Chapter 2

Backward Euler Method

In this chapter, we study a time discrete scheme based on the first-order implicit back-
ward Euler (BE) method, applied to the semidiscrete approximation of the Oldroyd
model of order one. We present uniform in time bounds and optimal error estimates for
the velocity when the initial data is nonsmooth. We also show that the estimates are
valid as ¢ — oo under the uniqueness condition. We conclude the chapter with some
numerical examples verifying the theoretical findings. This work has been published

in [13].

2.1 Introduction

We recall here the semi and fully discrete formulations for our problem. Find a pair

(un(t),pn(t)) € Hy x Ly, that satisty, for ¢t > 0,

(Wpt, vi) + pa(ag, vi) + b(ag, up, vi) + / B(t — s)a(up(s),vy)ds
0

— (ph,V . Vh) = (f, Vh>, VVh € Hh, (21)

and (V - up, xn) = 0, for all x, € Ly, with u,(0) = ug, € Hy, is an appropriate
approximation of the initial velocity ug in J;. Here, h is the mesh size and, H;, and Ly,
are the finite element spaces that approximate the velocity and the pressure spaces,
respectively.

An equivalent formulation is: For ¢ > 0 and for all v, € J,, seek u,(¢) in J; with

u,(0) = ugy, such that

(Wne, Vi) + pa(ug, vi) + b(up, up, vi) + /Otﬁ(t — s)a(un(s), vip)ds = (f,vp), (2.2)
33
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where Jj, is the discrete divergence free space. And a fully discrete formulation reads
as: For 1 < n < N, find {U"}<,<y € Hj, and {P"}1<p<n € Ly, satisfying the

following system:

(0, U", vp) + pa(U", vy) + a(q (U), vy) + b (U™, U, vy,) — (P, V - vy,) = (£, v),
(2.3)

for v, € Hy, with (V- U" x,) = 0, for all x,, € Ly, n > 0. Here, k is the uniform
time step, 0, is the backward difference operator and ¢ is the approximation of the

integral term by right rectangle rule and U° = ug,. An equivalent formulation when

vy, € Jj, reads as: look for U™ in J;, with 1 <n < N satisfying
(atU", Vh) + ua(U”, Vh) + a(qf(U), Vh) = (fn, Vh) — b(Un, Un, Vh), VVh S Jh. (24)

Here again, we choose U" = ugy, € J;.

The fully discrete formulation (2.4) has been studied for stability and error analysis
on a couple of occasions; once for f = 0 and in a linearized set up by Pani et. al
[117], and on the other occasion, for non-zero f and for the full nonlinear problem by
Wang et. al [137]. In both the cases, initial data has been considered in Hj N H?. We
present below the results obtained in [137], which has been carried out under smallness

condition on data and for smooth initial data:
Ju(t,) — U™ < C(R* +k), (7)7*|u(t,) — Uy < C(h+k),

where u(t,) and U™ are the solution of (1.8) and (2.4) respectively, and 7*(t,) =
min{1,¢,}.

In this chapter, we have shown similar global results as obtained in [137], but for
nonsmooth initial data. Furthermore, we have established local optimal L2-velocity

error estimate. We prove here the following estimate when ug € H:
1
[n(t2) = U™ < Koty 2R (14 log ), 1 <0 < N < oo,

with the error constant K, > 0 which may depend on given data but not depend on
h and k. It grows exponentially with time, that is, K, ~ O(e'") and therefore, the
above error estimate is local (in time). For smallness condition on data (we term it as

uniqueness condition), we have shown the error to be uniformly bounded as t — +oc.
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As mentioned earlier, we carry out our analysis for nonsmooth initial data, that
is, for less regular data, that leads to realistic regularity of the exact solution of the
problem (1.4)-(1.6). This forces singular behaviour in higher order Sobolev norms of
the solution as ¢ — 0. For example, Lemma 2.1 says that ||u,(¢)||2 and ||uy| are
of O(t™/2). As in [63], this breakdown at ¢ = 0 is a major bottle-neck in our error
analysis. To illustrate our point, consider ug € Hj N H? (smooth initial data). Then,

the error e, = U" — u,(t,) satisfies the following estimate (see, [137, Lemma 4.2]):
lenl| ~ O(k), 1<n<N,
Following similar argument but now with ug € H}, we would only obtain (see, (2.101))
lewll ~ O(E2(1 + log %)”%, l<n<N

The loss in the order of k, in fact, is due to the singularity of the higher-order norms
of the solution at ¢ = 0. The standard technique, in such cases, is to multiply by a
weight ", r € N to compensate for this singularity, thereby, recovering full order of
convergence. But in our case, a direct application of this technique fails due to the
presence of the memory term. It is noted that the kernel § present in the equation
(1.4) has a certain positivity property (see Lemma 1.5) and we choose our quadrature
rule to conform with it, see (1.18). This is crucial to our analysis. But when we opt
for weighted Sobolev norm with a weight ¢", » € N, it nullifies the positivity property
of the quadrature rule. Hence the main effort, when dealing with nonsmooth data, is
to overcome this difficulty and to recover optimal fully discrete error estimate for the
velocity, while working with weighted Sobolev norms. This requires borrowing certain
tools from the realm of linear parabolic integro-differential equations that works for
less regular data (see; [114, 115, 132]), like, the summation technique (we call it here
“hat operator”, see (2.79)), which adds to the technicality. Since singularity at ¢t = 0
is more prominent for higher order Sobolev norm (see Lemma 2.1), analysis gets more
technically involved in case of higher order time discretization scheme.

We now summarize our main results of this chapter as follows:

(i) Uniform bound in time for the fully discrete solution in the Dirichlet norm de-

picting long term stability (Lemma 2.6).

(ii) New uniform estimates for the error associated with fully discrete linearized

problem (Lemma 2.12).
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(iii) Local optimal L? velocity error estimate (Theorem 2.1).

(iv) Optimal global fully discrete error estimates under the uniqueness assumption

(Theorem 2.2).
(v) Numerical experiments to validate the theoretical findings (Section 2.5).

We would like to point out here that our main focus in this chapter is to find the
optimal L? velocity error estimate and hence we have avoided presenting here the
optimal L? pressure and H! velocity error estimates. These are presented in Chapter

3 and have been carried out in a slightly different fashion (see Remark 2.10).

2.2 A Priori and Regularity Estimates

We begin this section by presenting two Lemmas that deal with a priori and regularity
bounds as well as negative norm estimate of the semidiscrete solution u,. These will
be of use susbsequently, when we do error analysis for the nonsmooth data. Next

Lemmas will be on the a priori estimates of the fully discrete solution U™.

Lemma 2.1. Suppose (A1)-(A2), (B1)-(B2) hold. Moreover, let u,(0) € J,. Then,
for 0 < a < min{d, A}, the semidiscrete solution wy, of (2.2) satisfies the following

bounds:
t
lan(6)]2 + e / 2y (s)|20ds < C, e {0,1) (2.5)
0
* 2 *\r+1 2
Pl Ol < € e {01, (2.6)
t
6_2°‘t/ eQaS(T*)T(s)HuhSH? ds < C, r € {0,1,2}, (2.7)
0

where 7*(t) = min{1,t} and C' > 0 is a constant that depends on the given data, but

not on time t.

Since the preceding Lemma’s proof is analogous to that of Lemma 1.8 from con-

tinuous case, we have avoided a proof.

Lemma 2.2. Consider the assumptions of the previous Lemma. Then, the semidis-

crete solution ay, satisfies the following estimates:

t
e_2at/ GQQS(T*)T—H(S)||uhss||z—1 ds < C’ re {_170’ 1}'
0



37

Proof. We differentiate the semidiscrete Galerkin formulation on Jj, that is, (2.2) to
find that

(Wpte, Vi) + pa(upg, vi) + B(0)a(uy, vy) — 5/{:6(1& — s)a(uy(s),vy) ds
= —b(up, up, vp) — b(apg, up, v) + (£, vy), Vv, € Jp. (2.8)
Choose v, = (7)%(t)e**'uyy in (2.8) to obtain
(T2 (1) e [upuel|* + pa(ane, (7)*(t)e* wpu)
= (7—*)2(75)@2“( — ~va(uy, upy) + 5/: Bt — s)a(up(s),upy) ds
= b(up, W, Wpee) — (g, wp, v ) + (£, uhtt))- (2.9)

We write the second term on the left of inequality (2.9) as

* o * (62 d
% CL(uhtv (T )2(t)€2 tU—hﬁ) = g(T )2(t)62 taHuht“?
pd, a
= 5@((7 )2 () |lupe17)

— @) () () (1) 7

Next we use the “Cauchy-Schwarz inequality” in the first, second and last terms on

the right of inequality (2.9) and incorporate all these in (2.9) to obtain

0wl + 5 (O funel?) < (0 0) + 7 (1)

t
+ (7)) |[up |2 uunee | +5(T*)2(t)62at/ Bt = s)lan(s)lz/[wnel| ds
0
+ (T2 (1) (Ib(un, wne, wnee) | + [b(ne, W, nee)| + 1| Fell [ wneel]) - (2.10)

Note that 7%(t) = min{1,¢} is almost everywhere differentiable and without loss of
generality, we may assume that %T*(t) < 1. Otherwise, we can always first derive
these estimate in the interval (0, 1) and then in (1,¢), ¢ > 1. For the nonlinear terms,

we first note that

1 1
b(uht7 Uy, uhtt) = _<uht -Vuy, uhtt) - —(uht - Vupy, uh)- (2-11)
2 2

And we rewrite the second term as follows: (with notations D; = ;2 and v = (v',v?))

