyd model of order one (1.4)-(1.6), with the help of various appropriate
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finite element methods, such as, two-grid method, penalty method, grad-div stabi-

lization and nonconforming FEM. We have also performed numerical experiments to

corroborate our theoretical findings.

Since for numerical computations, it is essential to study the time discretization

schemes, we begin our study by analysing a first-order backward Euler method, an

implicit but unconditionally stable scheme.

In our next section, we familiarize ourselves with the notations and preliminaries

essential for our analysis.

1.2 Notations and Preliminaries

We begin this section by introducing the standard functional spaces and then the

standard inequalities and a couple of versions of Gronwall’s lemma, each of which

appears very frequently in our analysis. We also briefly look at the variational/weak

formulations of the continuous, semidiscrete and the fully discrete case and present

the related notations, assumptions and results as we go along.

Let Ω ∈ R2 be a bounded and convex polygonal domain with boundary ∂Ω. For 1 ≤

p < ∞, Lp(Ω) denote the linear space of equivalence classes of measurable functions

φ on Ω such that
∫

Ω
|φ(x)|pdx <∞ and associated norm define as

‖φ‖Lp(Ω) =

(∫
Ω

|φ(x)|pdx
)1/p

.

For p =∞, L∞(Ω) consists of measurable functions φ such that ess supx∈Ω |φ(x)| <∞

and associated norm define as

‖φ‖L∞(Ω) = ess sup
x∈Ω

|φ(x)|.

Note that for p = 2, L2(Ω) is a Hilbert space. Our analysis relies on this space and its

closed subspaces and on the following quotient space (and its subspace)

L2(Ω)/R = {φ ∈ L2(Ω) :

∫
Ω

φ(x) dx = 0}.

For m, a non-negative integer and p such that 1 ≤ p ≤ ∞, the Sobolev space of order

(m, p) on Ω, denoted by Wm,p(Ω), is defined as a linear space of functions in Lp(Ω)

whose distributional derivatives of order ≤ m are also in Lp(Ω), that is,

Wm,p(Ω) :=
{
φ ∈ Lp(Ω) : Dαφ ∈ Lp(Ω), 0 ≤ |α| ≤ m

}
,
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where α = (α1, α2) is a 2-tuple with non-negative integer components and its order is

defined by |α| = α1 + α2. Dαφ is the α-th derivative of φ(x) with x = (x1, x2) defined

by

Dαφ =
D|α|φ

∂xα1
1 ∂x

α2
2

.

The associated norm of the space Wm,p(Ω) is defined for 1 ≤ p <∞ as

‖φ‖m,p =

( ∑
0≤|α|≤m

∫
Ω

|Dαφ(x)|pdx
)1/p

=

( ∑
0≤|α|≤m

‖Dαφ‖pLp(Ω)

)1/p

.

When p =∞, the norm on space Wm,∞(Ω) is defined as

‖φ‖m,∞ = max
0≤|α|≤m

‖Dαφ‖L∞(Ω).

For p = 2, Wm,2(Ω) will be a Hilbert space and denoted by Hm(Ω) and its associated

norm is denoted by ‖ · ‖m,2 (for simplicity, we write ‖ · ‖m). The natural inner product

on the space Hm(Ω) is defined for all φ, ψ ∈ Hm(Ω) by

(φ, ψ) =
∑

0≤|α|≤m

∫
Ω

Dαφ(x)Dαψ(x) dx.

The closure of C∞c (Ω), the space of infinitely differentiable functions with compact

support, in Hm(Ω) is denoted by Hm
0 (Ω), that is, Hm

0 (Ω) is a subspace of Hm(Ω) with

elements vanishing on boundary in the sense of trace [3]. The dual space of Hm(Ω) is

defined as the completion of C∞(Ω̄) with respect to the norm

‖φ‖−m := sup

{
〈φ, ψ〉
‖ψ‖m

: ψ ∈ Hm(Ω), ‖ψ‖m 6= 0

}
,

and it is denoted by H−m(Ω).

For our subsequent analysis we denote the R2-valued function spaces by bold face

letters such as

Hm = [Hm(Ω)]2, H1
0 = [H1

0 (Ω)]2, and L2 = [L2(Ω)]2.

The norm on the space H1
0 is defined as

‖∇w‖ =

(
2∑

i,j=1

(∂jwi, ∂jwi)

)1/2

=

(
2∑
i=1

(∇wi,∇wi)

)1/2

.

Also for a given Banach space X with norm ‖ · ‖X , let Lp(0, T ;X) be a space of all

strongly measurable and p-th integrable X-valued functions ψ : [0, T ]→ X satisfying∫ T

0

‖ψ(t)‖pXdt <∞, 1 ≤ p <∞, and ess sup
t∈[0,T ]

‖ψ(t)‖X <∞, p =∞.
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The norms for these spaces are defined as

‖ψ‖Lp(0,T ;X) =


(∫ T

0
‖ψ(t)‖pXdt

)1/p

<∞, 1 ≤ p <∞,

ess supt∈[0,T ] ‖ψ(t)‖X <∞, p =∞.

There are other spaces that are useful for our analysis as well. For example, we consider

divergence free subspaces of usual solution spaces, since the fluid under consideration

is incompressible, that is, the velocity vector is divergence free. We note here that

the use of these spaces is limited to the analysis only and has not been considered

for numerical computations. We now introduce below, the divergence free function

spaces:

J = {v ∈ L2 : ∇ · v = 0 in Ω, v · n̂|∂Ω = 0 holds weakly},

J1 = {v ∈ H1
0 : ∇ · v = 0},

where n̂ is the outward normal vector to the boundary ∂Ω and v · n̂ = 0 should be

understood in the sense of trace in H−1/2(∂Ω) on the boundary ∂Ω, see [130]. Also

we use quotient spaces, since pressure is unique only up to a constant. Let Hm/R

be the quotient space consisting of equivalence classes of elements of Hm differing by

constants and the associated norm is defined by ‖ · ‖m/R = infc∈R ‖ ·+c‖m, see [81].

The underlying domain plays a crucial role, when we discuss about various spaces and

their properties, namely, the trace inequalities. Therefore it is important to have some

sort of smoothness of the domain. We make the following assumption on domain Ω:

(see [79] for details)

(A1) Let (v, q) ∈ J1 × L2(Ω)/R be the unique solution of the steady state Stokes

problem

−∆v +∇q = g, ∇ · v = 0 in Ω and v = 0 on ∂Ω,

Then, for g ∈ L2(Ω), the following regularity result are valid

‖v‖2 + ‖q‖1/R ≤ C‖g‖.

Domains with C2 boundary and convex polygon in two dimension are known to satisfy

assumption (A1). This allows us the following norm inequalities:

‖w‖2 ≤ λ−1
1 ‖∇w‖2, ∀ w ∈ J1,

‖∇w‖2 ≤ λ−1
1 ‖∆̃w‖2, ∀ w ∈ J1 ∩H2

‖w‖2 ≤ C‖∆̃w‖, ∀ w ∈ J1 ∩H2,

 (1.7)
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where ∆̃ = P∆ : H2 ∩ J1 ⊂ J→ J is known as the Stokes operator, P an orthogonal

projection P : L2(Ω)→ J and λ1 is the least positive eigenvalue of the Stokes operator.

