Chapter 3

Two-grid Method

In this chapter, we analyze a two-grid method for the Oldroyd model of order one.
Two-grid method is a highly efficient, accurate and well-established method for solving
a nonlinear system. The main idea of two-grid method is approximate the equation
over two meshes of different size. It generally involves two steps; in step one a nonlinear
problem is solved over the coarse mesh and then in the second, a linearized equation,
based on coarse mesh solution, is solved on a fine mesh. We analyze here a two-grid
method based on three steps. The third step is a correction step where the results of
the second step are used to solve a linearized problem based on Newton iteration in
the same fine mesh but with different right hand side. We obtain optimal velocity and
pressure errors for semidiscrete and fully discrete approximations. All the estimates
are valid as time goes to infinity. Finally we give some numerical examples to validate

our theoretical findings. This work has been published in [11].

3.1 Introduction

For two-grid formulation, we first denote w = H or h with h < H. Now we consider
the regular finite triangulation of the domain  in two different meshes 7 and 7j,.
The first one (7y) is called coarse mesh and another one (7,) is called fine mesh.
With w = H, h, we assume two family of finite element spaces H,, and L,, subspaces
of H} and L?) respectively. For simplicity, we assume that both the spaces consist of

piecewise linear polynomial functions (for example, MINI element). We also define the
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associated divergence free subspace J, of H,, as
Jo={vo€H, : (vo,,V-xu) =0, Vx, € L.}
The main algorithm for two-grid method for any nonlinear problem is stated as follow:

e Step I: Solve the nonlinear problem over the coarse mesh 7.

e Step II: Solve a time-dependent/independent linearized system over the fine

mesh 7j,.

This method has been analyzed by Xu [147, 148] for the elliptic problems and by Layton
et. al. [91, 92| for the steady-state NSE. The method changes with the linearized
problem that we solve on the fine mesh; for example, Layton et. al. [91, 92] have
considered different algorithm for linearizing the Navier-Stokes equation based on the
one step Newton method, the discrete steady Oseen problem and the discrete Stokes
problem.

Literature is abundant in case of NSE. For example, Girault et. al. [55] have
obtained the error estimate for steady-state NSEs and these works have been extended
for transient NSE in [56]. An extension of this analysis to the fully discretization has
been studied by Abboud et. al. in [1]. They have also analyzed the second-order finite
element (Hood-Taylor element) for the spatial discretizationin in [2].

In [40], de Frutos et. al. have analyzed mixed-finite elements of first-order (Mini-
element), second-order (quadratic Taylor-Hood element) and third-order (cubic Taylor-
Hood element) for spatial discretization along with two-step backward difference scheme
and backward Euler method for time discretization. They have obtained optimal H!-
error for the velocity with the choice of h = H? which is an improvement over the result
with h = H3/? obtained in [55]. In addition, they have taken into account “the lack of
regularity of the solution” at ¢t = 0 and have considered ug to be in H2. We note here
that “demanding further regularity requires the data to satisfy nonlocal compatibility
conditions unlikely to be fulfilled in practical situations” [79]. The regularity has been
further reduced in an article by Goswami et. al. [62] where a two-grid method for
NSEs has been considered but only for linear approximation. There uy € H} has been
considered, allowing singularity even in H? norm, that is, |[ul, ~ O(t~'/?).

As far as we know, there is no work on two-grid method for our model except

(60, 61]. In [60, 61], the following algorithm has been applied:
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“Step I: (Solve a nonlinear problem on coarse mesh of size H)
For t > 0, seek (ug(t),pu(t)) € Hy x Ly with ug(0) = ugy satisfying

(ape, vi) + pa(uy, vy) +b(ag, uy, vy) + / Bt — s)a(ug(s),vy)ds
0

— (pH,V . VH) = (f,VH), \V/VH € HH,

(V-ug,xu) =0, Vxu € L.

Step II: (Solve a linearize Stokes type problem on fine mesh of size h)
For ¢t > 0, find (up(t),pr(t)) € Hy x Ly, with up(0) = ugy, satisfying
\

(Wpe, vin) + pa(ag, vi) + /Ot Bt — s)a(uy(s),vy)ds — (pn, V - vi)

= (f,vy) — b(uy,upy,vy), Vv, € Hy,

(v - Up, Xh) = 07 th S Lh- )

Here the problem in the second step is linearized based on discrete Stokes type problem.
And the following optimal H!-velocity and L?-pressure errors have been obtained for

less regular initial data.
IV (u(t) = wp ()] + Ip(t) = pr()l| < K () (B> + H* ).

However, L? error estimate obtained there is sub-optimal, which is a drawback of the
method applied there. In the framework of NSE also, a sub-optimal L? error has been
observed, see [40, Remark 2].

A further correcting step enables us to recover optimal estimate. We therefore

consider a three steps two-grid method based on the following steps:
e Step I: Solve the nonlinear system over the coarse mesh 7.

e Step II: Linearize the problem using the coarse grid solution and solve it over

the fine mesh 7.

e Step III: Correct the solution from Step II over 7, which give an updated

solution.

This algorithm was proposed by Xu [147] for a nonlinear elliptic problem and then,
continued by Dai et. al. [38] for steady-state NSE and Pani et. al. [7] for transient
NSE.
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Applying this algorithm for our model, the three steps two-grid semidiscrete formula-
tion for Oldroyd model of order one (1.4)-(1.6) reads as:
Step I (“Nonlinear system on coarse mesh”):

For t > 0, find ug(t) € Hy and py(t) € Ly with ug(0) = Pyug satisfying

t
(upge, vy) + pa(ug, vy) + blag, uy, vy) + / Bt — s)a(ug(s), vy)ds
0
_(pH7VVH):<f7VH)7 VVHEHH7

(V-ug,xu) =0, Vxu € Ly.

Step II (“Update on a finer mesh with one Newton iteration”):

For t > 0, find uj(¢) € Hy, and pj(t) € Ly with uj(0) = Pyuy satisfying
(W Vi) + paluy, vi) + b(w,, ug, vi) + b(ug, w,, vi) — (pr, V - i)
n /0 80t — s)a(ui (), va)ds = (£,v1) + bug, wg,ve), Vvn € Hy, b (32)
(V-uh,xn) =0, Vi € Ly

Step III (“Correction on finer mesh”):
For ¢t > 0, find u,(t) € Hy, and py(t) € Ly with uy,(0) = Pyug satisfying

(uhta Vh) + ILLCL(U.h, Vh) + b(U.h, Uy, Vh) + b(U.H, Up, Vh) - (p;; V * Vh)

. /Otﬁ(t — s)a(up(s), vy)ds = (£, vy) + b(ug, uj, vy) (33)

+ b(u,*;, ug — u;, Vh), VVh c Hh,

(V-up, xn) =0, Vxu € Ly )

We would like to note here that our work is quite close to the work of [7], for
transient NSE. There, the authors have obtained optimal H!-velocity error and L*-
pressure error with choice h = H*~¢. Also they have obtained the L? error estimate for
velocity with choice of h = H?~* for arbitrary small £ > 0. All these analysis have been
done taking the initial velocity ug in HyNH?. We have employed the same method and
similar analysis. But our work differs in several instances. First of all, this is the first
time that this method has been applied to our model. The presence of the memory
term along with the nonlinear term demands new technique and more sophistication.
Also we consider nonsmooth initial data, and this loss of regularity presents technical
challenges, more notably in fully discrete case. We have considered here a fully discrete

approximation employing a first-order backward Euler (BE) scheme in the temporal

direction. We list below the main results of this chapter:
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(i) Optimal semidiscrete error bounds for each step.
(ii) Uniform in time error bounds under the assumption of smallness condition (3.11).

(iii) Uniform a priori estimates for the fully discrete solution giving long term sta-

bility under no smallness condition on time step k.
(iv) Unconditional stability of the fully discrete scheme.
(v) Optimal fully discrete error bounds for the velocity and for the pressure.
(vi) Numerical experiments to validate the theoretical findings.

The rest of the chapter contains the following sections. We discuss about the two-
grid formulation and a priori estimates of semidiscrete solutions in Section 3.2. The
semidiscrete error analysis is carried out in Section 3.3 and in Section 3.4 a first-order
time discrete scheme is analyzed for the two-grid system. And finally, in Section 3.5,
couple of numerical examples are presented which validate our theoretical results.

Throughout this chapter, we will use C' > 0 as a generic constant that depends
on the given data and K = K(C,t) > 0 but none depends on h and k. Note that K
may grow exponentially with time, rendering error estimates local in nature, but it

will grow algebraically with p~!.

3.2 Two-Grid Formulation

We start this section by discussing about the two-grid formulation of semidiscrete
approximation in divergence free spaces. Then, we give a priori and regularity bounds
of the discrete solutions.