2
(ups - Vg, up) = Z /QuﬁLtDi(u{m)uidx (2.12)

ij=1
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= - § / uht uhttuhdx E /uhtuhtt uh )dx

4,j=1 4,j=1

= _((v . uht>uhtt7 Uh) - (uht : Vuh? uhtt)'

Use (2.12) in (2.11) and now use Lemma 1.4 with the “Young’s inequality” to bound

the nonlinear terms as
1 2 2 2
0(an, Wne, Upet)| + [D(Wne, Up, Upee)| < ;lllwmll + Cllupe[[7][unl3- (2.13)

Incorporate (2.13) in (2.10) and apply the “Young’s inequality” and kickback argu-

ment. Then, we take time integration to obtain

t

/‘(T*)Q(t)e%tullht“% /(7’*)2(8) 2O‘S||11hss( )H ds < C'/ *(s)e 2a5||uhs|| s
—l—C’/ 2as (1—|— || wps || )|!uh\|§+ ||ftH2)d8
+C/ / B(s —7)|Jup(r )H2dT> ds. (2.14)

Since a(7*)%(t) + 7*(t) < C7*(t) and 7*(t) < 1. We now estimate the double integral

term above by using Holder’s inequality similar to [116, page 761] as

1= [ ( [ 5t = mluntrlar) ds

—(o— 2
y / / Ve |y (1) |odr ) ds
0
,}/2/ / —(6—a)(s—T dT)(/ 67(6704)(377')62047”uh<7_)H§dT>d8
0 0

2

i ’ —a)(s—7) ,2aTt
< e [ ([ e e o ar) s (215

A use of change of variable in (2.15) yields

2

0% t S
I < (5—04)/0 (/0 e —(6— oz)7’62as T ||uh(s—7')||2d7->d3 (216)

First, we apply change of order of integration in (2.16) then use change of variable to

obtain

? ¢ ¢
I< 0—a) / 6(50‘)7(/ 2= |y, (s — T)||§ds> dr
—a) Jo T

2

t t
v —(0—a)(t—T) / 2as 2
< ds|d
— (5_01)/; € < 0 ||u ( )||2 S) T

< G [ o) s (2.17)
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After using (2.17) in (2.14), we use (2.5)-(2.7) to find
t
(Pl + e [P0 P ds <
0

Next, we set vj, = —7*(£)e***A; 'y, in (2.8). From Lemma 1.4 we see that

b(ne, i Ay wn) < Ol [l [ 1 a1,

and therefore

d
(7 (O Jun ) + 7 (D unal 2, < (207" (1) + 1) fun
t
+Clu )7 (O T+ 261 + Cln ([ 5t = ) Bauu(s)| ds)
0
+ ) (e (V2w | + 1V 2(1+ [l V).

After taking time integration, we use (2.17) to estimate the resulting double integration

term. Then, we use (2.5)-(2.7) and multiply by e~2** to conclude

t
pr () e ([ + 62“/ 7" (5)€” | [unss ()24 ds < C.
0

Finally we set v, = —e2o‘tA}72uhtt in (2.8) and proceed as above to arrive at
d
(€2 e [2.) + €2 |2 <Ce2 (1 + [ Faagl ) w2 + 611

roe( [ Bt - o) un(s)| ds)

We now take integration on the both sides and handle the resulting double integral

term as above. Then, we use (2.5)-(2.7) and multiply by e~2** to obtain

t
O+ 2 [ (s) s < .
0
This concludes the proof. O
We now prove a priori results for the fully discrete solutions {U"}.

Lemma 2.3. Suppose the conditions (A1) and (A2) be satisfied. Then, the following
results hold:

w2 L 3, N ;
U+ 5k Y IVUP < Oty (218)
=1

n 2ak
U2 + e ™2tk > et [ VU2 < e 20 [U° |2 + ——||f|%, < C, (2.19)
QLAY

i=1
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where ||f]|oc = |||y 120 and « is a parameter of our choice satisfying 0 < a <
min{é, £t }and

1+ (“;1)1@ > e (2.20)

Proof. Although the proof is similar to [117, Lemma 9], we have provided a sketch
below for the sake of completeness. Set v, = U’ in the fully discrete equation (2.4)

for n = 7 to obtain
(00", U%) + ul[ VU + a(gi (U), UF) = (£, U) - UL, UL UY). (221)
Observe that
i iy Lo i1 i 1 02 i—1y2y L 02
@U,U) = (U = U, U) 2 (U7 = [UT7) = 5o U] (2:22)
and that the nonlinear term vanishes, that is, b(U?, U?, U") = 0. A use of “Young’s
inequality” with (1.7) yields
(.09 < [FIU) < [E VU] < Epoue ¢ e 22)
’ - VA — 4 HAL
A use of (2.22)-(2.23) in (2.21), we deduce that

1 i 3 i i i 1 i
~O|[U|* + —IVU|]?> + a(q,(U),U") < —|If]|*. (2.24)
2 4 /L)\l

We now multiply (2.24) by k and take summation over 1 < i < n to obtain
n lu 7 7 1 . %
om* + kz IVU'|1* + %Z a(g,(U),U") < _/Mlkz £, (2.25)
i=1

The quadrature term is positive, due to (1.18), and so we drop it. Since f € L>(L?),
then a use of assumption (A2) yields

1 o~ 1 - 1
—k 2 < —|If|Ak Y 1< ——Mynk < Ct,.
o oI < Ik D1 < S Monk <

Incorporate the above estimate in (2.25), we complete the proof of (2.18).

Note that the bound establised above, that is, Ct,,, depends on time, and hence the
estimate is local in nature. This is due to the fact that the forcing term f is either
independent of time or L in time. The standard technique to overcome this problem

2ad;

is to multiply by a weight e**| resulting in uniform in time bound.

We multiply (2.24) by ke?** and take summation over 1 <4 < n to arrive at

k,Z€2at a HU1H2 3lukze
=1

1P+ 2k Z e*ig (¢’ (U),U")

=1
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2 < :
<-k) e 2, 2.26
b DLl L R CED
As earlier we drop the quadrature term, due to positivity, see (1.18). And using (1.7),

the term with J; can be written as

n

ke aU = 3 e (U = [U))
=1

i=1
n—1
= et U — U - Y0 - et U
i=1
20t 2 012 — (e — 112
L L W CET
On substituting this in (2.26), we obtain
3/~L €2ak -1 n )
2at n||2 2
T+ (-2,
F (= SR ey
2 SN
< OO + 2k D e (2.28)
pAL i=1
620"671

Note that (2.20) guarantees that £ > . We now use the sum for a finite geometric

series and mean value theorem, to find, for some £* in (0, k) that

2at; 20k €2atn -1 1 2a(k—k*) ( 2aty
kZe = ke g (e* —1). (2.29)

On substituting (2.29) in (2.28), multiply through out by e~2** to conclude the proof.
[

Remark 2.1. We note here that the assumption (2.20) in Lemma 2.3 is not a small-
ness condition on time step k. It is in fact a condition we put on o and we may

rephrase it as: for 0 < o < g, (2.20) holds. Such a choice of oy > 0 is possible

: log (14431 k
by choosing oy < w

log(1+ 421 k) By : : W ,
———2— — B2 Thus, with 0 < o < min{ayg, 9, ¥5*}, we can incorporate both the

. Note that for large k > 0, ag is small but as k — 0,

conditions on « and the second result of Lemma 2.3 is valid.

Lemma 2.4. Suppose the conditions (A1) and (A2) hold. Further, assume oy > 0
be such that 0 < o < min{ay, J, “’\1} (2.20) be satisfied. Then, the following result
holds:

2ok
112 —2at, 770112 , © 2
12 < (e72]|U| +—w I£]|%,) exp {Ctn }.