We next list down a few standard inequalities:

(i) Cauchy-Schwarz inequality: The following inequality holds for all a, b ≥ 0:

ab ≤ a2

2
+
b2

2
.

(ii) Young inequality: For all p, q > 1 with 1
p

+ 1
q

= 1 and for all a, b ≥ 0, ε > 0,

the following inequality holds:

ab ≤ εap

p
+

bq

qεq/p
.

(iii) Hölder’s inequality: For all p, q > 1 with 1
p

+ 1
q

= 1 and for φ ∈ Lp(Ω) and

ψ ∈ Lq(Ω), the following inequality holds:∫
Ω

φψ dx ≤ ‖φ‖p‖ψ‖q.

Next in our list is the standard Gronwall’s lemma. For a proof, we refer to [64].

Lemma 1.1 (Classical Gronwall’s lemma). Let g, h, y be three locally integrable non-

negative functions on the time interval [t0,∞) such that for all t ≥ t0 the following

holds
dy

dt
≤ gy + h,

where dy
dt

is locally integrable. Then,

y(t) ≤ y(t0) exp
(∫ t

t0

g(τ)dτ
)

+

(∫ t

t0

h(s) exp
(∫ t

s

g(τ)dτ
)
ds

)
.

However in our analysis, we often resort to a modified version which we present below.

For a proof, we refer to [59].

Lemma 1.2 (Gronwall’s Lemma). Let g, h, y be three locally integrable non-negative

functions on the time interval [t0,∞) such that for all t ≥ t0

y(t) +G(t) ≤ C +

∫ t

t0

h(s) ds+

∫ t

t0

g(s)y(s) ds,

where G(t) is a non-negative function on [t0,∞) and C ≥ 0 is a constant. Then,

y(t) +G(t) ≤
(
C +

∫ t

t0

h(s) exp
(
−
∫ s

t0

g(τ) dτ
)
ds
)

exp
(∫ t

t0

g(s) ds
)
.
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Armed with the requisite spaces, we now briefly look at the continuous case. It is cus-

tomary to study it in a weaker form and hence we first present the weak or variational

formulation of the system (1.4)-(1.6): Find u(t) ∈ H1
0 and p(t) ∈ L2/R such that for

t > 0

(ut,φ) + µa(u,φ) + b(u,u,φ) +

∫ t

0

β(t− s)a(u(s),φ)ds− (p,∇ · φ) = (f ,φ), (1.8)

for all φ ∈ H1
0 and (∇ · u, χ) = 0, ∀χ ∈ L2. If u ∈ J1, the equivalent formulation is

(ut,φ) + µa(u,φ) + b(u,u,φ) +

∫ t

0

β(t− s)a(u(s),φ)ds = (f ,φ), ∀φ ∈ J1. (1.9)

We have used above the bilinear form a(·, ·) and trilinear form b(·, ·, ·) which are defined

as follows: For all v,w,φ ∈ H1
0,

a(v,φ) = (∇v,∇φ), and b(v,w,φ) =
1

2
((v · ∇)w,φ)− 1

2
((v · ∇)φ,w). (1.10)

From the very definition of the trilinear form, we easily conclude that,

b(v,φ,φ) = 0 and b(v,w,φ) = −b(v,φ,w), ∀v,w,φ ∈ H1
0. (1.11)

And it is standard to bound the nonlinear term based on the following well-known

Sobolev inequalities, see [128, 131].

Lemma 1.3. For any open set Ω ∈ R2 and for v ∈ H1
0

‖v‖L4(Ω) ≤ 21/4‖v‖1/2‖∇v‖1/2.

Moreover, when Ω is bounded, then following estimates hold

‖v‖L∞(Ω) ≤ C

{
‖v‖1/2‖∆v‖1/2, v ∈ H2

‖v‖1/2‖∆̃v‖1/2, v ∈ J1 ∩H2.

With the help of Lemma 1.3, one can easily obtain the estimates of the nonlinear

operator b(·, ·, ·), see [80].

Lemma 1.4. For any open and bounded set Ω ⊂ R2, there exists a constant C > 0

such that for v,w,φ ∈ J1 ∩H2, the followings hold:

|(v · ∇w,φ)| ≤ C



‖v‖ 1
2‖∇v‖ 1

2‖∇w‖ 1
2‖∆̃w‖ 1

2‖φ‖,
‖v‖ 1

2‖∆̃v‖ 1
2‖∇w‖‖φ‖,

‖v‖ 1
2‖∇v‖ 1

2‖∇w‖‖φ‖ 1
2‖∇φ‖ 1

2 ,

‖v‖‖∇w‖‖φ‖ 1
2‖∆̃φ‖ 1

2 ,

‖v‖‖∇w‖ 1
2‖∆̃w‖ 1

2‖φ‖ 1
2‖∇φ‖ 1

2 .
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In our integro-parabolic system, the kernel β enjoys a positivity property which is

crucial for the well-poseness of the problem as well as in the error analysis. We present

below the positivity property, for a proof of which, we refer to [102].

Lemma 1.5. For any α > 0 and ψ ∈ L2(0, t), the following positive definite property

holds for any t > 0 ∫ t

0

(∫ s

0

e−α(s−τ)ψ(τ)dτ
)
ψ(s)ds ≥ 0.

We next consider the assumption on given data u0 and f :

(A2). For a constant M0 > 0, the initial velocity u0 and the external force f satisfy,

u0 ∈ J1 with ‖u0‖1 ≤M0, and f , ft ∈ L∞([0,∞]; L2) with sup
t>0

{
‖f‖, ‖ft‖

}
≤M0.

Under the assumptions of (A1) and (A2), we can show the well-posedness of the both

weak and regular solution. For a proof, we refer to [59, 63].

The problem (1.4)-(1.6) is posed in an infinite dimensional function space and in

finite element methods, we attempt a finite dimensional problem. This is achieved

by discretizing the domain Ω into finitely many elements and then considering finite

dimensional finite element spaces, where the problem is solved. When only space is

discretized, time remaining continuous, we call it the semidiscrete case.

Let Th = {K} be a finite decomposition of mesh size h with 0 < h < 1, of the

polygonal domain Ω̄ into closed subsets K, triangles or quadrilaterals. The decomposi-

tion Th is assumed to be “face to face” and to satisfy a “uniform size” condition: “Any

two elements of Th meet only in entire common sides or in vertices. Each element of

Th contains a circle of radius κ1h and it is contained in a circle of radius κ2h, these

constant κ1, κ2 being independent of h.”

We now define finite element spaces Hh and Lh that approximate the velocity space

H1
0 and the pressure space L2, respectively, as follows:

Hh = {vh ∈ (C0(Ω̄))2 ∩H1
0 : vh|K ∈ P (K), for every K ∈ Th},

Lh = {qh ∈ C0(Ω̄) : qh|K ∈ Q(K), for every K ∈ Th},

where P (K) and Q(K) are the polynomial spaces. It is noted that Hh and Lh are the

subspaces of H1
0 and L2, respectively.

Assume the following approximation properties for the discrete spaces Hh and Lh:

(B1) For each φ ∈ H1
0 ∩H2 and ψ ∈ H1/R there exist approximations ihφ ∈ Hh and
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jhψ ∈ Lh such that

‖φ− ihφ‖+ h‖∇(φ− ihφ)‖ ≤ Ch2‖φ‖2, ‖ψ − jhψ‖L2/R ≤ Ch‖ψ‖1/R.