We project the equations (3.1)-(3.3) in appropriate divergence free space, then the
equations read as:

Step I: For any ¢t > 0, seek uy € Jpy satisfying

(th,vH)—{—,ua(uH,VH)—l—b(uH,uH,vH)—i—/O B(t—s)a(ug(s),vy)ds = (f,vy), (3.4)

for all vy € Jg with UH(O) = Pyuy.

Step II: For any ¢t > 0 and for all v;, € Jj, seek uj € J, with uj(0) = P,u, satisfying

t
(uy,, vi) + pa(ay, vy)+b(ur, ug, vi) + blug, uy, vy,) + / B(t — s)a(uy(s), vy)ds
0
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= (f, Vh) +b(uH,uH,vh). (35)
Step III: For any ¢ > 0 and for all v;, € Jj,, seek uy, € J;, with u,(0) = P,uy satisfying
t
(0,v8) + ,va) bl i, ¥o) + b i)+ [ 3(e = s)alu(s) va)ds
0
= (£, vi) + b(uy, uy, vi) + b(uy, uy — uy, vy). (3.6)

The following estimation of ug will be used in our further study. The proof of these

estimates are given in Chapter 2, Lemma 2.1 and 2.2 (with uy replaced by uy,).

Lemma 3.1. Suppose the conditions (A1)-(A2) and (B1)-(B2) hold. Also assume
that uy (0) = Pyuy, then fort > 0, the solution uy of (3.4) satisfies,

(O llur )3 + w7 + e /Ot el (s)[fads < C, re{0,1},

(7 () Hlume ()17 + e /Ot (7" (s)) lums(s)l7ds < €, r e {0,1,2},

(T () llwme (£)]13 + e /Ot e (7*(8))  [upss (s)7_1ds < €, 7€ {=1,0,1},
where, 7%(t) = min{1,t} and C > 0 is a constant may depends on the given data.

Remark 3.1. We would like to note here that the above estimates are still valid if we
replace uy by u; and uy,. And the proofs are in fact simpler than ones of Lemma 3.1

since now uj and uy, satisfy linearized versions of the nonlinear problem.

The inequality below will be frequently used in error estimate [92, Equation (2.10)]:

. ) —"_ b 7u b —"_ b u ) )
inf  sup Ma(Wh Vh) (Wh H Vh) ( H; Wh Vh)

> > 0. 3.7
wrEJp vrEd) ||vwh||||vvh’| = ( )

We finally present some estimates of the nonlinear term b(-, -, -) which are already
present in the Chapter 1 except the last two. For a proof of the couple of them, see
[92].

Lemma 3.2. Suppose the conditions (A1), (B1) and (B2) hold. Then, the following
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bounds hold for arbitrary small £ > 0:

(

IVVIEI ALz [Vw]@ll, Vv, w, ¢ € H,,
Vvl Vwlzl|Auwliz]|@ll, Vv, w, ¢ € H,,
IVIIVwl|Agll, Vv, w,e H, ¢ € HyNH?,
(v, w, )| = C < ||Vv||wl]|A¢|, Vv,w,cH: ¢ e HNH2
IVv([[[Vw[[[Ve], Vv, w, ¢ e Hy,
VIV VWV, Vv, w, ¢ € Hy,

VYW= Ivwlvel, Vv, w,é € Hy.

3.3 Semidiscrete Error Analysis

We analyze here the semidiscrete three step two-grid algorithm applied to the Oldroyd
model of order one. Since J, ¢ J;, the weak solution u must satisfy the following

equation
t
(u;, vy,) + pa(u, vy,) +b(u,u,v,) +/ Bt —s) a(u(s), v.,) ds
0
=(p,V-v,)+ (f,v,), Vv,e€J,, (3.8)

where w = H or h. We first define the errors in step I by ey = u — uy, in step II by
e* = u— u} and in step III by e, = u — u,. Using (3.4)-(3.6) and (3.8), we find the
error equations for each step as follows:

Step I: For all vy € Jy

(emt, vi) + palen, vy) + b(uy, ey, vy) + bley, up, vy)
—|—/ B(t — s)aleg(s),vy)ds = (p,V - vg).
0

Step II: For all v, € J),

(e}, vp) + pa(e”, vy)+b(ugy, e, vy) + b(e*, uy, v,) + / Bt —s)a(e*(s), vip)ds
0
= (p, V- vy) —blew, en, vp). (3.9)

Step III: For all v, € J),

t
(0ne: 1)+ palen,va) + b, en,va) + benwn,va) + [ (¢ = s)afen(s). vi)ds
0
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= (p, V- Vh) - b(eH, e*,vh) — b(e*, ey, Vh) + b(e*, e*, Vh). (310)

The error ey is the standard Galerkin finite element approximation error and the

estimates are presented in Chapter 1 Lemma 1.2. Below, we only give the statement.

Theorem 3.1. “Let the conditions (A1)-(A2) and (B1)-(B2) hold. Further, let the
discrete initial velocity uoy € Jg with vgy = Pyug, where ug € J1. Then, there exists

a positive constant C', that depends only on the given data and the domain ), such

that for 0 <T < oo with t € (0,T]
lea ()l + H|[Ven(t)|| + Hl(p — p)(t)]| < K(t)H*Y?,

where K (t) = Cet. Moreover, under the uniqueness condition, that is,

N b(u,v,w)
S Mflz=oeizz@) < 1 and N = sup ’
[l 0ooizzo) ww [[V[[[VV][[Vw]

(3.11)
where v = i + %, the above estimates are valid uniformly in time
lex(t)|| + H||Ver ()| + H||(p — pu)(t)|| < CH* Y27

Remark 3.2. The negative power of t comes in the above estimates due to the sin-
gularity of the solution at the initial time. Recall that the reqularity of the solution
breaks down as t — 0 in case of nonsmooth initial data. This, we feel, is a more re-
alistic approach although it hinders normal error estimate for fully discrete case. For
example, we generally expect an optimal estimates in Lemma 3.15, whereas we only

have managed sub-optimal estimates.

We also need some additional estimates of Step I error ey. We now present those in

the below lemma. For a proof, see [60].

Lemma 3.3. Suppose 0 < o < min{pyA1,0} and the assumption of Theorem 3.1 holds

true, then the step I error satisfies the following results:

t t
o2 / 23| ()| ds + 2 / €203 (7 (5) e (5)|[2ds < K (t)HY,
0 0

t t
6_2‘”/ || Ver(s)||*ds + 6_2O‘t/ > (7%(s))?|| Vens(s)||’ds < K(t)H>.
0 0

Under the uniqueness condition (3.11), the above estimates are valid uniformly in time.
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3.3.1 Optimal Velocity Error Estimates in Step 11
We first obtain some preliminary results which pave the way for improved estimates.

Lemma 3.4. Suppose 0 < a < min{d, 1 A\1} and let the hypothesis of the Theorem
3.1 hold. Then, the step II error satisfies the following result:

¢
e_QO‘t/ eQaTHVe*(T)HQdT < K(t)(h2 + H6_2€t_1).
0

Moreover, this estimate is valid uniform in time under the smallness condition (3.11),

that is, the error bound constant K (t) becomes to C.

Proof. Put vj, = P,e* =e* — (u— Pyu) in (3.9) and use (3.7) to obtain
Ld, o2 ae oy [ () o "
Szl I+ mllver| +/O Bt —s) a(e’(s),e") ds < (ej,u — Pyu)
+pa(e’,u — Pyu) + b(uy,e",u — Pyu) + b(e*,uy,u— Pyu) + (p,V - Pe’)
~ bes en, Pre’) + /Otﬁ(t —8) ale’(s),u— Pyu) ds. (3.12)

Using the definition of P, we rewrite the following as

(ej,u— Pyu) = (u; — Pyu; + Pyu, — uj,, u — Pyu)

1d
= (w; — Pyus,u — Pu) = ——|lu — Pul|% (3.13)
2 dt
The “Cauchy-Schwarz inequality” with (1.15) suggests that
la(e”, u = Pyu)| < [[Ve'|[[|V(u — Pa)|| < Ch||Ve'|[|Aul. (3.14)

A use of Lemma 3.2 with Lemma 3.1 allows us to conclude that

|b(ug,e*,u— Pyu) + b(e*, uy,u— Pu)| < C||Vug||Ve'||[|V(u — Pyu)||

< Ch||Ve* ||| Aul. (3.15)

Using the discrete incompressibility condition in conjunction with the approximation

property (B1) and the “Cauchy-Schwarz inequality” help us to bound the following
(0, V- Pre®)| = [(p = jup, V- Pue”)| < |lp = jnplllVe™|| < Ch[[Ve|[[[Vp].  (3.16)
Thanks to Lemma 3.2 for helping us to bound the following nonlinear term

blen en, Pre’)| < Cllew |00 Ven | 110 Ve'|. (3.17)
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Incorporating (3.13)-(3.17) in (3.12) with the “Young’s inequality”, we deduce that
et 2 Ve |7+ 2 [ e =) ale (o)) ds
< Llhu— Pl + O(0) (W (I Bull* + |99 + llen |00 [ Ve |0
+ /Otﬂ(t — 5) a(e*(s),u — Pyu) ds + €| Ve*||*.