VU™ + ek > e
=1
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Proof. Choose v, = —A,U" in the fully discrete equation (2.4) for n =i and use the
similar fact of (2.22) to obtain

1 . o ‘ o S S
56”tIIVU’II2 + ul| AU + a(g(U), =ApUY) < (', =A,U°) — (U, UY, =A,U°).  (2.30)
We apply Lemma 1.4 with the “Young’s inequality” to bound the nonlinear term as

b(U", U, —A,UY)| < C|[U|| V2| VU ||| A, U P2
i i MoK i
C) TPV + L1 AU (2.31)

Insert (2.31) in (2.30) and use use the “Cauchy-Schwarz inequality” to find
: A TTi i AT < Lg i i
O VU'I* + ul| AU'|* + 2a(q; (U), —A,U") < L IE I+ CWITFIVUT). (2.32)

Multiply both sides of (2.32) by ke?*** and take summation over 1 < i < n. Then, use
the similar fact (2.27) to obtain

2ak

—1 - 20t; || A P2 - 2at; ([ A A 7
o )k;ze 1A, U] +21<;Ze (¢:(AU), AU

1>+ C(p) kz
i=1

2ak 1

2 VU2 + (1=

< [|[VU|12 + M/fz

=1

FIvort (2.33)

Let 0 < o < min{ap, d, L} then we have, pu — > (0. The third term on the
left of inequality (2.33) is positive due to (1.18), so we drop it. Finally, we apply the

“discrete Gronwall’s lemma” to find

11%)

VU + k) e 1? < (HVUOH2+;I<;Z<3

i=1 =1

X exp {C(u)kZ OEIvYr|*y. (2.34)

Now we use (2.18) in (2.34) and multiply both sides by e~**" to conclude the proof. [

Remark 2.2. Similar to [63], here, we also observe that the bound of Dirichlet norm
of U™, that is, ||[VU"||, 1 <n < N is exponentially dependent on t,. In other words,
as ty — +oo, ||[VU"|| = 400, 1 <n < N. This is a technical bottle-neck and we do
expect a global bound. More importantly, for long-time stability of a implicit scheme,
IVU"||, 1 <n < N needs to be bounded as ty — +00. In case of Navier-Stokes, the
proof of the Dirichlet norm of U™, which is valid for all time, involves applying discrete

version of the “uniform Gronwall’s Lemma” (see, [133, Lemma 2.6]). Interestingly, in
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our case, we are not able to apply the “uniform Gronwall’s Lemma” directly due to the
presence of the quadrature term. Hence, we have adopted a new way of looking into
the problem. We have incorporated the ideas behind the “uniform Gronwall’s Lemma”

to establish our result.

We start by reformulating our problem as follows: we introduce the following notation:
U} = kZanUj, n>0; UY=0, (2.35)
j=1

and rewrite the fully discrete formulation (2.4) as
(GtU", Vh) + ,U(I(Un, Vh) + b(Un, Un, Vh) + CL(UE, Vh) = (fn, Vh), VVh € Jh. (236)

Note that
h=kyU" + e MUy,

and therefore,

1 — 1 n 1 n n
U = (U — U ) = U5 — 2" (Uj — kyU")

k k
(e — 1)

— yeth U — — U (2.37)

Lemma 2.5. Suppose the assumptions of Lemma 2.4 hold. Then, the discrete solution

U", 1 <n <N, of (2.4), satisfies the following uniform estimates:

, e 2 t ([T 70112 1—e o 2 2
u” —||IVUL||* < e *"||U — | Il = M 2.38
OISV < e (S e = b @39
and
m+l 5 I ) )
kD (lIVOIP + ZIVUGIE) < M+ IR = MBM), - (2:39)
where U is given by (2.35) and m,l € N.
Proof. In view of (2.37), we find that
o0k (1 — &%)
a(U%,U") = —a(U%,0,U%) + ——=||VUZ|*.
(,3)7(5t,3) = VU]

Now take v, = U™ in (2.36), for n = 4, to find

ek — 1

iz e i 2 i2 e " i |12 i yTi
OV + =~ IVUHIP) + 20l VU 4 2( == ) = IVUL|I* < 2(f", U). (2.40)
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An application of the “Poincaré inequality” and the “Cauchy-Schwarz inequality” gives
i T i i Lo i
2(1°,U") < 2| f)|[JU’]| < mllf I”+ VU2 (2.41)

A use of (2.40) in (2.41) with the kick back “Poincaré inequality” u||[VU||* > p)||U||?
yields

ek — 1
k

. e_‘Sk . .
01U + == IVUHIP) + pi [ U7+ 2

ek 19 1 12
—||IVUj|I” < —||f"]|*. (2.42
)= IVOLIP < P (242

Multiply the inequality (2.42) by e*i-! and note that

ak __ )
at<€ati¢z’) _ eati_l{atd)i + € - 1¢z}. (243)

Therefore, we obtain from (2.42)

)

ot (17T e Ok i e — 1\ i
0 (e (IU1IP + = IVURIP) ) + (s = == )t U
e&k -1 eak -1 6_6k ) eati_l
2 _ > at;—1 VUZ 2 < f 2 )
+(2055) = () e IV P < R

With 0 < a < min{ayg, 0, pA1/2}, the last two terms on the left of inequality become
non-negative and hence, we drop them. Multiply the rest by k£ and take summation
over 1 to n to arrive

—dk

e ([U"* + —IVU3[I%) < 0°)1* + TIIVU%II2 + mllfllikze L

e
v i=1
From (2.35), U} = 0. Now, multiply by e~*" to conclude the proof of (2.38). For the

second estimate (2.39), we multiply (2.40) by k, sum over m to m + [ with [,m € N
and apply (2.38) to conclude the remaining of the proof. ]

Lemma 2.6. Suppose the assumptions of Lemma 2.4 hold. Then, the discrete solution

U™, 1< n <N of (2.4) satisfies the following uniform estimate:

—0k
VU + A UgP < C

Proof. Set v, = —A, U™ in (2.36) and as in the Lemma 2.5, we now obtain

(U2 4+ AU IR) 4+ 20l A, U2 4 2(C =1 A, Um 2
, (1] ||+7||h5||)+ﬂ||h 17+ 2( )7||h5||

< 2| f[|ARU" | + 2[b(U", U™, A, U")[. (2.44)
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Use Lemmas 1.4 and 2.5 with the “Young’s inequality” to estimate the nonlinear term

as

2[b(U", U", = A, U")| < 20U ||V U2 v Un (|2 AU 2] AL U7

9/2.,

<(=7) My VOt + —IIAhU"II2

Thus we obtain from (2.44)

n —ok 4~ o —1,e” "
(VU1 + - IBURIE) + AU + 2 AU

3 9/2
< —|f[1% + (7=
1t ft

PM{VUTL (245)

Choose 79 > 0 which is to be determined later, and note that

n n A n n 3 n
Yl[VU"[|? = 7(U", —A,U") < —HA U + —M%IIU 1%, (2.46)
and define
" , 9 . et —1
9" =min {50+ = (o PMAIVU"?, 2(=—) |

e—0k

and E™ = |[VU"|]? + HAhU |? for large enough 7o so that g" > 0. Now add the

two inequalities (2.45) and (2.46) and rewrite the resulting equation as

3 3
HE" +g"E" < ;I|f||§o + @%HU"HQ = Ku. (2.47)

Let {n;}ien and {7; };en be two finite subsequences of natural numbers such that

; 9 Nn; n; €
9" =0+ pA — ()P M7 |[VU™|]?, g™ =2(

2

If for some n,
ok __ 1

)

then without loss of generality, we take the assumption that n € {i;} so as to make

9" =0+ phi — (ﬂ)?’MleVU 17 = 2(

the two subsequence {n;} and {n;} disjoint. Now for m,[l € N, we write

m+l iy iy
ng =k Y g"+k Z q"
n=mji
il 9 Tz ek — 1
=k Z <%+,m1 — (Z)gMﬂHVU”HQ) +k Z 2( p ). (2.48)
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Here, {m1, ma, - ,my, } C {n;} and {mq,ma, - ,my,} C {A;} such that l;+1ly = [+1.
Note that [; or ls could be 0. Using Lemma 2.5, we observe that

9 m-l ) 2 2 m—l 2 93M121 )
/fZMuHVU”H /fz IVU™[|" < 5 Mip(l) = Ki2(0).

Therefore, from (2.48), we find that

m-l1 ok
e
k E g" > kli(vo + pAi) — Kia(lh) + 2(

n=m

—1
L}

We choose 7y such that kly(vo + puA) — Ki2(ly) = 2(662’1)1611, assuming [y # 0, to

arrive at
m-+l

-1
k Z g" > 2(" Vit (2.49)

By definition of ¢g", we have equality in (2.49) and in fact, " = 2(852’1). Now from
(2.47), we obtain

ok

aE" +2(— N pr < Ky,

Multiply the above inequality by e’~! and as in (2.43), we obtain

ok

—1
at<€6tnEn) + (6 : )eétn_lEn S Klleatn_l-

Multiply by k& and take summation over 1 to n. Observe that E° = [|[VU?||?. Finally,
multiply by e~ to find that

E" < e VUO? + C.
A use of assumption (A2) concludes the proof. O
Remark 2.3. In view of the Lemma 2.6, the following a priori bound is valid:

™(t)|ALUMP < C, 1 <n < N.