Further, we will assume that the following inverse hypothesis holds for vh ∈ Hh, see

[35, Theorem 3.2.6]

‖vh‖Wm,p(K)d ≤ Chn−m−d( 1
q
− 1
p

)‖vh‖Wn,q(K)d , (1.12)

where 0 ≤ n ≤ m < ∞, 1 ≤ q ≤ p ≤ ∞, h be the diameter of the mesh cell

K ∈ Th and ‖ · ‖Wm,p(K)d is the norm in Sobolev space Wm,p(K)d. In particular, for

m = 1, n = 0, p = q = 2 the above inequality reads as for vh ∈ Hh:

‖∇vh‖ ≤ Ch−1‖vh‖.

We now consider the discrete variational formulation of the problem (1.4)-(1.6) as

follows: Find (uh(t), ph(t)) ∈ Hh × Lh such that for t > 0

(uht,φh) + µa(uh,φh) + b(uh,uh,φh) +

∫ t

0

β(t− s)a(uh(s),φh)ds

− (ph,∇ · φh) = (f ,φh), (1.13)

for all φh ∈ Hh and (∇ · uh, χh) = 0, ∀χ ∈ Lh, with uh(0) = u0h where u0h ∈ Hh is a

suitable approximation of u0 ∈ J1.

In order to consider a discrete space analogous to J1, we define a discrete divergence

free space Jh ⊂ Hh as

Jh := {wh ∈ Hh : (χh,∇ ·wh) = 0, ∀χh ∈ Lh}.

Note that Jh is not a subspace of J1. We now introduce an equivalent Galerkin

formulation in the space Jh as: Find uh(t) ∈ Jh such that for t > 0

(uht,φh) + µa(uh,φh) + b(uh,uh,φh) +

∫ t

0

β(t− s)a(uh(s),φh)ds = (f ,φh), (1.14)

for all φh ∈ Jh with uh(0) = u0h. Since Jh is finite dimensional, the problem (1.14)

leads to a system of nonlinear integro-differential equations. Using Picard’s theorem

with the continuity argument, we ensure the global existence and uniqueness of the

discrete velocity uh of (1.14), (see [116]). The discrete pressure ph ∈ Lh is unique in

the quotient space Lh/Nh where

Nh = {qh ∈ Lh : (qh,∇ · φh) = 0, ∀φh ∈ Hh}.
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The norm on Lh/Nh is given by

‖qh‖L2/Nh = inf
χh∈Nh

‖qh + χh‖.

Since the discrete pressure ph(t) ∈ Lh/Nh depends on the discrete velocity uh(t) ∈ Jh,

so we assume the following discrete inf-sup (LBB) condition for the discrete spaces Hh

and Lh:

(B2′) For each qh ∈ Lh, there is a φh ∈ Hh such that the following holds

|(qh,∇ · φh)| ≥ C‖∇φh‖‖qh‖L2/Nh .

We also assume the following approximation property:

(B2) For every φ ∈ J1 ∩H2, there exists an approximation rhφ ∈ Jh such that

‖φ− rhφ‖+ h‖∇(φ− rhφ)‖ ≤ Ch2‖φ‖2.

As stated in [79]: This is a less restrictive condition than (B2′) and it has been used

to derive the following properties of the L2 projection Ph : L2 7→ Jh.

‖φ− Phφ‖+ h‖∇(φ− Phφ)‖ ≤ Ch2‖∆̃φ‖, for φ ∈ J1 ∩H2. (1.15)

Apart from these standard approximation properties, we also consider the interpolation

properties for the Lagrange interpolant Ihφ ∈ Hh satisfying the following bounds (see

[19, Theorem 4.4.4]), for φ ∈ W n,p(K),

‖φ− Ihφ‖Wm,p(K) ≤ Chn−m‖φ‖Wn,p(K), 0 ≤ m ≤ n,

where n > 2
p

when 1 < p ≤ ∞ and n ≥ 2 when p = 1.

Examples of subspaces Hh and Lh satisfying assumptions (B1), (B2) and (B2′) are

abundant in the literature. We mention a few below. The first one is the Taylor-Hood

element [15]:

Hh = {vh ∈ (C0(Ω̄))2 ∩H1
0 : vh|K ∈ (Pk+1(K))2, for every K ∈ Th},

Lh = {qh ∈ C0(Ω̄) : qh|K ∈ Pk(K), for every K ∈ Th},

where k ≥ 1 and Pr represents the space of polynomials of degree less than or equal

to r over the element K. And the second one is the MINI element [6]:

Hh = {vh ∈ (C0(Ω̄))2 ∩H1
0 : vh|K ∈ (P1b(K))2, for every K ∈ Th},
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Lh = {qh ∈ C0(Ω̄) : qh|K ∈ P1(K), for every K ∈ Th},

where P1b = P1⊕b, b stands for cubic bubble functions. Third one is due to Bercovier-

Pironneau [9]:

Hh = {vh ∈ (C0(Ω̄))2 ∩H1
0 : vh|K ∈ (P1(K))2, for every K ∈ Th/2},

Lh = {qh ∈ C0(Ω̄) : qh|K ∈ P1(K), for every K ∈ Th},

where Th/2 is obtained by dividing each triangle of Th into four triangles. Since we

carry out our (semi/fully)-discrete analysis in Jh whenever possible, it is fruitful to

talk about the discrete Stokes operator, based on the discrete version of the Laplace

operator ∆h : Hh 7→ Hh which is the bilinear form

a(wh,φh) = (−∆hwh,φ), ∀wh,φh ∈ Hh.

Analogous to the Stokes operator ∆̃ = P∆ where P is the L2 projection onto J , the

discrete version is defined as ∆̃h = Ph∆h where Ph is the L2 projection onto Jh. The

restriction of ∆̃h to Jh is invertible and we denote the inverse by ∆̃−1
h . Since −∆̃h is

self-adjoint and positive definite, we define discrete Sobolev norms on Jh as follows:

‖vh‖r = ‖(−∆̃h)
r/2vh‖, vh ∈ Jh, r ∈ R.

We note that in particular ‖vh‖0 = ‖vh‖ and ‖vh‖1 = ‖∇vh‖ for vh ∈ Jh, and ‖ · ‖2

and ‖∆̃h · ‖ are equivalent norms on Jh. For further detail, we refer to [79, 80].

Remark 1.1. To avoid confusion as to whether ‖ · ‖1 means standard or discrete

Sobolev norm, we follow the convention that if v belongs to Jh then ‖v‖1 represents v

in discrete Sobolev norm, otherwise it is the standard Sobolev norm.

The semidiscrete formulation(s) mentioned above are still continuous in time and in

a fully discrete scheme, we further discretize (it) in the temporal direction. For time

discretization, we consider the first-order implicit backward Euler method. Assuming

[0, T ] to be the time interval, we proceed as follows: Let k = T
N
> 0 be the time step

with tn = nk, n ≥ 0 representing the n-th time step. Here N is a positive integer. We

next define for a sequence {φn}n≥0 the backward difference quotient

∂tφ
n =

1

k
(φn − φn−1), n > 0.
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We write any continuous function φ(tn) as φn. And we approximate the integral term

in (1.14) by the right rectangle rule (since backward Euler method is of first-order in

time) with the notation βnj = β(tn − tj):

qnr (φ) = k
n∑
j=1

βnjφ
j ≈

∫ tn

0

β(tn − s)φ(s) ds.