Multiply both side by e?** and use (1.7) to obtain

d o, a
e | + 2 — 5 -

t
< €201 e |2 4 2620t / B(t — 5) a(e*(s),e") ds
0

2

d
< %eZO‘tHu — Phu”Q + Ch2€2atlc2(t) + CezatHeHHQ(lie)”VeHHz(lJJ)
t
+ Ch62&t</ Bt —s)||Ve*(s)|| ds) HAuH — &eQatHu _ PhuHQ, (3.18)
0

where K(t) := ||Vp(t)|| + ||Au(t)||. Last term on the right of inequality (3.18) is
negative, so we ignore this. We now take time integration on the both sides and use

Lemma 3.1 and the fact
[e*[| > |lu— Pyulf, [le*(0)]| = [[ug — Puuo|

to arrive at

2(py — )\— — 5)/ e ||Ve* (s ||2ds+/ / B(s—71) a(e*(1),e"(s)) dr ds
1
§0h2/ 2asIC2( )dS—I—O/ Qas”e ( )||2(1 K)Hve ( )||2(1+Z)ds
0

+Ch/ / B(s — )| Ve* (7)) dT)HAu( )| ds. (3.19)

For the inequality ||e*|| > |[u — Pyu||, we argue as follows: u— P,u = e*+ (u; — Pyu).

Now, we use the orthogonal property of P, to find the following:
lu— P,ul|? = (e*,u — P,u) + (uj — Pau,u — P,u)
= (e",u— Pyu) < [[e*|||[lu — Puu]. (3.20)
Cancelling ||u— Pyul| from both sides we derive the required result. From the positivity
property (Lemma 1.5), we now drop the double integral term from left of inequality

(3.19). And we bound the another double integration term similar to / term of Lemma

2.2 of Chapter 2 for some positive €

Ch/ ([ s =nive ol dr) 1 Buts) ds
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t t
§C(e,7,5,a)h2/ 62a5||Au(s)||2d8+e/ || Ve*(s)||*ds. (3.21)
0

0
With 0 < o < min{d, 3 A1}, we choose € = (1 — a/A1)/2 > 0, then, from (3.19) and
(3.21), we finally obtain

t t
| emiverlrds < cr? [ i (s)ds + Cllen(t)li 2 IVen 3,

0 0

x/o 2 en(s)Pds. (3.22)

Use Theorem 3.1 and Lemma 3.3 in (3.22) to conclude the result. And under unique-
ness condition (3.11), since the estimates of Theorem 3.1 and Lemma 3.3 will be
uniform in time, so will be the estimate of (3.22), which concludes the remaining of

the proof. O]

Remark 3.3. Although the estimate of above lemma is optimal in nature, we can
avoid the singularity in time t=1 by going for a sub-optimal result. This will be useful
in controlling the singularity in time at a later stage. If we us the bound ||Vey| < C

n (3.22), then we get

t t
4gﬂW€®W%SWﬁm+%ﬂwawV%thmA 2 leg(s)|ds)

S K(t)€2at(h2 —|—H4_2Z).

Remark 3.4. In the remaining of the chapter, we have shown local error estimates
which are dependent on time. But these error bounds can be made independent of time
under uniqueness condition (3.11), based on Theorem 3.1 and Lemma 3.3. We have
refrained from mentioning this in the statement of each of the following Lemmas to

avoid sounding repetitive.

Lemma 3.5. Suppose the hypothesis of the Theorem 3.1 holds. Then, the step II error

satisfies the following result:

T (@®)IVe ()] +6_2°“/0 T (s)e* [lex(s)[I* ds < K(t)(h* + H° 747,

Proof. Substitute v, = o(t)Pre; = o(t)(Pyuy — wy) + o(t)ef with o(t) = 7%(¢)e*** in

(3.9) to find
p d

oller||* + CYd ol|ve*||* < 20 |[Ve*||? + o(ef,u; — Pyuy) + poa(e*, u, — Pyuy)
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—ob(e*,uy,u; — Pyu;) — ob(uy, e, u; — Pyu;) + ob(ey, ey, Pre;)
t
+o(p, V- Pye;) — a/ Bt —s) a(e*(s), Pre;) ds. (3.23)
0

The “Cauchy-Schwarz inequality” and the “Young’s inequality” with (1.15) helps to
bound the followings

olef, v, — Pouy) < olef||||u;, — Pow|| < Ch2o||Vuy|? + eollef]?, (3.24)
and

oa(e’,u; — Pyuy) < o||Ve'|[[[V(u, — Puuy)|| < Chol| Ve[| Au|

< Ch202(t) |Aw||? 4+ Coy||Ve*||? (3.25)
= O't(t> t t .

We apply Lemma 3.2 with the “Young’s inequality” to bound the following as

ob(e*,uy,u; — Pywy) 4+ ob(uy,e*,u, — Pouy) < Co||Vugll[|[ Ve |||V (u; — Pouy)||
o?(t)
oy (t)

We bound the second to fifth terms on the right of inequality (3.23 similar to (3.13)-

<Cr?ZSY ) Aw|? + Co||Ver |2 (3.26)

(3.15). And, we rewrite the sixth and seventh terms as:

d
ob(eH, eq, Phe;‘) :E(Ub(e]{, eq, Phe*)) — th(eH, eq, Phe*)

— ob(eyt, en, Pre*) — ob(ey, ey, Pre’) (3.27)
and

d : . , .
O—(pav ’ Phe:) :_(U(p _jhpav ’ Phe )) - O—t<p _]hpav ' Phe )

dt
—o(pe — jupe, V - Pre’) (3.28)
A use of Lemma 3.2 gives
[ben, e, Pue”) < Cllen||' Ve ||| Ve, (3.29)
and
[bens, em, Pue”) + blen, e, Pre”)| < Cllen ™| Ver || Vem [ Ve|.  (3.30)

We use approximation property (B1) with (1.15) to bound the terms of (3.28) as

(p = Jup, V - Pye®) < Ch|[Vpl[[[Ve™]], (3.31)
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and

a(t)
oy (t)

Incorporate (3.24)-(3.32) along with (1.15) in (3.23). Then, take time integration on

o(pe = jupe, V - Pre’) < Cho||[Vp[||[Ve'|| < C(h? IVpel* + o[ Ver|?). (3.32)

the both sides to obtain
t t
/ o(s)|lei(s)|ds + mo(t)||[Ve* (t)||* < C/ o4(s)[|Ve*(s)||*ds + Ch*a || Vpl*
0 0

t t tO'Q(S) P
ven( [oivaltast [Caierias s [ TR R 19 )
0 0 0 7

t 2
+ca(t)HeHH?(l—f)y|veH||2<1+f>+0/ Z—ES‘S;H a2 Vey ||* || Vens||*ds

+ [ lenl 0 eul s — [*ats) (306 =) ate (7). Prei(s) dr ds.

Since i(t) < C(7*(t))%e** and oy(t) < Ce** | hence

t t
/0 o(s)le3 (s) s + o (0| Ve | < OB o[Vl + / &2 (v ()| V|2 + | Vo) ds
t t
4 / 275 (r*(5) K25 >ds)+a(t)||eH||2<H>||VeH||2<1+f>+ / 2| Ve*|Pds

t t
+/ 62"“5||8H||2(1_€)IIVeHIIQ(l“)ds+/ o1(s) el * | Ve ||| Ver,|*ds
0

0

~ [Co) [ 56— 7) ate' ). res(o) dr ). (3.33)

Using integration by parts, we rewrite the following as

/0t0<8> /085(8—7) a(e’(r),€}(s)) dr ds

< o(t) /Otﬁ(t—f) a(e*(7), ") dT—/to—s@ /53(5—7) a(e* (1), e*(s)) dr ds
_/t’ya(s) a(e*(s),e*(s)) ds—/ / Bs(s — 1) a(e*(),e*(s)) drds
< SoIve + ot [ s -nIve i ar)’+ [ oolve )

t

([ st =nlve @l ar) ds v [ ots)1 e (o)Pas

0

¥ /Otas
—l—/OtJ(S)HVe (s)|l ds+/ / Bs(s =) !Ve*v)l\dT)st

t
< 0(t)||Ve*||2+C’/ e2e3(|Ve* (s)||2ds. (3.34)
0

N | —
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Note that, in the above inequality, we use the similar estimate of I term of Chapter
2 Lemma 2.2 to write double integration term in single integration. Similar to (3.21),

we estimate the another one as
[t | "B(s —7) a(e’(r), (u, — Pau,)(s)) dr ds
t g (S) s X 2 ! as *
) (/0 B(s = 7)[[ Aur(7)]| dr) ds+C/0 €2 Ve* (s)||*ds

< Ch?
0

t t
< ChQ/ (7'*(5))262“5\]Au5(5)Hst+C/ || Ve*(s)||*ds (3.35)
0 0

Incorporate (3.34)-(3.35) in (3.33). Then, a use of Lemma 3.4 and Theorem 3.1 con-

cludes the remaining of the proof. m

Remark 3.5. As in Remark 3.3 we can resort to a sub-optimal estimate here as well.
t
PNV @I + e [ ats) ei(s)Pds < K+ 1),
0

Lemma 3.6. Suppose the hypothesis of the Theorem 3.1 holds. Then, the step II error

satisfies the following result:
t
6_2‘”/ e?s||e*(s)||Pds < K(t)(h* + W2 H* ' + H% ).
0

Proof. For L? estimate of e*, we take the following dual problem: For a given T with
0 <t <T and a given e* € L*(L?), let the pair (v(t),%(t)) € J; x L*(Q)/R with
v(T') = 0 satisfy the following

(w,vy) — pa(w,v) —b(u,w,v) — b(w,u,v) — /0 Bt — s)a(w(s),v)ds
+(, V- w) = (e**e*,w), Vw € Hj.