2.3 Error Analysis for the Velocity

Here, we find the error bounds for the velocity approximation based on the BE method
applied to the semidiscrete Oldroyd model. First, we set, e, = U" —u(t,) = U" —u}
for fixed n € N, 1 < n < N. We now rewrite (2.2) at ¢t = t,, and subtract from (2.4)

to obtain

(Oren, Vi) + palen, vi) + al(g(e), va) = Ry(va) + Ej(vi) + Ay (va),
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where,

1 [t
Ry (vp) = (up,, vi) — (Opay, vi) = (up,, vp) — —/ (Ups, Vi) ds

kJi, .
= % /t:il (t — tn_1)<uhtt, Vh)dt, (250)
Ey(vy) = /O B(t — s)a(un(s), vi)ds — alg; (un), vi) = ale; (up), va), (2.51)

and
Aj(vi) = b(uy, up, vi) — b(U", U", vy
= —b(uy,e,, vy) — ble,,uy, vy) — be,, e,, vp). (2.52)

In order to dissociate the effect of nonlinearity, we first linearized the discrete problem

(2.4) and introduce {V"},>; € J, as solutions of the following linearized problem:
(O, V™, vp) + pa(V™ vy) +a(g(V),vy) = (£7,vy) = b(u},up, vy), Vv, € Jy, (2.53)

given V% and u, € J;, as solution of (2.2). Considering the fact that (2.53) is a
linearized version of the nonlinear problem (2.4), it is easy to check the existence and
uniqueness of {V"},~; € Jy,.

Based on (2.53), we now split the error as follows:
en:=U"—up = (U" = V") — (uf = V") =, - §,.
The following equations are satisfied by §,, and n,,, respectively:
(0 vi)+pa(€,, vi) +alq!(§), vin) = =Ry (vi) — Ej/(va) (2.54)

and

(Om, Vi) Fpa(n, va) + alg(n), vi) = Aj(va). (2.55)

We first estimate the errors due to the backward difference operator and the quadrature

rule.

Lemma 2.7. Let r € {0,1} and « as defined in Lemma 2.4. Then with R} and E}'
defined, respectively, as (2.50) and (2.51), following estimate holds forn =1,--- N
and for {vi}; in Jp:

2 3 et (R (vh) + B (vh))
=1
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1 n
(1-r)/2 “\(1-r)/2 20(t;—tn)
< Kk (1+logk) (kE e

i=1

1/2
vznz_r)  2s6)

Proof. From (2.50), we observe that

“ . o 1 [in
2k Z e2oltimtn) RE (vi) = k/ (t — tn—1)(Untr, vi)dt

=1 tn—l
,11/? n 1/2
[ 12 / tn) (t — ti—1) ||| r— 1dt> ] [kzem(titn)”‘,mﬁr]
i=1
Note that
n t; N 1/2
k—l Z (/ ea(ti—tn)(t _ ti—l)”“—htt”r—ldt)
i=1 ti—1
n ti
< lk—16—2atn Z </ ((T*)_(’"“)/Q(t)(t _ ti_l)ea(ti—t))
i=1 ti—1
241/2
X ((T*)(T+1)/2(t)e°‘t||uhtt||r—1>dt) ] , (2.57)

where, 7%(t) = min{1,¢}. When r = 0, (2.57) can be bounded by

[k S ([ e npeoa) (| :<T*><t>e2at\uhttn%ldt)] N

=1

< kV/2ematn— [(/Okt dt) (/Ok(r*)(t)emnuhttH%ldt>
+ k2 zn: (/ttl tldt> (/:l(r*)(t)em\uhttn?ldtﬂ v

=2

SKkl/?( +10gk)1/2

When r = 1, then, (2.57) can be bounded by

[k >( f1<T*>2<t><t - ti_n‘ze“(““<r*>2<t>e2atuum||2dt) ([ dt)] N

=1

1/2
< [ “Ratn QQ’“Z (/ £)e” " [[unee IPdt)] <K.

This completes the proof of the first half. For the remaining part, we observe from

(2.51) and (1.19) that

i=1

1/2
[4"32 Z/ t_tn t_ty 1>ﬁ< ){5||11h”r+1+||U-ht||r+1}dt> ] .

n n 1/2
2%y OB (V) < [k2e2a<“n>|rvzu%r] x (2.58)
=1
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In Lemmas 2.1 and 2.2, we find that the estimates of ||[upy||,—1 and ||up||, 1 are similar,
in fact, the powers of ¢; are same. Therefore, the right hand side of (2.58) involving
|une]|-+1 can be estimated similarly as in (2.57). The terms involving |lup||,4+1 are
clearly easy to estimate. But for the sake of completeness, we give the case, when

r=20 as

WY Z/ Dt ty)8(t 0| V| )
i=1 =
< 4~28% —2atnk,32 —2(5—a) Z/ =ty | dt)

=1

t;
< 47252(2*2@%326*2(*&)%( / 26 ( / Vi ()] %ds)
; 0 0

2725 o 20tn .3 2(6— p20ti 3,20k
<—— e Mk @) o) < Kk’e
S Ze )

This completes the proof. n

Now, we present the estimates of &, error due to linear part.

Lemma 2.8. Assume (A1)-(A2) and a space discretization scheme that satisfies con-
ditions (B1)-(B2). Let o > 0 be such that 0 < o < min{ap, d, 21}, (2.20) be satisfied.
Further, assume that u,(t) and V" satisfy (2.2) and (2.53), respectively. Then, there
s a constant K > 0 such that, §, =u; — V", 1 <n < N, satisfy

" 1
2 —2atn . < Kk(1 +log = 2.59
Il + ek e < Kk(1+1og 7). (2.59)
IVE? + 6‘2“"%262“"{H&&H2+Hat&H?}SK- (2.60)

i=1
Proof. For n = i, we put v, = &, in the linerized error equation (2.54) and with the

observation (9;€;,€&;) > 20,[|€, %, we find that
ONEN + 20 VEN® + 2a(q,(€), &) < 2R} (€;) — 2B, (&) (2.61)
Multiply (2.61) by ke*** and take summation over 1 <i < n < N and use the fact
kzeht@tHEiHQ = Ze — &1 17)
i=1 i=1
n—1
= g 2 S0~ e

=1
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> et g, | - kz o

we obtain

2ak

— 1\, « _ . o
kD N VE P + 2k Zema(qr(ﬁ),a)
i=1 J

€2atn

(&
&2+ (21—

< ka 2atv{RZ +Eh(£)}. (2.62)

We have dropped the third term from the left of inequality (2.61) as it is non-negative.

Now, we use Lemma 2.7 for » = 0 to observe that

\—QkZeQO‘t {RZ )+ Ei(g, )}|

< gk‘;e

Inserting this in (2.62), we obtain
3 1 _
2aty, 2 e
et |g,? + (5 )kZ

Similar to Lemma 2.3, one can show that (%u — (

+ Kk:(l + log %)ezat".

62(1 _

k
kAy

1
< Kk(1+log E)e%t”“. (2.63)

620416_1

W )) > £ > 0. Now multiply
(2.63) by e~20tn t establish (2.59). Next, for n = i, we put v, = _Ah& in (2.54) and

follow as above to obtain the first part of (2.60), that is,

< K.

IVEIP + ek e
1=1

Here, we have used (2.56) for r = 1 replacing v} by Ahﬁl Finally, for n = i, we put
vy, = 0,€; in (2.54) to find that

200&11* + pol& T < —2a(q,(€), 0:€;) — 2R}, (0:&;) — 2B (9,). (2.64)

Multiply (2.64) by ke?*' and take summation over 1 <4 <n < N. As has been done
earlier, using (2.56) for r = 0, we obtain
. 2at; % % k - 2at; 2
D ke (2R (0€) + 2B;(0€)} < 5 Y 0L+ K. (2.65)
i=1 i=1
The only difference is that the resulting double sum (the term involving ¢') is no longer

non-negative and hence, we need to estimate it. Note that

2]{72 2at; QT _2’7k2zz —(6—a)(ti—tj) e2ati (gj’até)

i=1 j=1
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= + K(v)k Y k ’ e~ Ot gati|| A, £ 2. (2.66)
’; (6—a)(ti—t;) J
i—1 i=1 j=1

Using change of variable and change of order of double sum, we obtain

- K ,y)ki (kie—(fs—a)(tz‘—tj)e i ~h ; )2
Oé ’7 ((5 akaZkZ

< K(a )02 3 S O e B P for 1= i

i=1 =1

n

—1 n
< K(a,y)e(‘s_a)kk<k e—@—a)h) (k:z 20| A j||2> <K. (2.67)
1 7=1

=

Combining (2.66)-(2.67), we find that

n

k'Yl (€).08) < Y e
=1

i=1

+ K. (2.68)

Incorporating (2.65) and (2.68), we obtain

n—1 QOck‘
1
£ D6 + e e, Hlsmukzge
=1

Use (2.59) and the fact that (e*** —1)/k < K(a) to complete the proof. O

Remark 2.4. Lemma 2.8 provides us with the estimate ||| < Kk'/*(1 + log )1/2,
which is suboptimal and is due to nonsmooth initial data. Similar analysis for smooth
initial data would give optimal result, see [117, 137]. Since our analysis is different

from these works, we give a sketch for the smooth case, below.

We start with (2.62), that is,

o (&
2t g, 2+ (20 —

2ak_1 n
5 )kzle

< -2k Y- {Ri(€) + B8] (269)

Note that we have dropped the quadrature term due to positivity. Similar to Lemma

2.7 for r = 0 (but for smooth initial data) we then obtain

\—%Zemt {Ri(&) + Ei(€) ]|
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< H/{:ie

=1

+ Kk*(1 4+ log %)ezat”.

Inserting this in (2.69) and multiplying both sides by e=2%» we finally obtain

€] < k(1 +log )",

which is optimal.