Now, the fully discrete scheme based on backward Euler method for the semidiscrete

Oldroyd problem (1.13) reads as follows: Find {Un}1≤n≤N ∈ Hh and {P n}1≤n≤N ∈ Lh
as solutions of the recursive nonlinear algebraic equations (1 ≤ n ≤ N):

(∂tU
n,φh) + µa(Un,φh) + a(qnr (U),φh) = (P n,∇ · φh)

+ (fn,φh)− b(Un,Un,φh), ∀ φh ∈ Hh,

(∇ ·Un, χh) = 0, ∀ χh ∈ Lh, n ≥ 0.

 (1.16)

We choose U0 = uh(0). Equivalently, for φh ∈ Jh we seek {Un}1≤n≤N ∈ Jh such that

(∂tU
n,φh)+µa(Un,φh)+a(qnr (U),φh) = (fn,φh)−b(Un,Un,φh), ∀φh ∈ Jh. (1.17)

Here again, we choose U0 = uh(0) ∈ Jh. Now using variant of the Brouwer fixed point

theorem and standard uniqueness argument, one can show that the discrete problem

(1.17) is well-posed. For a proof, we refer to [59].

And in the fully discrete case, as mentioned earlier, we have used right rectangle rule

in (1.16) to approximate the integral term, and it is positive in the following sense:

k

n∑
i=1

qir(φ)φi = k2

n∑
i=1

i∑
j=1

βijφ
jφi ≥ 0, φ = (φ0, · · · , φN)T , (1.18)

where βnj = β(ti − tj) = e−δ(ti−tj). For details, see [102].

The error incurred due to right rectangle rule in approximating the integral term

is given by

εnr (φ) =

∫ tn

0

β(tn − τ)φ(τ) dτ − k
n∑
j=1

βnjφ
j

= −
n∑
j=1

∫ tj

tj−1

(τ − tj−1)
∂

∂τ
(β(tn − τ)φ(τ)) dτ

≤ k
n∑
j=1

∫ tj

tj−1

∣∣∣ ∂
∂τ

(β(tn − τ)φ(τ))
∣∣∣ dτ. (1.19)
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Due to the presence of the summation term, we often need to resort to summation by

part formula, a discrete version of integration by parts. For sequences {ai} and {bi} of

real numbers, the following summation by parts holds

k
i∑

j=1

ajbj = aib̂i − k
i−1∑
j=1

(∂taj+1)̂bj, where b̂i = k

i∑
j=1

bj. (1.20)

Here, we observe that for sequences {ai} and {bi} of real numbers,

σi(ai, ∂tbi) = ∂t(σi(ai, bi))− σi(∂tai, bi)− (∂tσi)(ai, bi), (1.21)

where, σn = e2αtnτ ∗(tn) and τ ∗(tn) = min{1, tn}.

We next present below the discrete version of Schwarz’s inequality, which will be used

in our later analysis.

Cauchy inequality: For a finite pair of positive real numbers {φj, ψj}j=1,2,...,n, the

following holds
n∑
j=1

φjψj ≤
( n∑
j=1

φ2
j

)1/2( n∑
j=1

ψ2
j

)1/2

.

We consider the following version of discrete Gronwall’s Lemma. The proof can be

found in [75, 113].

Lemma 1.6. Let {an} and {dn} be finite sequences of nonnegative real numbers and

{bn} be a nondecreasing real finite sequence satisfying

an ≤ bn +
n−1∑
i=0

diai, ∀n ≥ 0,

Then,

an ≤ bn exp
( n−1∑
i=0

di

)
, ∀n ≥ 0.

But for our subsequent analysis, we use more general version of the discrete Gronwall’s

Lemma, which is simply a reproduction of Lemma 5.1 from [80].

Lemma 1.7. Let k,B and {ai, bi, ci, di}i∈N be non-negative numbers such that

an + k
n∑
i=1

bi ≤ B + k
n∑
i=1

ci + k
m∑
i=1

diai, n ≥ 1, (1.22)

for m = n or n− 1. Then,

an + k

n∑
i=1

bi ≤
{
B + k

n∑
i=1

ci

}
exp
(
k

m∑
i=1

γidi

)
, (1.23)

where γi = 1 when m = n− 1 and γi = (1− kdi)−1, kdi < 1 when m = n.
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Remark 1.2. We note here that for m = n case, (1.23) is valid only when kdi < 1,

for all i, and that put sever restriction on the time step k. However for m = n−1 case,

no such restriction is applicable, and hence we would use this version of the discrete

Gronwall’s lemma wherever possible.

We next state the discrete analogue of the L’Hospital rule, which will be useful in

analysing the discrete case in Chapter 4. For a proof, see [104, pp. 85-87].

Theorem 1.1. (Stolz-Cesaro Theorem) Let {φn}∞n=0 be a sequence of real numbers.

Further, let {ψn}∞n=0 be a strictly monotone and divergent sequence. If

lim
n→∞

(
φn − φn−1

ψn − ψn−1

)
= l,

then the following holds:

lim
n→∞

(
φn

ψn

)
= l.

Some Useful Results

Since the Oldroyd model of order one has been studied in details both in continuous

and semidiscrete cases, several useful results are available pertaining to those. We

recollect a few of them, which are recorded in [59, 63], and which will be used in our

subsequent chapters. We begin by presenting a priori and regularity estimates of the

continuous solution (u, p).

Lemma 1.8. Let the assumptions (A1) and (A2) hold. Then, for any time T with

0 ≤ T <∞ and for some α > 0 satisfying 0 < α < min{δ, µλ1}, there exists a positive

constant C such that the solution (u, p) of (1.8) satisfies,

‖u(t)‖2
r + e−2αt

∫ t

0

e2αs(‖u(s)‖2
r+1 + ‖p(s)‖2

1/R)ds ≤ C, r ∈ {0, 1}

(τ ∗)1/2(t){‖u(t)‖2 + ‖ut(t)‖+ ‖p(t)‖1/R} ≤ C,

(τ ∗(t))r+1‖ut(t)‖2
r + e−2αt

∫ t

0

e2αs(τ ∗(s))r‖us(s)‖2
rds ≤ C, r ∈ {0, 1, 2}

e−2αt

∫ t

0

e2αs((τ ∗(s))r+1‖uss(s)‖2
r−1 + (τ ∗(s))2‖ps(s)‖2

1/R)ds ≤ C, r ∈ {−1, 0, 1}.

where, τ ∗(t) = min{1, t} and C depends only on given data and not on time.

Next on the list is the a priori and regularity estimates of the semidiscrete solution.
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Lemma 1.9. Let the assumptions of Lemma 1.8 hold. Then, there exists a positive

constant C such that the semidiscrete solution (uh, ph) of (1.13) satisfies,

‖uh(t)‖2
r + e−2αt

∫ t

0

e2αs(‖uh(s)‖2
r+1 + ‖ph(s)‖2

H1/Nh
)ds ≤ C, r ∈ {0, 1},

(τ ∗)1/2(t){‖uh(t)‖2 + ‖uht(t)‖+ ‖ph(t)‖1/Nh} ≤ C,

(τ ∗(t))r+1‖uht(t)‖2
r + e−2αt

∫ t

0

e2αs(τ ∗(s))r‖uhs(s)‖2
rds ≤ C, r ∈ {0, 1, 2},

where, τ ∗(t) = min{1, t} and C depends only on given data and not on time.