Then the following bound holds:

T T
/0 (]2 + 1912 + IvelP)dt < © / 2o |o*|Pdt. (3.36)
Choose v = e* and use (3.9) with v, = P,v to obtain

d
dt

—b(e*,uy,v— P,v) —bley,e",v) —b(e*, ey, v)+bley,en, P,v)
Y= gn, V€)= (p—jwp, V- (Prv —V))

/ Bt —s) a(e*(s),v — P,v) ds. (3.37)

e*e*||? =—(e*,v) — (e],v — P,v) — pa(e*,v — P,v) — b(uy, e*, v — P,v)
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Note that
(ef,v—Pyv)= a(e*,v — Pyv) — (e, vy — Pyvy)
d
= E(e*, v — Pv) — (u— Pyu,vy). (3.38)

Use (3.38) in (3.37), then take time integration on both sides of the resulting equation

and use v(t) = 0 to derive
/t 62asy‘e*(8)’|2d8 _ _ (e*<0)’ th(())) + /t(u — Phu,Vs)dS — ,u/t a(e*,v — PhV)dS
0 0 0
t
— / (b(uy, e, v — Pv) + b(e*, uy,v — P,v))ds
0
_ /t (bley, e, v) + b(e*, ey, v))ds + /tb(eH,eH, Pyv)ds
0 0
# [ (= 00,9 ) = (= 3 (B =) ds
t s
- / B(s — 1) a(e* (1), (v — Ppv)(s)) dr ds. (3.39)
0 Jo

The first term on the right of inequality (3.38) vanishes.We use the “Young’s inequal-
ity” and the “Cauchy-Schwarz inequality” with (1.15) and for some € > 0 to obtain

t t
/ |(u — Pyu,vy) + a(e*, v — Pyv)|ds SC’(e)hQ/ 62°“S(hQ||Au||2 + | Ve*||?)ds
0 0
t
+e/ 2 (VI + vl ds.  (3.40)
0

We apply Lemma 3.2 and 3.1 and boundedness of ||Vuy|| with (1.15) to bound the

following nonlinear terms as
t
/ |(b(ug, e, v—Pyv)+ble,ug,v—Pv))+ (blem,e",v) + b(e", ey, v))|ds
0
t
< C/O (IVugll| Ve[V (v = Puv)| + [lex[[| Ve [[[| Av][)ds
t t
<O [ i + leul?) Ve Pds +¢ [ v (3.41)
0 0
and
t t
/ b(eq,eq, Pyv)|ds < / (|b(em,em, Pov — V)| + |b(en, en, Vv)|)ds
0 0
t
SC(E)h2/ 62a3|’eHH2(1—£)HVeHHQ(l-&-E) ds
0

¢ ¢
—I—C'(e)/ 62a5||eH||2||VeH||2ds—|—e/ 6_20‘5||V||§ds. (3.42)
0 0
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The discrete incompressible condition and (1.15) with approximation property (B1)

allow us to bound
t
[ 16 = 0.V ) 41— 3. V- (P = v))lds
0
t
<C [ Ml | + 1T v ads
t t
<o) [ Ve Pds 4 nITplPds +e [ el + vIBds. (343
0 0

We bound the right hand double integration term of(3.39) similar to (3.21)
t s
/ / B(s—1) a(e* (), (v — Pyv)(s)) dr ds
o Jo

<on | t ([ 8= 19e @l ar ) vl as

t t
< C(? / ¢205 |V (5)|Pds + € / ¢720% [y (s) | 2ds. (3.44)
0 0

We use (3.40)-(3.44) in (3.39) with (3.36) and obtain

/Ot e?%||e*(s)||2ds gc(€)(h4/0

t t
+/ e2a5HeHH2HVe*H2ds—|—h2/ 62asHeHH2(174)HVeHH2(1+£)dS
0 0

t

t
&2 (| Aul + | Vp|?)ds + 12 / 20| Ve* | ds
0

t t
4 / 2 ey |2 Ve |Pds + ¢ / 2 (V]2 + [lval® + [9]2)ds
0 0
t t
<C(e) (i / 2K (s)ds + (12 + len]2ern) / 205 | Ve* |[2ds
0 0
t
_ 2(1+¢ as
+ (RPllenll % we | Ven 7ot + [ Ven|F ) / ey | *ds

t
+6/ e (V12 + l[vall® + [[01I7)ds. (3.45)
0

We use the Remark 3.3 (in order to avoid O(¢t72) singularity in time) for the second
term on the right of inequality (3.45) and for others term we use Theorem 3.1 and
Lemma 3.3. Finally, a use of (3.36) with C'e = 1/2 concludes the remaining of the
proof. O]

Remark 3.6. As in Remark 3.3 we can resort to a sub-optimal estimate here as well.

t
¢t / e205[*(s)|[2ds < K (1) (h* + HY),
0
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Lemma 3.7. Suppose the hypothesis of the Theorem 3.1 holds. Then, the step II error

satisfies the following result:
(T () lej ()| + e /t o1(s)IVer|*ds < K(t)(h* + H* 71,
0
where oy (t) = (7*(t))?e**.
Proof. We take time differentiation on (3.9) to deduce that

(ef,, vi) + pale;,vy) + blef,ug, vy) + b(uy, e, vy) + b(e*, upy, vp)
t

T b(ue, €, va) + B0)ale”, vi) — § / B(t — s)a(e®, vi)ds
0

= (p;, V- vi) — blens, ey, vy) — bley, ems, vy). (3.46)

Substitute v, = o1(t)Pre; = o1€; — o1(u; — Pyuy) in (3.46). We then use (3.13) in
this context and use the fact So,(t) < Co(t) + 2a0y(t) with (1.7) to arrive at

1d

5ol + (i = ) Ve 2 = Cole

1d 1
< 5%01( ) — Pow|* — aoy(t)|Juy — Pouy|)* — §Cd(t)||ut — Puy|?
+ oy </La(e;‘, w, — Pyouy) — b(ug, e/, u; — Powy) — b(e;,uy,u, — Pyuy)

—b(e*,uyy, Pre;) — b(ugy, €, Prey) + (p, V - Pre;) — va(e®, Pref)
+6 / B(t — s) a(e*(s), Pre?) ds — bem, exs, Pael) — b(ewt, ex, Phe:)). (3.47)

All the terms on the right of inequality (3.47) except last two term can be bounded
by using the similar way of Lemma 3.4. Using Lemma 3.2, we can bound the last two

terms as

[blen, em, Prer) + blen. en, Prey)| < Cl[ Ve llenl|' ™| Ver ‘|| Vey|

C(O)|[VermlPllenlPC0 Veul® + c|Vef 2. (3.48)
We integrate (3.47) and use |le}|| > [Ju; — Pyu|| and (3.48) to deduce
o)l + | o (s)]| Vel Pds < C (R / ou()K2(s)ds + sup(r* (1) [ Vg
x / e[ Ver s+ fen 2y I Ven i | ' o1(9)]| Vel %ds).