Remark 2.5. Comparison of the above result with the result of Lemma 2.8 clearly
shows the effect of nonsmooth data. This loss of order of convergence is generally
compensated by a use of discrete weight function t,,. But a straightforward use of this
technique fails in our case, due to the quadrature term, without some additional tool.
To illustrate this, we introduce a discrete weight function o; = 7*(t;)e**" while using

a test function (—Ah)’latﬁi i a bid to improve the result of Lemma 2.8.

We put v, = 0;(—A,)19,€; in (2.54) with n = 7 and obtain

20,10:&,1121 + noidil|&ill* + 2050 (g} (€), (—AR) T 0E;)
< —2R} (0i(—An) 7' 0&;) — 2B}, (0i(—An) L), (2.70)

We multiply (2.70) by k and take summation over 1 <1 < n and use the fact

n n—1
Y o0&l > oull€al® — kY e &)
i=1 =1

to find that

ponl|€, ]I + 2k foil\@tﬁillzil + QKZUM((JZQ(E), (—An)7'0¢;) < kZ e

—214;232 oi(=AR)T1O,E,) —QkZEh oi(—AR)TL9E,). (2.71)

=1 =1

We use the “Cauchy-Schwarz inequality” with (2.50) to obtain

kzm o, <k:Za, / ) LT [ Y-

ti—1

< Kk;Zaz( /
1
<KRY / il 1ds + ek S 01061
i=1 Yti—1 i=1

[ Whss || - 1d8) + €k Z ;)| 0:&, 12
i=1
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< KB + ek Y ail| 0,17 (2.72)

=1

Now from (2.51) and (1.21), we find that

=k oialel(u), (—A,) 0, = k Z oi(e .£))
= on(gf(w),§,) — k Z(@m)(é‘i(uh% §)—k Z 0i(Oer(un),&;).  (2.73)
i=1 i=1
Using (1.19) and the “Cauchy-Schwarz inequality”, we bound the following as

n t; 9
ru(ep ). &) < KR (3 [ Bt = s)0lwl + funl }ds) -+ el
i=1 Y ti-1
< Kk*e*™ +ea,||€, 7. (2.74)

A use of (1.19) with Lemma 2.11 shows
EY (000 (eh(wn), &) < kY e (eh(wy),€,))
i=1 =1
n t; n
< KKE) e / {Ilunll® + l[ansl”}ds + K& e
i=1 0 i=1

< KE*e* + Kk Zn: e (2.75)
i=1
and
kzn:ai(atai(uh),ﬁi) < Kkazn: et /tti {llunll® + [Juns|®}ds + Kkzn:e
— P i1 i=1
< Kk*e** + Kk i e (2.76)
i=1
Incorporate (2.72)-(2.76) in (2.71) and use Lemma 2.11 to deduce
Sull&all? + B3 o0& + 28> (gl (€), () 0ig)
=1 i=1

< KE?e* + Kk zn: e (2.77)

i=1
The last term of (2.77) is to be estimated optimally by standard arguments and hence

we defer its estimate for now, see Lemma 2.11. However the third term on the left
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of inequality, which we used to drop due to positivity, is now no longer non-negative
due to the presence of o;. And we have to estimate it. A use of the “Cauchy-Schwarz

inequality” with Lemma 2.8 gives a sub-optimal result.

21{201 a(q (&), (An)710.E,) <ek:Za,||8t£ 12, +Kk:Ze

< Ek?;gi||3t§i||2—1 + Kk?(l + log E)

(2.78)
Now, we use (2.78) in (2.77) which gives a suboptimal result for ||| as well.

Remark 2.6. The above result validates Remark 2.5 that the standard technique does
not work in our case. And this forces us to look for some additional tools from the
literature of parabolic integro-differential equations. At the same time these technical

roadblocks justifies our choice of working with nonsmooth data.

To improve the result, we introduce the ‘hat operator’, that is,
by =k> @) (2.79)
i=1

Now using summation by parts (1.20), we can rewrite the last term on the left of

inequality (2.77) in terms of ‘hat’.

2k i aia(g,(§), (An) "' 0E;)

=2k ZW £, 0:(Ay)710E,) — 2k i k Z DB(t; — t;)a(€;, 0(AR) 1DE,).  (2.80)
Similar to (2.67), we bound both the terms as follows:

2k27a &.0i(An)'0.8) <ekZoZ 1% + cle, iy ksZ | VE 2 (2.81)

=1

and

szkZatﬁ Ja(&;,0:(An) ' 01€;)

n i—1
< ek Z Gl 12, + Kk (kD et (GT)eatiHv’éjH)Q
i=1 1=2 Jj=1
<k oil| 0|2 + Kk e
=1 i=1

(2.82)
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With (2.81) and (2.82), we obtain from (2.80)

QkZaz a(qi(€), (An)710.E) <6kZUZ]8t€ [ +KkZe

(2.83)

The ‘hat’ term needs an estimate. For this, we rewrite the equations (2.54) (for n = 7)

as follows:

(0 v1) + pal€,va) + O kY Bt = t)alE),va) }
j=1

= —R},(v1) — E}(v). (2.84)

Here, 0! means the backward difference formula with respect to i and we note that

EY Bt —t)d; = e kY i,
j=1 j=1

= az‘{ki Blti — ;)@ }- (2.85)

We now multiply (2.84) by k& and take summation over 1 to n. Using the fact that
atEn = §,,, we observe that

(04&,,,vh) + pa(€,, vi) + alq(€),va) = —k > (Ry(vi) + Ej(va)). (2.86)

i=1
Lemma 2.9. Consider the assumptions of the previous lemma. Then, the following

result holds:

n
€17 + ek e
i=1

1
< KE*(1 +logE), 1<n<N.

Proof. Choose v, = EZ in (2.86) for n = ¢, multiply by ke?*** and then take summation
over 1 <7 <n. We drop the third term on the left of the resulting inequality due to

non-negativity.

2“t“||£n||2+/dﬂz 24| Vg <kz M%Z (IR, + [EL(w)(@E)).  (2:87)

=1 7j=1

From (2.50) and use the similar technique of Lemma 2.7 to find that

kzw ) < Z / ) nael| 2 l5) | VE |
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|
D)2 HIVE .

< Kk(l—l—logk

Similar to the proof of Lemma 2.7 , we split the sum in 7 = 1 and the rest to obtain

kz [R}(€,)| < Kk(1+1log k)“e‘“’“IIVEiII.

Therefore
kY ey R(E) < Lk Kk (1 4 log ). 2.88
Ze Z| 3 Ze KR +log e (2.88)
Similarly
ES ek ST ELE)| < “k; 2004 V€, |1? + KE(1 + log —)e>'n. 2.89
Z Z| )l Z V&P + KR+ log 1)e (2.80)
Incorporate (2.88)-(2.89) in (2.87) to complete the proof. O

Let us remind ourselves that the [?(L?)-norm estimate of &, in (2.77) is not yet
proved and we complete the task here. Analogous to the semidiscrete case, we resort
to duality argument to obtain the same.

For a given W, and g;, let W,, n >4 > 1 satisfy the following backward problem
(Vh, O W;) — pa(vy, W kZB tj —ti)a(vp, Wj) = (vh,e%‘tigi), Vv € Jp. (2.90)

By denoting W; = W,,_;, we shall obtain a forward problem in {W,}, similar to
(2.2), but linear. Following the line of argument used to prove Lemma 2.3, it is easy

to derive the a priori estimates below.

Lemma 2.10. Let the conditions (A1), (A2), (B1) and (B2) hold. Then, following

estimates hold under appropriate assumptions on W,, and g for r € {0,1}:

1+ 10 Willoa} < K{[[Wal7 + kze

=1

7}

Lemma 2.11. Consider the assumptions of the previous lemma. Then, the following

W2 + kZe
=1

result holds:
< Kk%.

n
€071 + ek ) e
=1

Proof. With W,, = (—=A,)7€,, g = & Vi, we choose v, = &, in (2.90) and use
(2.54) to obtain

= (&, W,) — pa(€;, W) kZB a(g;, W;)



57

= 0,(&, W) — (0.&;, Wi 1) — pa(€;, W) kZBt—t (&, W;)

= (&, W) + k(D€ )W) + & Z Bt — t;)a(§;, W,) + Rj,(W;)

j=1

+ E{(W k:Zﬁ Ja(&,, W;). (2.91)

Multiply (2.91) by k and take summation over 1 < i < n. Observe that the resulting

two double sums cancel out (change of order of double sum). Therefore, we find that
B &N + €012 = k‘z (0ei, 0 W3) + R, (W3) + B}, (W3)]. (2.92)
i=1 i1

From (2.50), we observe that

S EW) <KD [ (=t -2 Wil
i=1 i=1 ti—1
tn 1/2 n 1/2
< ket / o funal2ads) (RS e W) T (208)
0 i=1

Similar to (2.63), we obtain

kZEh )<k ( k32/ 205 [l + [[wns?) ds) (l{:Ze

and

k i k(atﬁz, QtWZ) <k <l€ i e?ati H8t€z||2) 1/2 <k i e—2ati
= =1 i=1

Incorporating (2.93)-(2.94) in (2.92), and using Lemmas 2.1, 2.8 and 2.10, we find that

n
€071 + ek e
=1

This concludes the proof. O

1/2
8,5Wi||2> L (2.94)

< KK%.