And finally the optimal error estimates due to the space discretization.

Theorem 1.2. Let Ω be a convex polygon and let the conditions (A1)-(A2) and (B1)-

(B2) be satisfied. Further, let the discrete initial velocity u0h ∈ Jh with u0h = Phu0,

where u0 ∈ J1. Then, there exists a positive constant K such that for 0 < T < +∞

with t ∈ (0, T ]

‖(u− uh)(t)‖+ h‖∇(u− uh)(t)‖+ h‖(p− ph)(t)‖ ≤ KeKth2t−1/2.

Moreover under the assumption of the uniqueness condition, that is,

N

ν2
‖f‖∞ < 1 and N = sup

u,v,w∈H1
0(Ω)

b(u,v,w)

‖∇u‖‖∇v‖‖∇w‖
, (1.24)

where ν = µ+ γ
δ

and ‖f‖∞ := ‖f‖L∞(R+;L2(Ω)), we have the following uniform estimate:

‖(u− uh)(t)‖+ h‖∇(u− uh)(t)‖+ h‖(p− ph)(t)‖ ≤ Kh2t−1/2.

1.3 A Brief Literature Review

This section presents a brief survey of the literature concerning the equation of motion

arising in Oldroyd model of order one and a few finite element methods, which will be

analyzed in the later chapters of this thesis.

The Oldroyd model of order one has been studied for more than three decades now;

early work on the Oldroyd model can be traced back to Oskolkov, Kot-siolis, Karzeeva,

Sobolevski (for details, see [59, 63] and references therein) who studied well-posedness

of the problem, asymptotic analysis and dynamical system (or long time solution

behavior) following the works of Ladyzhenskaya [90] on NSEs. After a decade, Pani

et. al. [116], have obtained a few new a priori estimates and have analyzed the long
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time behavior of the exact solution for realistically assumed data, that is, the initial

data u0 ∈ H1
0 ∩H2 (we call it as smooth initial data) and for forcing term f = 0. This

work has been extended in [59, 63] for non-zero-forcing term f independent of time or

in L∞, and for realistically assumed less regular given data, that is, the initial data

u0 ∈ H1
0 and not in H2 (we call it as nonsmooth initial data).

The semidiscrete finite element approximation has first been studied by Canon

et. al. [25] in the context of a modified nonlinear Galerkin method. However, He et

al. [76] have studied the finite element formulation and have obtained optimal error

estimate for the velocity in H1-norm and the pressure in L2-norm. The work has been

continued by Pani et al. [116], obtaining optimal error bounds for the velocity in L2

as well as H1-norm and the pressure in L2-norm, for the zero-forcing term and smooth

initial data. The estimates obtained there are valid uniformly in time t > 0 under

the uniqueness condition. In further continuation to this, in [63], optimal semidiscrete

error estimates have been derived for the non-zero forcing term and nonsmooth initial

data.

In [63], the model has been thoroughly investigated in both continuous and semidis-

crete setups. A step-by-step proof of the energy norm estimate, which is crucial for

the existence of a weak solution, has been established. New regularity results for the

solution have been obtained, which conclude the behaviour of the solution as t → 0

and as t→∞. Optimal error estimates for the velocity in L2 and H1-norms and the

pressure in L2-norm have been proved and uniform in time bounds have been shown

under uniqueness conditions.

In the phd dissertation [59], a complete analysis for the Oldroyd model of order one

in the continuous and semidiscrete cases can be found for the forcing term f ∈ L∞(L2)

and for nonsmooth initial data. Apart from incorporating the work of [63], the author

has made an attempt to study the fully discrete schemes using the first-order backward

Euler method and second order Crank-Nicolson scheme in the temporal direction. The

analysis has been carried out for both smooth and nonsmooth initial data in the case

of the backward Euler method and only for smooth initial data in the case of the

Crank-Nicolson scheme. Finally, the penalty method has been applied to the model.

It has been shown there the penalty solution goes to the original solution as the penalty

parameter goes to zero. A semidiscrete finite element approximation of the penalized
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model has been analyzed, and error estimates have been derived. However, the error

bounds were dependent on the inverse power of the penalty parameter; a long standing

problem which was not resolved.

Our work here can be viewed as a continuation of these earlier works. We discuss

below the literature of finite element methods that we have analysed in this thesis.

Since each of these methods is validated by means of numerical computations, we do

consider fully discrete versions by employing a first-order time discretization scheme

for each case. Therefore, it is imperative that we first analyse a fully discrete scheme

for the standard Galerkin finite element.

1.3.1 Backward Euler Method

As mention earlier, in fully discrete scheme, we discretize both space and time vari-

ables. We employ a first-order finite difference scheme for temporal discretization to

approximate the time derivative and an appropriate quadrature rule to approximate

the integral term. Literature for the fully discrete approximation to the Oldroyd model

of order one (1.4)-(1.6) is limited. In [5], Akhmatov and Oskolkov have discussed sta-

ble and convergent finite difference schemes for the problem (1.4)-(1.6). On the other

hand, Pani et al., in [117], have considered a linearized backward Euler method to dis-

cretize in the temporal direction only, keeping spatial direction continuous and have

used semi-group theoretic approach to establish a priori error estimates. The following

time discrete error bounds are proved in [117] for 0 < α < min{δ, λ1},

‖u(tn)−Un‖ ≤ Ce−αtnk, ‖u(tn)−Un‖1 ≤ Ce−αtnk(t−1/2
n + log

1

k
),

for smooth initial data, i.e., u0 ∈ H2 ∩H1
0 and for zero forcing term (f ≡ 0). Here k

is the uniform time-step size, tn = nk is the n-th time level and tN = Nk is the final

time, Un is the approximation of semidiscrete solution uh at t = tn and fully discrete

approximation of u at t = tn and λ1 is the smallest positive eigenvalue of the Stokes

operator.

In [137], Wang et al. have extended this work for non-zero forcing function. They

have used energy arguments, along with uniqueness condition to obtain for fully dis-

crete solution Un, the following uniform error estimates

‖u(tn)−Un‖ ≤ C(h2 + k), (τ ∗)1/2‖u(tn)−Un‖1 ≤ C(h+ k),
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where τ ∗(tn) = min{1, tn} and again for smooth data.

There are few related works in the literature based on the time-discrete scheme for

the Oldroyd model of order one. For example, in [141], long-time numerical stability

has been studied, where the Euler semi-implicit scheme is used. Global H2-stability of

the discrete solution and discrete asymptotic behavior has been discussed. In [69, 70],

Guo et al. have worked with a second-order time discretization scheme based on Crank-

Nicolson/Adams-Bashforth as part of the fully discrete analysis and have derived op-

timal error estimates under smooth initial data. In the works of [71, 150], we see

first and second-order time-discrete schemes (implicit, semi-implicit, implicit/explicit,

and explicit schemes) and stability analysis of fully discrete solutions. A fully discrete

fractional step method has been applied in [153] where the stability analysis of the

fully discrete solutions and optimal error estimates for the velocity and the pressure is

derived. In [99], a fully discrete finite element approximation has been analyzed where

the space is discretized based on the conforming finite element method and the time is

discretized based on Euler incremental projection scheme. Unconditional stability and

error estimates for velocity and pressure have been derived for smooth initial data.