Now, using Lemmas 3.1 and 3.4 and Theorem 3.1, we conclude the proof. ]
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Remark 3.7. As in Remark 3.3, we can also obtain the sub-optimal result as below:
t
(T () le; (DI + e / o1(s)||Vel|*ds < K (t)(h* + H*2).
0

For optimal L°°(L?) error estimate of €*, we consider a modified stationary Oseen

type problem: Find wy,(t) € J, with 0 < t < T satisfies
pa(a — wy, vy) + b(ug,u — wy, vy) + b(u — wy, uy, vp)
+ [ = sl - whvidds = (0. ), Vvied (349
We split * as e = (u—wy) + (wy, —u}) = ¢ + p. Then the equation of ¢ is given by
pa(Gv) + bl i) 6w vi) + [0 = 9hac(s) v
=(p,V-vp), Vv, €T (3.50)
We below present the estimates of ¢:

Lemma 3.8. Suppose the hypothesis of the Theorem 3.1 be satisfied. Then, {(t)

satisfies the following result:
POV + e / e ([9¢(s) P + (7 () PIVE,(5)IF ) ds < K ()
Pl e | o ([P + (P EPRICE) ) ds < KO0+ 2HY).
Proof. Choose vj, = P,¢ = ¢ — (u— Pyu) in (3.50) and use (3.7) to obtain
lIVEI+ [ Bli = 9)a(g(s): s < oG = Prw) + bl G — Py

+b(¢,uy,u— Pyu) + (p, V- P.¢) + /0 Bt —s) a(l(s),u— Pyu) ds. (3.51)

Similar to (3.14)-(3.16), we use the “Cauchy-Schwarz inequality” with (1.15), “Young’s
inequality” and Lemmas 3.2 and 3.1 to find

Vel +/O B(t — s)a(¢(s), Q)ds <Ch*([|Aul® + | Vp|*) + %IIVCII2

+ /Ot Bt — s)a(¢(s),u — Pyu)ds. (3.52)

After multiplying both side by 2%, we take time integration and we drop the second
term on the left of the resulting inequality due to positivity property Lemma 1.5. And

similar to (3.21), we bound the another double integration term as

/ / B(s = 7) a(C(7), (u = Pyu)(s)) dr ds
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t t
<cn [ e duts)as + 1 [ vt s
0 0

Finally, use (3.21) in (3.52) to obtain

t t
/ e***||V¢(s)||?ds < C’h2/ e K3 (s)ds, (3.53)

0 0

where K(t) := ||Au(t)|| + [|[Vp(t)||. Now, from (3.52), we easily find that

IVC|I? < CRPK3(t) + /t 5|V ¢ (s)|IPds < CR*(KCP(t) + /t 2 IC%(s)ds).  (3.54)

0 0
In order to find L? estimate of ¢, we consider the dual problem (3.36) with e* is
replaced by ¢ and choose v = ¢ and use (3.50) with v;, = P,V to obtain

e ||¢|1? =(¢, vi) — pa(¢,v — Puv) — b(¢,ug, v — Pv) — bluy, {, v — Pv)
_beH7C> ) <C>eH7 ) (¢>V'C)—(P>V'th)

/Bt—s ¢(s),v— Pyv) ds.
After using Lemmas 3.2 and 3.1, we apply the “Young’s inequality” with (1.15) to find

e*I¢]* <C(e)e”

\_/

(0 + en PIVEI +12( | (e = o)Vt as)”)

+ 5 NCI + ee (VIS + 1T + [[vell®) (3.55)

wn—l

We take time integration on the both sides from 0 to ¢t and bound the resulting double
integration term similar to (3.21). Next use (3.36) with e* replaced by ¢ and choose
Ce = % to arrive at

/ *[|¢(s)[|*ds < C(h2+lleH(t)H%oo(Lz))/ ***||V¢(s) ] ds

0 0

t
< CR*(h* + |len (t)]| 7~ wz)) / e KC?(s)ds. (3.56)
0
Now from (3.55), we easily conclude that

SO < Clo)h*(h* + ller ()| r2)) (K +/0 K (s)ds). (3.57)

Next differentiate (3.50) with respect to time and substitute v, = P,¢{, = ¢, — (u; —
Ppuy) with (3.7) to arrive

MIHVCtH2 :leL(Ct; u; — Phut> + b(“H; Cta u; — Phut> + b(Cu Upg, U — Phut)
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-+ b th, C Pth) + b(C Ugt, Pth) + Bt( ) (C7 Pth)

/ Bt — 5) a(C(s), PuC,) ds + (p ¥ - Pacy).

Then, we use the “Cauchy-Schwarz inequality” and the “Young’s inequality” with
(1.15) and Lemma 3.23.1. Then, multiply the resulting equation by o1 (t) = e*(7*(¢))?

and integrate over 0 to ¢ to obtain
t t
" / o (3) [V, (5)|2ds <OW? / o1(3)(1Au(s)l| + | Vps(s))?ds
0 0
t t
4 / o1 (3) [V usms| P V¢ 2ds + / o1 (s)[VC(s)|Pds
0 0

+/Ot 01(8)(/086(5—7) HVC(T)HdT>2dS_

Use Lemma 3.1 and proceed as above, resulting in:
t t t
| n@ve s < e [ ook s)ds + sup(r V)P [ | v|ds
0 0 0
t t
< O / o1 () (5)ds + / 5K (5)ds). (3.58)
0 0

Here Ky(t) := [|Au(6) ]| + [ Vpi(1)].
For L? estimate of ¢,, we again consider the dual problem (3.36) with e* replaced by

¢;. Arguing with similar proof techniques, we easily derive the following:

t

al(s)le(s)der/ e***K(s)ds).

0

/ o1(s)lI€.(s)*ds < Ch*(h* + IIGHIIioo(m))(/
0 0

Combining the above estimate with (3.53), (3.54), (3.56), (3.57), (3.58) and using

Theorem 3.1, we conclude the desired results. O

Recall that e* = ¢ + p and in the Lemma 3.8, we already find the estimates of (.
Hence, to estimate e*, it is enough to derive the estimate of p. From (3.9) and (3.50),

we observe that
t
(peva) + alp,va) + bp. i, vi) + b, povi) + [ (e = Salp(s).vi)ds
0
—(¢y, Vi) — blem, ey, vy) Vv, € Jp. (3.59)

Now, we choose v, = o(t)p in (3.59) and use (3.7). Then, we take time integration on

the resulting inequality to find

t

ol + / o()|Vp(s)|? ds < — / o(5)(C.(s), p)ds + / o.(s) | o(s)|ds
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—/0 o(s)b(eg,eq, p) ds —/0 o(s) /OS B(s—71) alp(r), p(s)) dr ds. (3.60)

We write p = e* — ¢ and use it to find the following

[ oo < [ ZEcsas + [ ool s
< [ mncotas+ [ e @1+ e s
One can bound the nonlinear terms similar to (3.17). Then, we finally reach at
Ao+ [ o619 < o [ ool
w [ e @I + 117 &)
— /Ota(s) /05 B(s — 1) a(p(T), p(s)) dr ds. (3.61)

The double integral on the above inequality (3.61) is no longer positive, due to the
weight sitting inside the integral. Also a direct estimate of this term would only
give sub-optimal result as the time weight is not adequate to handle the singularity
of the full optimality. Since integration smoothens a function, we consider p under

integration:

We now integrate by parts the double integral. Keeping in mind that 3(t) = vye™

and using the “Young’s inequality”, we deduce that
/Ota(s> /Osﬁ(s —7) a(p(r), p(s)) dr ds
<1 [ oatae).p(6) ds 5 [ o16) [ 506~ r1apir) o) ar as
< ¢ [(o (1961 + ([ 866~ ITpir))ais e [ otIvpe)e
<0 [ e wpeas e [ o Iva 562

In order to find the estimate involving ‘tilde’ operator in inequality (3.62), we take

time integration on the both sides of (3.59) from 0 to ¢ to obtain the equation of p as
t s
(Bev) + VATl + [ [ 3t = 1) alp(r).v) dr ds
0o Jo

< —(,vp) — /Otb(eH(s),eH(s),Vh)ds, Vvy, € Jp. (3.63)
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The resulting double integral is handled similar to [116, Lemma 5.3, page 772]. First

we write p(7) = p, and use integrate by parts with respect to 7

//@S—T (), v4) dr ds
:/ / B(s —7) alp, (), va) dr ds
//@ ), v) ds—//ﬁTs—T (B(7), va) dr ds
- [ /Bs—f ((),va) dr ) ds

_ / Bt — 5) a(p(s), va) ds. (3.64)
0
We choose v, = ¢***p in (3.63) and use (1.7). Take time integration on the both sides

and drop the double integration term from the left of inequality due to positivity (1.5).

Other terms can be handled as done in earlier analysis so as to obtain

|12 + / 2| VplPds < C / 25 (ICI2 + len 202 Vey |[21+9)ds.  (3.65)
0

This result now allows us estimate (3.62) which in turn helps us to estimate (3.61).

Now a use of Lemmas 3.8, 3.6 and Theorem 3.1 gives
t
T(@O)llp)* + 6”/ a($)Vps)|I* < K(&)(h* + W H*" + H 7).
0

Now, we use the triangle inequality with Lemma 3.6 and 3.5 to derive the following
theorem. We would like to note here that the uniform estimates are a direct result of

Theorem 3.1, under uniqueness condition (3.11).

Theorem 3.2. Suppose the hypothesis of Theorem 3.1 holds. Then, with u,(0) =

Pyug € Jy, where ug € Jq, the following error bounds are satisfied:
lu(t)—ws(®)]| < K@)(R*2+H7547), ||V (a(t)—wj (1) < K(&)(ht™ 2+ H )

where £ > 0 is arbitrary small and K (t) = Ce®t. Under the smallness condition (3.11),

the above estimates are valid uniformly in time, that is, K(t) = C.