This in fact completes the proof of an important result: optimal estimate of &, in

lo(L?)-norm. We present the result below.

Lemma 2.12. Consider the assumptions of the Lemma 2.8. Then, the following result

holds:

- 1
€)1 + ek D ol ogl1?, < KE(1 +log ), 1<n <N, (2.95)
=1

where o; = T*(t;)e**%.
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Proof. We use (2.83) with the Lemmas 2.9 and 2.10 in (2.77) to obtain the desired
result. O

Remark 2.7. The generic error constant K > 0, involving the estimates of &, in
various norms, established above, is independent of n and hence the estimates of &,

are uniform in time. In other words, these estimates are still valid as ty — +o00.
We now obtain estimates of n below. Hence forward, K,, means K (e™).

Lemma 2.13. Suppose the assumptions of Lemma 2.8 hold. Further, let U™ and V"
satisfy (2.4) and (2.53), respectively. Then, n,, = U" — V" 1 <n < N, satisfy the
following:

1 T
Mill741 < Kalk(1+1og D)4, r e {0,1}.

[, 12+ ¢ 200k S e ;

=1

2at

Proof. For n = i, we put v, = n, in (2.55), multiply by ke**" and take summation

over 1 <7 <n < N to obtain as in (2.62)

n n—1 20k n
—1 .
e ||my, |1 + 2pk Z X ||V, ||* < 2k Z (e—k)emti m;l|” + 2k Z NG ().
i=1 i=1 i=1
(2.96)
We recall from (2.52) that
A () = =b(wj,, &, m;) — b(es, wj,, m;) — b(ey, &;,m,). (2.97)

Using Lemma 1.4 and 2.8, we obtain the following estimates:

Mow&om) < &I IVENYIVm) + V€] In, I T

< dVmIP + Kl + KE2( 4 log 1) IVEIR,  (2.98)
oo €om) < TP+ KVE (2.99)
bew ) < TP+ K(IVE]7 + lm]) (2.100)

Incorporate (2.98)-(2.100) in (2.97) and then in (2.96)and choose € = 1/6 to obtain

n—1 2ak

e 1 ,
| <2k T ve
=1

n|I> + Kk Z et

i=1

3 .
e Im, |1 + §uk Z et
=1

+ Kk i 2ot

=1

"7@“2-
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Using the boundedness of n,,, last term above can be bounded as

n n—1
Kkzemti mi|* = Kke* ||, ||* + Kkz e |”
i=1 i=1
n—1
< Kke?¥n 1 Kk’Zezo‘ti 771'H2-
i=1

A use of the Lemma 2.8 with the “discrete Gronwall’s Lemma” completes the proof

for the case r = 0. For the case r = 1, the estimate follows similarly. m

Remark 2.8. Combining Lemmas 2.8 and 2.13, we find suboptimal order of conver-

gence for ||e,]|:

1
eill} < Knk(1+1log ), 1<n <N, (2.101)

n
||enH2 + e—2atnkze2ati p

=1

n
HenH? + ef2atnk,Z€2ati

=1

ell3 <K, 1<n<N. (2.102)

Below, we shall prove optimal estimate of ||e,|| with the help of a set of Lemmas.

Lemma 2.14. Consider the assumptions of the Lemma 2.13. Then, the following
result holds:

. 1
ol + 7k eIy | < Kuk*(1+log ), 1<n < N.

i=1

Proof. Put v, = e2%(—A;)"'n, in (2.55) for n = i. Then, we multiply by ke2** and

take summation over 1 < ¢ <n < N to arrive at

ni||%1

0, 2, + 2k Y e

i=1

n—1
nz’H2 < Z(eZak . 1>e2ati
=1

+2k Y AL (M (=AM, (2.103)

i=1

From (2.52), we find that
[2A((=24)"n,)|
< [2b(e, wj, (—An)'my) + bl(wj, e, (—An)~'my) — bles, e, (—An) tay)]. (2.104)

We use Lemma 1.4 and similar technique as in (2.12) to find that

i A-— i A— i 1/2
[2b(es, wj,, A7 m,)| + [2b(w},, e, A7 )| < elled]| [ [l |2 )2, (2.105)



60

And use Lemma 1.4 to observe that
X — 1/2 1/2
[26(ei, €1, — A e))| < cllesl| (lleilly + lleslleslly*) lm | F 1l 2 (2.106)

Now, combine (2.104)-(2.106) and use the fact that ||e;||; < [|uj]l1 + U1 < K to

conclude from (2.104) that

4 A — 1/2
[285,((=An) " n,)| < Kles ||l |22 (1,12

1/2 1/2
< Kl\&\l\lml!_/l “"z’”l/z + KHmH—/1 Hm”3/2- (2'107)

Incorporate (2.107) in (2.103) and use kickback argument to obtain

€2at"\|"7nH2_1 + Nkzemn "72‘H2 < KkZeQ"‘ti 771'H2—1 + Kkzezati

i=1 =1 i=1

&ill*.

Similar to the proof of Lemma 2.13, we have

n n—1
Kkzemti nil|2 = Kke* |, |12, + Kkz e Imy12,
i=1 =1
n—1
< Kke®™ |, |I° + Kk e*|n,]12,.
i=1

An application of Lemmas 2.11 and 2.13 with the “discrete Gronwall’s lemma” yields

—2at

after multiplication by e™“** to the desired estimate. This concludes the proof. ]

Remark 2.9. From Lemmas 2.11 and 2.14, we have the following estimate

n
||en||2—1 + 6—2atnk262ati

=1

1
ei||> < K,k*(1 + log E)‘ (2.108)

We present below a lemma with optimal estimate for n,,.

Lemma 2.15. Consider the assumptions of the Lemma 2.13. Then, the following
result holds:

S 1
tallm |1 + ek ai|lmll; < Kuk*(1+ log o 1<n <N (2.109)
i=1
Proof. We choose vy, = o;m; in (2.55) for n = ¢ and then multiply by k& and take
summation over 1 <4 < n to find that

aalmallP+2uk > ail | Vn,|*

i=1
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n—1 n n
< K(a)k Y e n,l1* — 2k algi(n), oimy) + 2k Y Aj(oim,). (2.110)
=2 =1 =1

Following the estimates of (2.80-(2.83), we obtain
kY cialain)m) < kSl + KES VAL @1
i=1 i=1 i=1
We recall (2.52) and using Lemma 1.4 and similar argument as (2.12), to obtain the
estimates for nonlinear terms as:
kS Miom) < ek SVl + KD ou(IBu + 13U e, (2.112)
i=1 i=1 i=1

Substitute (2.111)-(2.112) in (2.110) to obtain

onlla1® + sk Y oil| Vail|? < KokP (1 + log ot KkY UVl (2.113)

i=1 =1
For the ‘hat’ term, we multiply (2.55) by k and take summation over 1 < i < n and
similar to (2.86), we find

(atﬁrw Vh) + Ma’(ﬁna Vh) + a(Q;L(ﬁ)a Vh) =k Z AZ(V}J (2114)
i=1

Choose v;, = 7, in (2.114) for n = i, multiply by ke?** and then take summation over

1 <i < n to observe as in (2.87) that

Tall” + 20k > VA )* < 2k kY AL (@,)]. (2.115)

i=1 =1 j=1

€2atn

In (2.52), use Lemma 1.4 with (2.101), (2.102) and (2.108) to obtain

k Z e2atik Z |A?1<ﬁz>| =k Z €2atik Z ‘b(ugw €5, ﬁz) + b(ej7 uiw ﬁz) + b<ej7 €, ﬁz)
=1

i=1 j=1 j=1

< Kk e (kY (llesl[1Aulll + lles 2] Ve;[*2) ) [V

i=1 j=1

Vall*.

1 n
< K,k*(1 + log E) + gkz et
i=1

Incorporate this in (2.115), we find that

_ g NN 1
|7, |17 + pk Y | Va[* < K,k*(1+ log E)e%‘t" (2.116)
=1

Finally, we use (2.116) in (2.113) and multiply both sides by e 2*" to complete the
proof. O



62

We now combine the Lemmas 2.12 and 2.15 to conclude the final result of this chapter

as follows:

Theorem 2.1. Suppose the assumptions of Lemma 2.13 hold. Then, the fully discrete

error e, satisfies the following result:
1
lenll < Knt;?k(1 +log £)!/2, 1 <n < N.

Remark 2.10. We note that the error analysis has been carried out by splitting the
error into two parts; error due to linearized part and error due to nonlinear part,
and both parts have been analysed separately. The same analysis will go through even
without splitting and would have been concise. Such an approach has been employed in
our next chapter to obtain optimal H'-velocity error and L? pressure error, as a part
of analysing a two-grid method.

However, our current approach has two advantages. Firstly, we notice that the
exponential increase of the error bound (as t — 400) is due to the nonlinear part,
since the other part is uniformly bounded ast — +o00, see, Lemma 2.12. Secondly, for
nonsmooth initial data, the uniform error estimate can only be obtained by splitting

the error likewise, which, in fact, we present in the Section 2.4 below.