We only examine the backward Euler method for less regularity on the initial

velocity in the present work and reserve second-order and explicit/implicit schemes

for future. Similar works can be seen in [59, 60]. We observe in [59, Chapter 4] that

the author has applied backward Euler method and has obtained optimal L2 error for

the velocity for nonsmooth initial data

‖uh(tn)−Un‖ ≤ CeCtnt−1/2
n k

(
1 + log

1

k

)3/4
, 1 ≤ n ≤ N < +∞,

which is local in nature (that is, the estimates are valid only for a finite time). An

improved result and uniform in time estimate have been seen in an unpublished work

[60]. However, there are a few crucial technical mistakes in some of the proofs which

render the results invalid. Also additional assumptions on time step (for example,

Lemma 4.1, 4.2, 4.3, 5.1 and so on) make the results very restrictive and less usable.

Hence we have revisited the backward Euler method very carefully and prove the

following (see, Remark 2.11), when u0 ∈ H1
0 :

‖uh(tn)−Un‖ ≤ CeCtnkt−1/2
n , 1 ≤ n ≤ N < +∞,

where the error bound constant depends only on the given data and, in particular, is
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independent of both h and k. However, it grows exponentially with time and therefore,

the above error estimate is local (in time). Under uniqueness condition, we have shown

the error to be uniformly bounded as t→ +∞, see Chapter 2. Unlike [59, 60], we have

given considerable importance to the numerical experiments and validation. Firstly,

we have verified the rates of convergence in both space and time variables with smooth

as well as nonsmooth initial data. Then we have shown the uniform in time bounds

by taking few numerical examples. This work has been published [13].

1.3.2 Two-grid Method

The two-grid method is a highly efficient, accurate, and well-established method for

solving nonlinear problems. The idea of the two-grid/multi-grid method was initially

introduced by Fedorenko [48, 49] for constructing a fast iterative solver for solving

an elliptic problem. This work has been extended for a general elliptic problem with

variable coefficient by Bakhvalov [8], and in [17], Brandt has shown the computational

ability of the method mentioned above. These results lead to mass acceptance of the

method and a vast amount of followed. However recent works on two-grid/multi-grid

method have been motivated by Xu for the linear and nonlinear elliptic problems [see,

J.Xu, Two grid finite element discretizations for linear and nonlinear elliptic equations,

Tech. Report, AM105, Dept. of Mathematics, Pennsylvania State University, Univer-

sity Park, July, 1992] that involves two grids of different sizes for solving the problems.

It is observed that even for a very coarse mesh, one Newton iteration on a fine mesh

with coarse mesh solution as an initial guess is rather an optimal approximation. This

idea is subsequently extended to semi-linear/nonlinear elliptic equations [147, 148] and

steady-state NSE by Layton et al. [91, 92].

The main idea of the two-grid method is to solve a nonlinear problem over a coarse

mesh and then to use the coarse mesh solution to solve an associated linear problem

over a fine mesh, thereby making the scheme computationally efficient. The method

and the efficiency may vary with the linearized problem that we solve on the fine mesh.

For example, Layton et al. [91, 92] have considered different algorithms for linearizing

the NSE; linearizing based on the discrete Stokes problem or discrete steady Oseen

problem or one step Newton method. The key feature of this method is that it can

reduce the complexity of the original problem and save computational time.
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To our knowledge, two-grid method has been applied to our problem only in [60].

The analysis has been carried out for less regular initial data, and the optimal H1

error for velocity and L2 error for the pressure of order O(H2t−1) has been obtained.

However, the L2 error estimate is sub-optimal, which is a drawback of the method

applied there. In the framework of NSE also, this has been observed, see [40, Remark

2].

Literature of two-grid/multi-grid method is abundant in the case of NSEs. For

example, Girault et al. [55] in their work on steady-state NSEs have obtained the error

estimate, and these works have been extended for transient NSE in [56]. In [1], Abboud

et al. have further extended this analysis to the fully discrete case, and in [2] the

second-order Hood-Taylor finite element has been used for the spatial discretization.

In [40], a two-grid method for the transient Navier-Stokes equations has been stud-

ied, employing three mixed-finite elements of first, second, and third-order, namely,

the mini-element, the quadratic, and cubic Hood-Taylor elements , and two time dis-

cretization schemes, namely, the first-order backward Euler method and the second-

order backward difference method. The rate of convergence in H1-norm is recovered

by taking h = H2 which is an improvement over the result with h = H3/2 obtained in

[55]. In addition, they have considered “the lack of regularity of the solution” at the

initial time and have assumed u0 to be in H1
0∩H2. We note here that demanding fur-

ther regularity requires the data to satisfy nonlocal compatibility conditions unlikely

to be fulfilled in practical situations [79]. The regularity has been further reduced in

an article by Goswami et al. [62] where a two-grid method for Navier-Stokes equa-

tions has been considered but only for linear approximation. There u0 ∈ H1
0 has been

considered and no more, that is, ‖u‖2 ≈ O(t−1/2).

As mentioned earlier, the only work in Oldroyd model [60] has a sub-optimal L2

error estimate for velocity. Our main objective of Chapter 3 is to remedy this. Also,

unlike [60], here we consider the fully discrete case using the backward Euler method

for time discretization. In this work, we are going to extend the algorithm which was

proposed earlier by Xu [147] for a nonlinear elliptic problem and adapted by Dai et.

al. [38] for steady-state NSE and Pani et. al. [7] for transient NSE. We want to note

here that our work here is quite close to the work in [7], for NSE. There, the authors

have obtained optimal error estimate in H1-norm in velocity and L2-norm in pressure
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with choice h = H4−`. Also they have obtained the L2 error estimate for velocity with

choice of h = H2−` for arbitrary small ` > 0. All these analyses have been done by

taking the initial velocity u0 in H1
0∩H2. In Chapter 3 of this thesis, we have obtained

optimal error bounds for the semidiscrete as well as fully discrete approximations for

nonsmooth initial data, that is, the initial velocity u0 in H1
0 not in H2. However, our

work differs in several instances. First of all, this is the first time that this method has

been applied to our model. The presence of the memory term along with the nonlinear

term demands new technique and more sophistication. Also, we consider nonsmooth

initial data, and this loss of regularity presents technical challenges, more notably in

the fully discrete case. Finally, we give some numerical examples to verify the rates of

convergence and time efficiency of our scheme. This work has been published [11].

1.3.3 Penalty Method

It is observed for a long time that the velocity u and the pressure p are coupled together

by the incompressibility condition div u = 0 in the problem (1.4)-(1.6). This makes

it difficult to solve the system numerically. A common way to handle this difficulty

is to address the incompressibility condition, in other words, to relax this condition

appropriately. The methods that come to our mind are the penalty method, the

artificial compressibility method, the pressure stabilized method, and the projection

method (see, for instance, Shen[125] and references, therein).