3.3.2 Optimal Velocity Error Estimates in Step I1I

Lemma 3.9. Suppose the hypothesis of the Theorem 3.1 be satisfied. Then, the fol-

lowing result holds:

t
G—Qat/ 62a8||veh(8)||2d8 S K(t)(h2+h2H4_2Kt_1+H8_4Et_1).
0
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Proof. Consider (3.10) with v;, = P,e, = (Pyu — u) + e, and use (3.7), (1.7) and
(3.13). We then multiply both side by e€*** to arrive

1d o t
__€2at||ehH2 + (,Ul i _)62at“veh||2 + 620‘t/ ﬁ(t — S) (I(eh(s);eh) ds
2dt A1 0
1d
< 5@ u— P’ — ac®u — Pl + pe*a(e, u — Pyu)

+ ezat(b(eh, ug,u— Pyu) + b(uy, ey, u— Pu)) + eQO‘t(p, V - Pyey)

+ e**(b(e*, e*, Prey,) — b(e*, e, Prey) — blen, €, Prey))
t
+ 62“/ Bt —s) alen(s),u — Pyu) ds. (3.66)
0

We drop the second term from the right of inequality (3.66). Similar to (3.13)-(3.16),
we can bound the third, fourth, fifth and sixth terms. The remaining nonlinear terms

can be bound by using Lemma 3.2 with (1.15) as

|b(e*,e*, Prey) — b(e*, ey, Pren) — bley, e, Prey)|

< C(ler| "I VenllIVe|| + Ve |*) | Vex.

Taking integration on the both sides of (3.66) from 0 to ¢ and using ||e,(0)]| = ||uy —

Prugl|, we reach at

(6% Qa ! as «
e [len(®)lI* + (1 — A_1>/o || Ven(s)||*ds < e***||u(t) — Pyu(t)|

t
+ Cllen (17 | Ver ) we) + Hve*(t)H%w(m))/O e*||Ve' ()| *ds
t
+Ch2/ e IC?(s)ds.
0

A use of Remark 3.3, Lemma 3.5 and Theorem 3.1, concludes the remaining of the

proof. O

Remark 3.8. To avoid the singularity in time t as in Remark 3.3, we resort to a

sub-optimal result as
t
et [ e | Ven(s)|ds < K002 + 1Y)
0

Lemma 3.10. Suppose the hypothesis of the Theorem 3.1 hold. Then, the step III

error satisfies the following result:

() Ven(t)|2 + > / o(s) lens(s)Pds < K (t)(h? + HO ¢ 71).
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Proof. Substitute v, = o(t) Pren = o(t)(Pous — uy) + o(t)ep: in (3.10) to deduce

ollenl* + 7£0||Veh||2 = —0t||Veh|| + o(ep, up — Powy) + poa(ep, uy — Pruy)

t
—o(blep,ugy,u; — Pyuy) + b(uy, ep, uy — Pouy)) — 0/ B(t — s)a(en, Pren)ds
0
o(p,V - Pyept) + o(b(e*, e*, Pren) — b(e*, ey, Prep) — blen, e, Prep)). (3.67)

Similar to (3.28) and Lemma 3.5, we finally arrive at

t

/0 a(s)\rehs<s>\|2ds+o<t>\|Vehu2sc( / 0.(5) [ Ven(s)|Pds + / o(5) [ Ven(s) [*ds

0'

N

IIAUSIIQHIVpsII )d8+h2/0( o(s)[Vus]|* + os(s) [ Vpl[*)ds

Us

t
+o(t)([[Ve’ H“r IVen ")l Ve||* + /0 o.(s)(IVe™|* + [[Ven") [ Ve|*ds

il ol + [ TV + [Ven IV | + (Ve[ TenlP)ds).

Use the fact 0,(s) < Ce** and Z 5) < Coy(s) and a use of Theorem 3.1 and Lemmas

3.9, 3.4, 3.7 and Remarks 3.3, 3.5, 3.7 concludes the remaining of the proof. O]

Lemma 3.11. Suppose the hypothesis of the Theorem 3.1 be satisfied. Then, the
following result holds:

t
et [ ey s < KR+ RH 4 H ),
0

Proof. Processing similar idea of the proof of Lemma 3.6, that is, using duality argu-

ment we arrive at

620"5||eh||2 :ﬁ(e’“ Pywv) + (u— Pyu,vy) — pa(ep, v — Pyv) — b(uy, e, v— Pv)
—b(ep,uy,v — Pyv) —b(ey, ey, v) —bley, ey, v) +bley, e, P,v —v)

+b(e*, ey, Pov —v) +bleg,e",v) + b(e*, ey, v) —ble*, e, P,v — V)
t
—b(e*,e",v) + / Bt — s)alen, Pov)ds + (1, V - ep) — (p, V - Ppv).
0
(3.68)

An application of Lemma 3.2 with (1.15) help us to bound the following nonlinear

terms

|bleg,e”, Pov —v)|+|b(e*, ey, P,v — V)| + |b(ey, e, v)| + |b(e*, eq, V)|
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< C(h||VeulI"[IVer|* + lleulD I Ve[Vl (3.69)
and
b(e”,e", Puv — v)[+|b(e”, e", v)| < C(h[|Ve™|| + [le” )| Ve[| v]. (3.70)
Integrating (3.68) and using v(t) = 0 and (3.40)-(3.43) with e* replaced by e, and
incorporating (3.69)-(3.70), we arrive at
[ etentias < e [ i + [+ el Tenlds
[ e el e+ 1+ o+ e ) Ve )

Finally using Lemmas 3.4, 3.6, 3.5, 3.9 and Theorem 3.1 and Remark 3.3, 3.8, we
complete the proof. O

For L°°(L?) error of ey, we split it as e, =: (u — wy) + (W, — up) = ¢ + 0. We
already have the estimates for ¢, see Lemma 3.8. So it remains to estimate only 6.

The equation @ is given by

(0, vi) + pa(@,vy) + blug, 0, v,)b(0,uy, vy,) + +/ B(t — s)a(@,vy)ds 3.71)
0 )

= —(Cp, vi) +b(e", €, vi) — b(e", en, Vi) — b(en, €, va).
We observe that the only difference between (3.59) and (3.71) is the nonlinear terms

and we can bound the nonlinear terms as earlier. So if we choose v, = ¢(t)8 in (3.71),

then similar to (3.60)-(3.65), we find

d t
G181 = 67 + 2| T8I + 20 [ Bt~ s)a(6(s). s
0
= —20(¢,,0) + 20 (b(e*, e*,0) — b(e*, ey, 0) — bley, €, 0)).

Take integration on the both sides to deduce
t t S
()00 + zul/ o ()|VO(s)|2ds + 2/ a(s)/ Bs — 7) a(0(r), 0(s)) dr ds
0 0 0
t
< —2/ 0(3)(((8, 0) —b(e",e",0) +b(e", ey,0) + b(eH,e*,0)>ds
0

+2/0 74(5)]|0(s)|]2ds. (3.72)

Thanks to Lemma 3.2 and the “Young’s inequality” to bound the following

t
2/ o(s) |b(e*,e*,0) —b(e*,ey,0) —bley,e*,0)| ds
0
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t

t
<o [ o) Veul + Ve P)Ve|ds + i [ oo VelPds. (373
0 0

Using Lemma 3.8 with the “Cauchy-Schwarz inequality” and the “Young’s inequality”,
we estimate the first term on the right of inequality (3.72) as

[ o €00 as < [T+ [alowia e

We now write 8 = ej, — ¢ and use o4(t) < Ce?* to obtain

t t t
/ o.(5)|10]2ds < c/ e2w|yeh(s)||2ds+o/ 2 c(s)|2ds.  (3.75)
0 0 0

Use (3.73), (3.74) and (3.75) in (3.72) and use the fact <0 < Cg, (t) to arrive at

ot (t)

a())0)|* + % o(s)||VO(s)||*ds + 2/0 o(s) /OSB(S —7) a(@(7),0(s)) dr ds

0

<c( [ o (s)IC.(5) Pds + /

+/0 0(5)(||VeHH2+||Ve*||2)||Ve*H2ds>. (3.76)

t

t
e len(s)ds + [ e le)lfds
0

The double integration term on the left of inequality (3.76) can be written in exactly

the same way of (3.62) as
Q/Ota(s) /Osms 1) a(0(), 8(s)) dr ds
< Clu) [ 190 s + 2 [ aove e, @)
where (1) = fot 6(s)ds. Similar to (3.63)-(3.65), one can find the estimate for 6 as:

t t t
2 9,(0)]” + / 25| V0(s) |2ds <C / ¢ (s)|? + C / 2| Vey |2 Ve |2ds
0 0

0

¢
—|—C'/ || Ve*(s)||*ds. (3.78)
0

Inserting (3.77)-(3.78) in (3.76) and applying the Lemmas 3.8,3.11,3.5 and Theorem

3.1, we finally arrive
t
() |0)|* + 6_2O‘t/ o(s)|VO(s)|?ds < K(t)(h* + R H*™ + H¥*¢71).  (3.79)
0

Now, applying the triangle inequality with (3.79) and, Lemma 3.4 and Lemma 3.6, we

find our main result:
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Theorem 3.3. Suppose the hypothesis of Theorem 3.1 holds. Then, with u,(0) =

Pyuy € Iy, where ug € Jy, the following error bounds hold for any t > 0

I(u(t) —un()l| < K()(h*2 + HH),
IV (u(t) —un(t)]| < K(@)(ht™2 + B4,
where £ > 0 is arbitrary small and K (t) = Ce®t. Under the smallness condition (3.11),

the above estimates are valid uniformly in time, that is, K(t) = C.