2.4 Uniform Error Estimates

In this section, we prove the estimate in Theorem 2.1 to be uniform under the unique-

ness condition, that is,

b
p—2Nv Hflo >0 and N = sup (v, w, )

, (2.117)
vwoer [IVV[I[[Vw[[[ Vel

where v = p + 1 and [|[f|| = |||l ®,;2(0))- We observe that the estimate (2.95)
involving €, that is, ||€,| < Kt;l/Qk(l +log +)'/? is uniform in nature. Hence, we are

left to deal with L? estimate of 7,,.

Lemma 2.16. Assume (A1)-(A2) and a space discretization scheme that satisfies
conditions (B1)-(B2). Let ag > 0 be such that 0 < a < min{ao,é,”?ﬁ}, (2.20)
be satisfied. Also let the uniqueness condition (2.117) be holds, then the following

uniform estimate holds:

1
In, | < Kt;'?k(1 + log E)”?,
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where K > 0 is a constant may depends on the given data but not on h and k.

2at

Proof. Choose v;, = m, in (2.55) for n = i and multiply by ke** and take summation

over igp + 1 to n to obtain

kYo Eollml +2uk Y V)P 2k Y e algi(n),m)

1=10+1 1=10+1 1=i0+1

<2k Y €MAL(m,).  (2.118)

i=ip+1

A use of the “Poincaré inequality” gives

. 2at; 2 - 2at; 2 e —1 2at; 2
B3 ol =k S [ m )~ () e ]
i=ig+1 1=i0+1
n—1
= 2|, [P = 3 et (et — 1), |2 — ¢ |, |12
i=1i9+1

2ak

n—1
e e _1>]€ 2ativ 12 2119
mll = (S )k X v @)
1=10

Z 62atn|l,’,’n”2 . 6204151-0

We recall from (2.97) that

AZ(T’@) - _b(u27 £i7 T’z) - b<ei7 u;L? Th) - b(eiv Ei? T’z)

= —b(w,, &, m;) — b(&; wy, M) — b(my, wy,,my) — bles, €,my). (2.120)
We use Lemma 1.4 to bound the first and second terms as
| —b(w,, &, 1) — b(&; wi,,my)| < Cl ARG &IV, (2.121)
The last term can be estimated using ||Aye;|| < C(||Apud || + [| A UY||) as
[ = bes, & m)| < ClA €NV < CUIAR I+ AU D&Vl (2.122)

And the third term of Aj can be estimated via uniqueness condition (2.117) and using

the fact that limsup,_,, o |[Vun(t)]] < v7|f] s, as
| = 0(n;, wy,,m)| < NIV [[[Vn]]* < Nomb[E]|oo | Vo[ (2.123)

We rewrite the quadrature term as

n n i
2k > e Malgi(n),m,) =2k Y e*algi(n),m,) — 2k Y e*algi(n),m,). (2.124)
=1 =1

i=1i0+1
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Inserting the above five estimates in (2.118), we finally obtain

. 3u 62”‘
el 7 =l |2 4+ (2~ ) S
1=i9+1
+ (= Nv )k D e 11°+ 2k e a(ql(n),n,)

i=1i0+1 i=1

n 20
<Ck ) e + AU P& + 2k D e algi(n),m;). (2.125)

i=ig+1 i=1

With 0 < o < min {ag, 55t } we have (— — 2;:;1_1) > 0 and the uniqueness condition

confirms (u — Nv!|f||) > 0 and due to positivity property, the last term on the
left side is positive, so we drop all three terms. Following the proof techniques of

(2.66)-(2.67), we bound the quadrature term of (2.125) as

2/@‘2 g (Vo DIVl < K’fz 112, (2.126)
=1
And finally we arrive at
20
e, |2 < CEIE, I + oy, |° + Kk Y e | Vg (2.127)

i=1
Multiply by e 2% and assuming the last sum is bounded appropriately (see Lemma

2.17 below) we conclude that

1 .
7,1l < Kt *k(1 + log E)m,n > .

0"n

Combining this with (2.109) for n < iy, we obtain the desired result, since ig > 0 is

fixed. This completes the proof. m
We now bound the last sum from (2.127).

Lemma 2.17. Suppose the assumptions of Lemma 2.16 hold. Then, the following

error result is valid:

10
672Oztik E e
=1

Proof. In (2.96), we use

1
17 < Kot 'k (1 + log E)'

i i i 2 ) A i
AL (n,;) = —b(uy,, e;,m;) — b(e;, U',m;) < ZHV"L-H2 + Kleil 2 (|Anuy, || + AU,

along with Lemma 2.14 and Theorem 2.1 to obtain the desired result. O]
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Theorem 2.2. Suppose the assumptions of Lemma 2.16 hold. Then, the fully discrete

error e, satisfies the following results:

len|| < Kt k(1 +log%)1/2, 1<n<N.
Proof. Combine the Lemmas 2.12 and 2.16 to complete the proof. O
Now, combine the Theorem 1.2, 2.1 and 2.2 to conclude the following:

Theorem 2.3. Suppose the assumptions of Theorem 1.2 and Lemma 2.8 be satisfied.
Then, the error holds the following result:

1
[u(t,) — U"|| < Knt;1/2<h2 (L 1ogE>1/2), 1<n<AN.

Moreover, under the uniqueness condition (2.117), the above result is valid uniformly

m time.

Remark 2.11. We have obtained an improved estimate of Theorem 2.1 in chapter
4 for the penalized fully discrete solution. In the similar way, we can also find the

following improved result,

|up(tn) — U < Knt; Y%k, 1 <n < N.

2.5 Numerical Experiments

In this section, we present some numerical experiments that verify the results of the
previous sections, namely; the order of convergence of the error estimates. For simplic-
ity, we use examples with known solutions. All the numerical computations have been
done in MATLAB. We consider the Oldroyd model of order one subject to homoge-
neous Dirichlet boundary conditions in the domain © = [0, 1] x [0, 1]. We approximate
the equation using (Pib, P;) and (P, Py) elements over a regular triangulation of €.
We decompose the domain into triangles with size h = 27%, i = 2,3,...,6. Now, we

consider the following example:

Example 2.1. For initial data uy € H?, we choose f(z,t) so as to have the following

solutions of the problem

ui(z,t) = 2e'2? (z; — 1)%29 (25 — 1)(229 — 1),
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ug(z,t) = —2e'z1 (21 — 1)(22; — 1)a3(2y — 1)?,

p(,t) = 2e' (z1 — 3).

Table 2.1: Errors and convergence rates (C.R.) for Example 2.1 for (P2, Fy) element

b U —ut)|: CR. U —u(t)|lm CR. ||P"—pt)|lz CR.
1/8  0.00386700 ; 0.15057567 : 0.17021691 ;
1/16  0.00104657  1.8855  0.07849371  0.9398  0.08591565  0.9864
1/32  0.00026335  1.9906  0.03939885  0.9944  0.04246851  1.0165
1/64  0.00006623  1.9913  0.01976541  0.9952  0.02115282  1.0055

Table 2.2: Errors and convergence rates (C.R.) for Example 2.1 for (Pyb, P;) element

h U —u(t)ll:  CR. U —u(tn)llr CR.[[P"=p(ta)ll2 CR.
1/8  0.00172068 0.04302980 0.17416894
1/16  0.00045020  1.9344  0.02212674  0.9595  0.10199069  0.7720
/32 0.00009954  2.1771  0.01037882  1.0921  0.04131507  1.3037
1/64  0.00002414  2.0436  0.00489803  1.0834  0.01289942  1.6794

In Table 2.1 and 2.2, we present the numerical errors and rates of convergence obtained
on successive meshes using (P, Py) and (Pib, P;) elements, respectively, for BE method
applied to the system (1.4)-(1.6) with 4 = 1,7 = 0.1,0 = 0.1 and 7" = 1. The
numerical analysis shows that the rates of convergence are O(h?) in L%norm and
O(h) in H'-norm for the velocity. And the rate of convergence for the pressure is
O(h) in L?-norm. We choose the time step k¥ = O(h?) for all the experiments. The
error graphs are presented in Fig 2.1 and Fig 2.2. These numerical results assist the
optimal rates convergence obtained in Theorem 2.3.

Velocity errors in L2-norm Velocity errors in H-norm

Error
\
Error
\

10?2 102
0125 025 00156 00313 0.0625 0125 025 00156 00313 0.0625 0125 025

Figure 2.1: Velocity and pressure errors based on (P, Py) element for Example 2.1.
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Error
\
Error
\
%
\
Error

0.0313 0.0625 0125 0.0156 00313 0.0625 0125 0.0313 0.0625 0.125

Figure 2.2: Velocity and pressure errors based on (Pyb, P) element for Example 2.1.

In order to verify the rates of convergence in both spatial and temporal directions
and the uniform convergence in time for nonsmooth data, we consider the following

example [77, 150].

Example 2.2. For initial data ug € H}, we choose f(z,t) so as to have the following

solutions of the problem

—523% (2, — 1)(9z, — 5)

— 12232 (25 — 1)(925 — 5) cost,

p(z,t) = 2(x1 — x9) cost.