In Chapter 4 of this thesis, we will discuss the penalty method, which is the most

straightforward and most effective finite element implementation to handle the incom-

pressibility. This method is often employed in order to decouple the pressure equation

from the system of nonlinear algebraic equations in velocity, which is obtained from

finite element (or finite difference) discretizations.

The penalty approach was introduced by Courant [36] in the context of the calculus

of variations. This idea has been widely used in the different areas of computational

fluid dynamics (for instances, see [73, 74] and references therein). Besides the appli-

cations to constrained variational problems and variational inequalities, the penalty

method is now a useful tool for numerical computations in continuum fluid and solid

mechanics. Note that Temam, in the late 1960’s [128], has initiated its application

to Navier-Stokes equations. From that period, many works were devoted to studying
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the penalty method for the steady Stokes and Navier-Stokes equations and unsteady

Navier-Stokes equations. However, error estimates are not optimal for the penalized

(unsteady) Navier-Stokes equation for a long time. In 1995, Shen [125] has obtained

optimal error estimates for the penalized system and its time discretizations for the

unsteady Navier-Stokes, mainly of order O(ε) (where ε is the penalty parameter) for

both L∞(L2) and L∞(H1). Backward Euler method is also employed for the time

discretization of the penalized system, and optimal error estimates are obtained. In

2005, He et al. [73] extended Shen’s analysis to the finite element approximations to

the Navier-Stokes equations and the following error estimate has been derived for the

conforming fully discrete finite element method for all tn ∈ [0, T ], T > 0

τ(tn)‖u(tn)− unεh‖1 +
(
k

n∑
m=0

τ 2(tm)‖p(tm)− pnεh‖2
) 1

2 ≤ C(ε+ h+ k), (1.25)

where (u(tn), p(tn)) and (unεh, p
n
εh) are the solutions of the Navier-Stokes equation and

its fully discrete penalized system, respectively, C is a positive constant, h is the mesh

size, k is the time step, tn = nk, 0 ≤ n ≤ N = T/k, τ(tn) = min{tn, 1}. We would like

to note here that both the above mentioned works have been carried out for smooth

initial data, that is, uε0 ∈ H2 ∩H1
0.

For our problem (1.4)-(1.6), the literature is relatively limited. Only in the early

’90s, Kotsiolis and Oskolkov [89] and later Oskolkov [112] have studied the penalty

method for the Oldroyd model of order one and also of higher orders. In [89], the solv-

ability of the initial boundary value problem for the equations of slightly compressible

Jeffrey-Oldroyd model and penalized equations of Jeffrey-Oldroyd model for smooth

boundary and smooth initial data has been studied with the forcing term in L∞(L2).

We would like to observe here that the Jeffrey-Oldroyd model of order one turns out

to be our model (1.4)-(1.6). In [112], the authors have discussed the penalty method

for three different equations of viscoelastic media, namely, the Maxwell equations, the

Jeffrey-Oldroyd equations, and the Kelvin-Voight equations. Unlike in [89], here, the

constraint div u = 0 is penalized in a different manner, that is, adding the integral

term to the penalization. ε-dependent global classical solvability has been obtained for

all three models, with the forcing term in L∞(L2). Also, sub-optimal error estimates

for the time discretization have been observed for the penalized systems.

Wang et. al. [138] have investigated the relations between the penalty parameter
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and the time step for the linearized Oldroyd model of order one. In fact, they have

obtained optimal error estimates for the penalized system and the time discretized

(backward Euler) penalized system. In Wang and He [136], similar results are observed

as in [138], except for the fact that the problem is now nonlinear and the estimates are

uniform, derived under the smallness assumption on given data. Subsequently, Wang

et al. have extended the analysis in [139, 140] to the finite element approximations of

the problem (1.4)-(1.6) and have derived optimal error estimate in H1-norm similar to

the estimate in (1.25) for smooth initial data.

However there has been no published work in the literature for the optimal semidis-

crete penalty error estimate in L∞(L2)-norm not only for our model but also for

Navier-Stokes equations. Also, there is hardly any result on optimal error estimate

in L∞(L2)-norm for nonsmooth initial data for the time discretization. In [59, Chap-

ter 6], an attempt has been made to find an optimal L∞(L2) error estimates for the

semidiscrete penalized velocity for nonsmooth initial data. But these bounds are not

ε-uniform (the bounds depend on 1/ε) along standing problem till recently.

Therefore, in Chapter 4 of our thesis, we make an attempt to establish the ε-uniform

error estimates in L∞(L2)-norm for both spatial and time-discretization schemes. Also,

in [139], the results have been obtained for the smooth initial data, that is, when the

initial data uε0 belongs to H1
0 ∩ H2, but we aim to discuss error analysis for the

nonsmooth initial data, that is, the initial data uε0 in H1
0 not in H2. This work has

been published [14].

The result above can easily be carried over to the Navier-Stokes problem and similar

ε-uniform error estimates in L∞(L2)-norm for both spatial and time-discretization

schemes can be derived. In this thesis, we restrict ourselves only to the final results,

omitting the analysis for the penalized Navier-Stokes equations. This work has been

submitted for publication [12].

1.3.4 Grad-div Stabilization

As has been mentioned earlier, the Olrdoyd model of the order one suffers from the

coupling of the momentum and continuity equations. Although Galerkin mixed finite

element for the model has been successfully analysed on a few occasions [63, 76] with

optimal error estimates, the coupling of the velocity and the pressure through the
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divergence-free term, is not desirable. Methods for decoupling by various means,

like the penalty method, the artificial compressibility method, the pressure correction

method, the projection method, etc., attempt to overcome this difficulty by introducing

artificial conditions. Work in these directions for the Oldroyd model can be found in

[14, 99, 136, 139, 152]. Unfortunately, these methods do not address the instability

due to the high Reynolds number. This is due to the domination of the advection

term on the viscous term, which typically arises for small values of viscosity. It is

handled via methods based on stabilization techniques, like streamline upwind/Petrov-

Galerkin(SUPG) method, residual-free bubbles enrichment method, local projection

stabilization, and interior-penalty methods, see, [16, 20–22]. In particular, in the

SUPG method, a grad-div stabilization is included, which allows achieving stability

and accuracy for small values of viscosity.

In Chapter 5, we analyze the effect of grad-div stabilization for the Oldroyd model

of order one when the Reynolds number is very high. The main idea is to add a

stabilization term with respect to the continuity equation to the momentum equa-

tion. Franca and Hughes [51] first proposed it to improve the conservation of mass in

the finite element method. However, the method comes with several other benefits.

For example, the use of grad-div stabilization results in (i) improved convergence of

preconditioned iteration when the stabilization parameter is too small [107], (ii) the

well-posedness of the continuous solution, as well as the accuracy and convergence of

the numerical approximation for small values of viscosity [108], (iii) the local mass

balance of the system in numerical experiments [39]. Moreover, it has been observed

that using grad-div stabilization in the simulation of turbulent flows is sufficient for

performing a stable simulation, see [86, fig. 3] and [120, fig. 7].

These observations lead us to the work of Chapter 5: to derive the error bounds

that do not depend on inverse powers of viscosity, for the Galerkin mixed finite element

method with grad-div stabilization applied to the Oldroyd model of order one. This

is not the first time where similar results have been achieved. In fact, in [41, 42], de

Frutos et al. have obtained error bounds with constants independent of inverse powers

of viscosity for evolutionary Oseen equations and Navier-Stokes equations, respectively.