3.3.3 Optimal Pressure Error Estimates
We first find the pressure error estimate for step II. First, we split p — pj as
1o =il < llp = dnpll + [l7np — P31l (3.80)

using (B2), we can write the following

{I(jhp—p;;,V'Vh)l}

e — Phll2/n, < C sup

v €H,\{0} Vvl
. —p;,V-v
< C(Hjhp—p\l +  sup {Kp u h)|}). (3.81)
va€H,\{0} Vvl

The first term of the above inequality can be evaluated by using (B1). For the re-
maining term, we subtract (3.2) from (1.8), then use the “Cauchy-Schwarz inequality”

with Lemma 3.2 to find

(p _p;a V- Vh) :(e;:?Vh) + #a(e*7vh) + b(qu e*a Vh) + b(e*v uH>Vh)
t
+/ Bt —s) a(e*(s),vy) ds + bley, en,vy)
0

SC(Heill—l;h +pl[Ve' | + [Vug [ Ve[| + llenlI ™ Ver ™

¢
+ [ 8t =s)Ive o) ds) [vvill (352)
0
For the discrete negative norm, we have
€,V .
H@Wmh:&m{<t w:vheﬂﬁvh#o}gﬂqHA. (3.83)
A

We use similar technique as in [63, Lemma 6.2, page 348| to bound the negative norm.

Lemma 3.12. For 0 <t < T, the following negative norm estimate holds:

let|l_y < K () (ht™/2 + H* 471,
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Proof. For any 1 € H}, a use of the properties of P, and (3.9) with v, = Pyt yield

(ef,¥) = (ef, v — Pyip) + (e}, Pup)
= (e}, — Putp) — pa(e”, Pyp) — b(e”, upy, Putp) — b(ug, e*, Pyp)

/ B(t — 5) a(e*(s), Puap) ds + (p,V - Puap) + blew, exr, Potp).  (3.84)

We use the approximation property of P, to bound the following as

(ef,% — Putp) = (i, ¢ — Bryp) < Chljugl[|Vep]]. (3.85)

Also, using H!-stability of P, and the “discrete incompressibility condition”, we find
that
(p, V- Puyp) < (p — jup, V - Pop) < CL||Vpl[[[ VY. (3.86)

Apply Lemma 3.2 with the “Cauchy-Schwarz inequality” to deduce

|b(en, en, Pyip) + b(e*, uy, Pyyp) + b(uy, e, P,a)|
< C([|[Ver|[[|[Vug| + lex|' I Veu ") VY. (3.87)

Incorporate (3.85)-(3.87) in (3.84) and use ||[Vug|| < C to obtain
(er, %) < C(hHufH + Vel + Ve[ Vun]| + lleq || Ver | + Al V|

- [ ste= s1ver) as) [vwl
0

O (hlhug |+ 19€° | + e[| Vel + 1| T
t
- [ Bt = o1ve) as) vyl

Hence,

* <e*7V>
let]l-: < Sup{ II%VH veHl v+ o}

t
Ch(lugll + IVpl) + Vel + llex '~ Ve —/0 Bt —s)[[Ver|| ds).

Incorporating with Lemma 3.4 and Theorem 3.1, we concludes the remaining of the

proof. O

Lemma 3.12 along with (3.82) in (3.80) results in the following:
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Theorem 3.4. Suppose the hypothesis of the Theorem 3.1 be satisfied. Then, the
following result holds for all t > 0:

1(p = pi)|lz2ym, < K()(ht™Y2 + H3471),

where K (t) = Ce®t and £ > 0 is arbitrary small. Under the smallness condition (3.11),

the above estimates are valid uniformly in time, that is, K(t) = C.

Proceeding in the similar way as above, we can obtain the pressure estimate for step

3, that is,

Theorem 3.5. Suppose the hypothesis of the Theorem 3.1 be satisfied. Then, for any
t > 0, the following result holds:

1(p = p)llz2yw, < K(@)(ht™2 + H*71).

where K (t) = Ce® and { > 0 is arbitrary small. Under the smallness condition (3.11),

the above estimates are valid uniformly in time, that is, K(t) = C.

3.4 Fully Discrete Error Estimates

In this section we study the backward Euler (BE) time discretization scheme for the
three step two-grid finite element approximation of Oldroyd model of order one (1.4)-
(1.6). First we discretize the time interval [0,7] in a uniform partition {t,}Y_, with
equal time stem k and take ¢, = nk, 0 < n < N. We approximate the time derivative
term by 0,¢" = (¢" — ¢"')/k, where ¢" = §(t,), ¢ is defined on [0,7]. The BE
method applied to (3.4)-(3.6) results in the following algorithm:

Step I (“Solve the nonlinear system on a coarse grid 7x"):

For any ¢t > 0 and for all vy € Jg, seek U% € Jy with UY, = Pguy satisfying
(atU?b VH) + lua’(U?h VH) + b(U?Iv U?I? VH) + (I(QZ}(UH), VH) = (fn7 VH)' (388)

Step II (“Update on a finer mesh 7, with one Newton iteration”):

For any ¢t > 0 and for all v;, € Jj,, seek U™ € J;, with U’,;O = Pjuy satisfying

(00", vn) + pa(U3", va) + 0(U", Ugp, vin) + b(Ugy, Uy, vi) + alg) (U), via)

= (£, vz) + b(UT, U, vy,). (3.89)
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Step III (“Correction on finer mesh 7,”):

For any ¢t > 0 and for all vy € Jg, seeck U? € J;, with U) = P,uy satisfying

(0 Uy, vi) + pa(Uy, vi,) + b(Uy, Ugy, vi) + 0(Ugy, Ug, vi) + alg (Un), vi)

= (£, v3,) + b(UT, U vp) + b(U", UY — U™, v). (3.90)

where we have used the right rectangle rule to approximate the integral term:
@ (v) = ]{:Zﬁ(tn — )V =~ / B(t, — s)v(s)ds.
j=1 0

We would like to note here that the integral term satisfies certain positivity property

(see (1.18)).

3.4.1 A Priori Bounds

Below, we first present the a priori bounds for the fully discrete solutions for step I,
IT and III. We have proved the a priori estimates for step I in Chapter 2, Lemma 2.3

and 2.6 and Remark 2.3, so we only recall them.

Lemma 3.13. (A priori estimate for U, ) Let ag > 0 be such that for 0 < a < a

1+ (’”‘12A1)k > 2ok, (3.91)

Then, with 0 < a < min{ay, d, “12)‘1} and UY = wyy = Pyuy, where uy € Jy, the

following bounds hold:

[U 2 + e 20k 3 |90y | <

i=1

AgUL|? < O,

T;HAHU”HHQ VUL + €—2atnk262ati
i=1

where 7;f = min{1,1,}.

We prove below a priori bounds for U;" and Uj. The proof techniques are quite

similar and easier than the proof of Lemma 3.13, so we only sketch the proofs.

Lemma 3.14. (A priori estimate for U;" and U}) Under the hypothesis of Lemma
3.13 with U;? = v}, = Pyug and UY) = ug, = Pyuy, the following bounds hold:

n
HUn”Z + e—2atnk262ati

=1

VU |* < C,
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T;‘|AhUn|l2 —+ ||V'U'”||2 4 6_2atnk262ati

i=1

AU <G,

with U™ = U™ and Uy, respectively.