5/2
Ty

(19 — 1)* cost,

Table 2.3: Errors and convergence rates (C.R.) for Example 2.2 for (P, Fy) element

b U ()l CR U )l CR. [P*—p(t)]z  CR
1/4 0.00295597 - 0.05958679 - 0.07233700 -
1/8 0.00071240 2.0529 0.02832958 1.0727 0.03383893 1.0960
1/16 0.00019314 1.8830 0.01456592 0.9597 0.01708781 0.9857
1/32 0.00004903 1.9780 0.00726227 1.0041 0.00845973 1.0143
1/64 0.00001294 1.9217 0.00363780 0.9973 0.00423842 0.9971

Table 2.4: Errors and convergence rates (C.R.) for Example 2.2 for (P;b, P;) element

h  |JU*—u(t,)|t= CR. [[U*—u(t,)|lmm C.R. [[P*"—=p(t,)]zz C.R.
1/8 0.00208654 - 0.05026012 - 0.20559044 -
1/16 0.00054627 1.9334 0.02563557 0.9713 0.10681639 0.9446
1/32 0.00014985 1.8660 0.01262894 1.0214 0.05064130 1.0767
1/64 0.00004098 1.8705 0.00614613 1.0390 0.01583420 1.6772
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Table 2.5: L%-errors and convergence rates (C.R.) in time direction for Example 2.2

(P2, Py) element (P1b, P,) element

ko U —ut)lle CR. U —u(t)|l: C.R.

1/4 0.00755768 - 0.02197941 -
1/16 0.00290626 0.6894 0.00802012 0.7272
1/64 0.00070503 1.0217 0.00207538 0.9751
1/256 0.00019182 0.9389 0.00053884 0.9727

1/1024 0.00004856 0.9909 0.00014555 0.9442

In Table 2.3 and 2.4, we have shown the numerical errors and the rates of con-
vergence for the BE method using (P, Fy) and (Pib, P) elements, respectively, with
it=1,7=0.1,0 =1 and final time T' = 1. The numerical results confirm the opti-
mal L2-convergence rates of the velocity error as in Theorem 2.3. The error graphs
are given in Fig 2.3 and Fig 2.4. In Table 2.5, we present the numerical results in
temporal direction for (P, Fy) and (Pib, P;) elements, respectively. Here, we take
k=272 i=12,..5pun=106=01~y=01h=0Wk) and T = 1. The er-
ror graph is given in Fig 2.5. We observe that the rate of convergence confirms the

theoretical findings.

Error
*\
Error
X
Error
X

00000000000000000000000000000000000000000000000000000000000

o e _
. -
A /
e ~
e e
10 - e 7
<] T 5 - 5
pud pud // =
w - w - w

10° 102
000000000000000000000000000000000000000000000000

Figure 2.4: Velocity and pressure errors based on (Pib, P) element for Example 2.2.
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Velocity errors in L?-norm
T T

—%— P2P0-element
—%— MINI-element
At
10
-2
_ 10 "
E _
*
LE *
-3
10 e
* _
_HT B
10
E
5 . I I
0.0010 0.0039 0.0156 0.0625 0.25
At

Figure 2.5: Velocity errors in L2 norm with respect to time for Example 2.2.

For the example 2.2, the numerical results are shown for final time T = 10, 20,
30, 40 and 50 with u =1,y =01, =1,k =01land h =27° i =23,...,6. We
represent the numerical errors and the rate of convergences for the velocity in L2-norm
for (P, Py) and (Pb, P;) elements in Table 2.6 and Fig 2.6. The numerical experiments

show that for a large time the convergence rates remain same.

Velocity errors in L%norm Velocity errors in L%norm
T T T T

10

10
% T=10 —*—T=10
—*—T=20 —%—T=20
T=30 T=30
102 F |—%—T=40 —%—T=40
——%—T=50 % 102 |—#—T=50
i — h
10% — = —
5 — . 5 —
= S Q. _—
= = P
L o " i} = _
10 i ——
" //i/f
g 104
10°% =
06 . . . 10 . . .
0.0156 0.0313 0.0625 0.125 0.25 0.0156 0.0313 0.0625 0.125 0.25

Figure 2.6: Uniform in time errors for (P, Fy) and (P;b, P;) elements for Example 2.2.

In tables 2.7 to 2.9, we have shown the maximal L?-norm of the pressure and
maximal L2 and H'-norm of the velocity among several time steps k = 0.1,0.5,1, 1.3
again for the Example 2.2. The results indicate that the scheme can run well for the
values of the time steps going from k£ = 0.1 to k = 1.3, but there is a deterioration of

the convergence rate for k =1 and k£ = 1.3.
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Table 2.6: L*-Errors and convergence rates for Example 2.2

(P2, Py) element

(P1b, P,) element

Final time h  ||[U" —u(t,)|rz Rate |JU" —u(t,)|2 Rate
T=10 1/4 0.00475212 - 0.03323502 -
1/8 0.00116079 2.0334 0.00317788 3.3866
1/16 0.00031742 1.8706 0.00081112 1.9701
1/32 0.00008496 1.9015 0.00020500 1.9843
1/64 0.00002272 1.9030 0.00005176 1.9857
T=20 1/4 0.00195842 - 0.01616627 -
1/8 0.00047565 2.0417 0.00156824 3.3657
1/16 0.00013005 1.8708 0.00040039 1.9697
1/32 0.00003459 1.9105 0.00010100 1.9870
1/64 0.00000919 1.9120 0.00002545 1.9885
T=30 1/4 0.00149863 - 0.00610584 -
1/8 0.00036956 2.0197 0.00055113 3.4697
1/16 0.00010101 1.8713 0.00014395 1.9368
1/32 0.00002742 1.8810 0.00004044 1.8318
1/64 0.00000744 1.8824 0.00001135 1.8333
T=40 1/4 0.00446125 - 0.02641260 -
1/8 0.00109409 2.0277 0.00249141 3.4062
1/16 0.00029908 1.8711 0.00064118 1.9582
1/32 0.00008028 1.8973 0.00016808 1.9316
1/64 0.00002153 1.8988 0.00004402 1.9330
T=50 1/4 0.00599158 - 0.03821832 -
1/8 0.00146697 2.0301 0.00363026 3.3961
1/16 0.00040103 1.8710 0.00093218 1.9614
1/32 0.00010770 1.8967 0.00024209 1.9451
1/64 0.00002889 1.8982 0.00006281 1.9465




Table 2.7: The norm supy<; <5 |[[U"||L> with nonsmooth data

k
0.1 0.5 1 1.3
h

1/10  0.04066058 0.04013758 0.03994627 0.03431507
1/20  0.04060207 0.04007989 0.03988995 0.03426480

(P27 PO)
1/30  0.04059567 0.04007359 0.03988379 0.03425928
1/40  0.04059327 0.04007121 0.03988147 0.03425720
1/10  0.04164312 0.03825401 0.03808147 0.03272622
1/20 0.04310498 0.03967860 0.03949458 0.03393053
(P1b7 Pl)

1/30 0.04334520 0.03991041 0.03972447 0.03412640
1/40  0.04343595 0.03999863 0.03981201 0.03420103

Table 2.8: The norm supy<;, <5 [|[U"||ar with nonsmooth data

k
0.1 0.5 1 1.3
h

1/10 0.31297840 0.30901528 0.30752906 0.26430325
1/20 0.31034508 0.30641145 0.30500030 0.26201939

(P27 PO)
1/30 0.30987407 0.30594553 0.30454751 0.26161070
1/40 0.30970478 0.30577810 0.30438480 0.26146391
1/10 0.32158956 0.29632714 0.29503887 0.25354515
1/20 0.32860122 0.30352433 0.30217202 0.25959799
(Prb, Pr)

1/30  0.32979560 0.30474032 0.30337746 0.26062074
1/40 0.33024171 0.30519856 0.30383212 0.26100694

71



72

Table 2.9: The norm supy<,;, 5 || P"||z2> of with nonsmooth data

Kk
0.1
K

0.5

1.3

1/10
1/20
1/30
1/40

(P2>P0)

1/10

1/20
(P1b7 Pl)

1/30

1/40

0.80976358
0.81411956
0.81499218
0.81529345

0.86979545
0.82750272
0.82289194
0.81951684

0.80204569
0.80642016
0.80729509
0.80759726

0.85337708
0.81637519
0.81236294
0.80935013

0.80174532
0.80616249
0.80704511
0.80735004

0.85455721
0.81639044
0.81225804
0.80914669

0.69388452
0.69778546
0.69856265
0.69883114

0.73827331
0.70638134
0.70293783
0.70034738

2.6 Conclusion

In this chapter, optimal L2- velocity error estimate is derived for the backward Euler
method employed to the Oldroyd model with nonsmooth initial data, that is, ug €
H{(Q). For the complete discrete scheme, uniform a priori bounds are shown for
the discrete solution. Both optimal and uniform error estimate for the velocity are
proved. Uniform estimates are derived under the uniqueness condition. The analysis

has been carried out for the nonsmooth initial data and the proofs are more involved in

comparison to the smooth case. Our numerical results confirms our theoretical results.
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