There are a few more works in this direction for incompressible flow problems, but there

is no work available for the Oldroyd model of order one to the best of our knowledge.
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In Chapter 5, we extend the analysis of [42] to the Oldroyd model of order one. As

in [42], we have carried out our analysis for sufficiently smooth initial data, that is,

u0 ∈ H1
0 ∩Hk (k > 2), as well as for smooth initial data, u0 ∈ H1

0 ∩H2. However,

our proofs are shorter and technically less involved than the ones from [42], especially

when u0 ∈ H1
0 ∩H2.

We note here that the assumption of sufficiently smooth data comes at the cost of

non-local compatibility conditions of various order, for the given data, at time t = 0.

Without these conditions, which do not arise naturally, the solutions of the Oldroyd

model of order one can not be assumed to have more than second-order derivatives

bounded in L2(Ω) at t = 0 (see [63]). The analysis for smooth initial data takes into

account this lack of regularity at t = 0.

We would also like to point out that the analysis in both these cases does not differ

by much. However, the analysis suggests that less regularity of the initial velocity

restricts the order of finite element approximation when keeping estimates independent

of the inverse of viscosity. For example, with only smooth initial data, we may get

a maximum of second-order convergence rate in case of velocity, even if we employ

higher-order approximations, see Remark 5.5.

Another important aspect of our study is the appropriate choice of the stabilization

parameter. It is well known that the suitable choice of stabilization parameter for any

stabilized scheme is vital for accuracy in numerical simulations. In the case of grad-div

stabilization, a suitable choice of grad-div parameter ρ is shown to be O(1) for the

Navier-Stokes equations and inf-sup stable finite element pairs, in [107, 109]. And in

[101], it is shown that error can be minimized for ρ ≈ 10−1. However, larger values of ρ

may be needed in special cases, see [53]. A detailed investigation of the choice of grad-

div stabilization parameter for steady Stokes problem has been discussed in [82]. They

have observed that the choice of grad-div parameter depends on the used norm, the

mesh size, the type of mesh, the viscosity, the finite element spaces, and the solution.

A similar analysis and numerical simulations have been seen in [4] for the steady-state

Oseen problem and Navier-Stokes equations. The end of this chapter, we briefly look

into this aspect. Based on the error estimate from Theorem 5.1, we have observed

that ρ = O(1) is a suitable choice for stable mixed finite element spaces. And for

MINI element, the choice of ρ can be in the range of h2 to 1, see Remark 5.4. Further,
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some numerical experiments are carried out. First, we have shown numerically that

the grad-div parameter depends on the mesh size, the viscosity and the finite element

spaces. Next we have obtained values of grad-div parameter ρ that minimize the L2

and H1 errors for the velocity and L2 error for the pressure, for a known solution. This

work has been submitted for publication [10].

1.3.5 Nonconforming Finite Element Method

The conforming finite element spaces, that have been used for our model, need to

satisfy the discrete inf-sup condition for a stable solution, and this leads to the use

of complex elements (conforming stable pairs like (P1b, P1), (P2, P1), etc.) of limited

applicability. In [37], several combinations of simpler nonconforming finite elements

which violate the inter-element continuity condition of the velocities have been ana-

lyzed for Stokes problem. The methods have been shown to be stable, and optimal

error estimates have been derived in the energy norm and the L2-norm. Stable and op-

timal results have been shown even for constant pressures paired with nonconforming

piecewise linear velocities. Later on, several works appeared, extending these to steady

and unsteady NSEs; and with works on lower-order and equal order finite elements,

for examples [88, 98, 100, 146, 155], to name a few.

To the best of our knowledge, there is no work available in nonconforming finite

elements for the Oldroyd model of order one. Also the work on the lower-order spaces

is limited; for example, in [142], the lowest equal order conforming elements (P1, P1)

triangle element and (Q1, Q1) quadrilateral element have been analyzed for the Oldroyd

model of one with stabilization, based on two local Gauss integrations. And in [151],

a characteristic scheme has been considered for (P1, P1). A stabilization term has also

been added to the discrete weak formulation to get a stable solution. In the case of

the lowest order nonconforming pair, i.e. (PNC
1 , P0), since the discrete LBB condition

is satisfied, a stable simulation can be performed without any stabilization. We have

considered in our thesis the (PNC
1 , P0) elements to approximate the Oldroyd model of

order one.

We then consider the Euler incremental pressure correction method for time dis-

cretization. It is a time discrete projection method. Projection methods were first

studied in the late 1960s by Chorin [34] and Temam [129] for the incompressible
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time-dependent Navier-Stokes equations. We can classify this method in three classes:

Velocity-correction [67], pressure-correction [66, 124, 127, 144], and consistent splitting

scheme [65, 105, 126]. A second-order incremental pressure correction scheme for the

Navier-Stokes equations has been developed by Van Kan in [134], while Shen et al.

[68] provided a first-order incremental pressure correction approach.

There is no work on this scheme for Oldroyd model of order one except in [99]

where the Euler incremental pressure correction scheme is analyzed for conforming

finite element and for smooth initial data. In our work, we analyze this scheme for

nonconforming setups with nonsmooth initial data. Stability analysis of the scheme

and optimal error analysis for the fully discrete velocity have been discussed. This

work will be communicated soon for publication.

1.4 Chapter-wise Outline of the Thesis

The thesis comprises of seven chapters which have been organized as follows.

In Chapter 2, we employ a fully discrete finite element method based on the first-

order backward difference scheme for time discretization. A priori estimates and

regularity estimates of the discrete solution and optimal error estimate for the velocity

are shown there. Also, under the uniqueness condition, the error is shown to be

uniform in time. We carry out our analysis for nonsmooth initial data. Numerical

experiments are given in support of the theoretical results. Chapter 3 deals with the

difficulties due to the nonlinearity of the problem. We apply a three-step two-grid

method to the Oldroyd model of order one. Optimal error estimates are presented for

the semidiscrete as well as for the fully discrete scheme with nonsmooth initial data.

We present numerical simulations to substantiate our theoretical findings and establish

the time efficiency of this method.

In Chapter 4, we consider a penalty finite element method for the Oldroyd model

of order one. We obtain new a priori and regularity estimates for the penalized

solution, semidiscrete penalized solution as well as for the fully discrete penalized

solution. Optimal error estimates for the semidiscrete and the fully discrete penalized

problems have been derived for nonsmooth initial data. Numerical experiments are

presented to defend the theoretical results. In Chapter 5, we analyse an inf-sup stable
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finite element Galerkin method with grad-div stabilization. Optimal error estimates

are obtained when the value of the viscosity parameter is minimal. Also, we show

the effect of the grad-div stabilization parameter for small values of µ by doing few

numerical experiments.

In Chapter 6, we consider a lower order nonconforming finite element space and

obtain optimal error estimates for the semidiscrete solution. Then, a fully discrete

scheme is anayzed where time is discretized based on Euler incremental pressure cor-

rection method. All the analysis are carried out for nonsmooth initial data. Finally, in

our last chapter, Chapter 7, we critically analyze our findings and our plan for future.
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