Proof. From (3.89) and (3.90), we observe that both the equations are linearized and
differ by nonlinear terms. We here only give a sketch of the proof for U;". For this,
we choose v, = Uj! with n = i in (3.89) and use the fact (9,U}’, Uy¥) > 10, U2

with (3.7)(replace ug by U?%;) to obtain
éatHUh 12+ m IVU |1 + a(q,(Uy), UyY) < (£, UR) + b(Uy, Uy, Uy). (3.92)

After using the “Cauchy-Schwarz inequality”, the “Young’s inequality” and the “Poin-

2at

caré inequality” with Lemma 3.2, we multiply by ke*** and take summation over

1 < i <n to obtain

VU + 2k e*a(ql(U}), Uy

=1

kz €2atiat||U2i||2 + Iulkze%zti
=1 i=1

< OO )k S E]2 + Clu )k 3 2 [ VUY |1 (3.93)

i=1 =1
Third term on the left of inequality (3.93) is positive, hence, we drop it. We rewrite

the first term as

- at; *i ey *n * e —1 - at; *q
k3 UG 2 e U — O3 (i )kZ “IVURE (3.9
Then, we finally obtain
20t 2 e*t —1 - 20t (12
2ot | U +<M1—( e ))kizleaz VU

NG + CO )k Y eI P + Clu)k Y e VU

i=1 i=1

With 0, @ < min{ay, 9, ’“QAI}, we have 1 + ’“TAIk > %% which guarantees that (5 —

(62:;@\:1)) > (. Now, use Lemma 3.13 and multiply both side by e~2%» to conclude the

first proof.
Now substitute v, = —A,Uj in (3.89) and use the fact (9,Us", —A, U >
0,||VU;||? with (3.7)(replace uy by U%;) to obtain

1 . o . o
§3t||VUZZH2 + [ ALU? + algp(U), =AU
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< (£, — AU} + b(Uly, Uy, —A,U70). (3.95)

The nonlinear term can be bounded using Lemma 3.2 and the “Young’s inequality” as
b(Uly, Uy, =3 U] < CIVU AU 1 AU

< C(u) VUL IP|An Uyl + ZHIAURI2 (3.96)

Inserting (3.96) in (3.95) and multiplying both side by ke?*i. Then, sum over i = 1

to n, we find that

€2ak _

1 n N , n ‘ - A
2 [T UG 4 (o~ ( ) D" AU + k- e*ta(g}(U), A, U5
=1 =1

< IVURIE + Ck Y- (IE)° + VUL IPIA R Uy ). (3.97)

i=1
We drop the third term from the left side due to positivity. Finally, we multiply by

e~2% and use Lemma 3.13 to concludes the remaining of the proof. O

Remark 3.9. Since, the bounds in Lemma 3.13 are uniform in time, hence, all the

bounds obtained in Lemma 3.14 are still uniform in time.

3.4.2 Fully Discrete Error Estimates

Define ugy(t,) = u}, ui(t,) = wi™, us(t,) = uj and set e}y = U}, —uf, e = Uy —
w;”, e} = Uy —u}. We also define a few notations below for ease of presentation.

R, (v) = (u, v) — (O, v), (3.98)
/ B(t; — s)a(uy,(s),v)ds — a(q- (), v). (3.99)

For the error equations, we consider (3.4)-(3.6) at ¢ = ¢, and subtract from (3.88)-
(3.90), respectively, to obtain the following:
Step 1: For all vy € Jy

(O}, v) + pa(el, vy) + b(uly, ey, vy) + b(e}, uly, vy) + a(q) (ey), vy)

= Ry (vu) + Ay (va) + Ei(va), (3.100)

where A% (vy) = b(uyy, €Y, vy) — b(UY, e, vy).

Step 2: For all vj, € Jp,

(8te;kzn7 Vh) + ,ua(e;;", Vh) + b<e;<zn7 112[, Vh) + b(uTPLP el*;na Vh) + a(q’? (elt)a Vh)
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= R;"(vn) + A (Vi) + E;"(vin).

where Aj"(vy,) = —b(Ur", e, vy) — b(ely, Ui, vy) + b(UY, e, vy) + b(el, uly, vi).

Step 3: For all v, € Jy,

(Orey, Vi) + paley, vy) + bley, upy, vi) + b(ufy, e, vi) + alq, (en), va)

= Ry (va) + Au(va) + Ej(vn),
where

An(ve) = —b(UT, &y, vi) — b(ely, UL, va) + b(UT, U™, vi) — b(uly, ui", vi)

+o(U™, Uy — U vy) — b(up™, uly, — wp, vp).

Error Estimate in Step I

From (3.98),(3.99) and (3.100), we make the following observations.

Riy(vin) = (Vi) — (O vir) = (yevir) = [ (o vir) s
_ %/ (t =t 1) (Wnres, vir) ds, (3.101)
EY(vy) = / ' Bt —s) a(uy(s),vy) ds — kZﬂ(tn —t;) a(uly, vy) (3.102)
0 i=1

SKZ /tl (s — ti—l)(ﬂs(tn —s) a(up(s),vy) + B(t, — S)a(uHs(s),VH)) ds.

We have already proved the L°°(L?) for the velocity for Step I in Chapter 2. So,
we recollect the necessary estimates from Chapter 2, which will be used for further

analysis. From Remarks 2.8 and 2.9 and Lemmas 2.12 and 2.15, we find the followings:

Lemma 3.15. Suppose the conditions (A1)-(A2) and (B1)-(B2) hold true. As-
sume oy > 0 such that for 0 < a < g, (3.91) is satisfied. Then, with 0 < a <

min{«p, d, ”T’\l}, there exist some positive constant K,,, that depends on T, the follow-

ings hold for r ={—1,0,1}

. 1
lefll? + he2et 7 e ey 12 < Kkt~ (14 log ),
i=1

n . 1
* n |2 —2at 7 |12 2
ke 23" g0 < K, k(1 +log =),
T llefl|” + ke 2 oil|Orely||Z) < (1+1log k;>

where o; = 77e*% and 77 = min{l,t;}. Moreover, under the uniqueness condition

(3.11) the estimates are uniform in time that is, K, = K.
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We are now going to obtain the H'-velocity error and L*-pressure error.

Lemma 3.16. Let the assumption of Lemma 3.15 be satisfied. Then, for 0 <n < N,
the following holds

n

, 1
Tl Vey|® + ke > " ail|dsely||* < Knk(1 + log %),

i=1
Proof. Take n =i and vj, = 0;0;€'; in (3.100) and use (3.7). Then multiply by k& and

take summation over 1 < i < n. Finally, using the following fact

n—1
£ ol > on[Vey? - kY e
=1 =1

we obtain

n n—1 n
o | Vey® + 2k oiloeyl* <k e — 2k alqi(en), 0:0e})
=1 =1 =1
+2k Y 0i(Ry(Dely) + Ny (D) + Ej(0rely)). (3.103)

i=1

We use (1.21) and (1.7) with the Lemmas 3.15 with v = k> | v* to bound

k Z a(q.(ey), oi0.el)

=1
n

= ona(q(en), €f) — kZ(atUi)a(Qi(eH)a ely) — k Zaz‘a(ath«(eH)a €l

i=1 i=1

[1/1 . X n n
< ZanHVeH||2+K0n||VeH||2+/{: 5 e +k;16 w?
1
< Kk(1 + log E> e?in 4 —an||VeH||2 + Ko,||Véry|?. (3.104)

From (3.101), we can find the following bound

- . , "1 b ,
¥R (Oe) <KD owp [ (o= te)hunlaslel|
=1 !

ti—1
t; 1 n ‘
<Kk2 ( / —ds) ( / e““s?\|uHss||2ds) + 56D aillael
! fim i=1
1 2aty ]- a i 112
<Kk(1+log E)e + §k;UiHateHH : (3.105)

A use of (1.21) gives



107

We apply the “Young’s inequality” with (3.102) to bound the following:

n ti
nuBy(el) < Kou( Y [ (s = )bt — ) (0 Van] + [V s ) | Ve
i=1 Y ti-1

1
< Kk(1+log 1)e™" + %an||Ve}§||2, (3.106)
Similarly, we can obtain
- % 7 - % % 1 o
kY (0i0:)Ey(ely) + k) 00y (ely) < Kk(1 + log E)eﬂ tn (3.107)

i=1 i=1
We use Lemma 3.2 with Lemmas 3.13 and 3.15 to bound the nonlinear terms as
- i i - X X i i 1 < i
kY oy (Ohely) < kY- ol Ay >+ |35 Uy )| Vel + Sk Y oillrey |
i=1 i=1 i=1

1 2aty, 1 - 7 |12
it Z E ; ) .
< k(1+ log k)e + 2/<: oil| Oy || (3.108)
i=1

We use (3.104)-(3.108) in (3.103). Finally, we multiply both side by e?**» and under

the assumption, which is proved below

1
Tl VeR|® < Kuk(1 +log 7). (3.109)

we conclude the remaining of the proof. O]

We are now left with the proof (3.109). For this, we multiply (3.100) by & and take

summation over 1 <14 <n and use the similar fact (2.85) to obtain

(Oh&ly, vir) + pa(&, vir)+alg! (€n), vir) + kY bley, uly, vir) + b(uly, ely, vir)
=1

=k (Ry(vi) + Ny (vi) + B (va)). (3.110)

i=1
Lemma 3.17. Let the assumption of Lemma 3.15 be satisfied. Then, for 0 <n < N,
the following holds

* AT —2a - Al 1
Tl Vey|” + ke " gil| 0l | < Knk(1+ log ).

i=1
Proof. For n =i and choose vy = 0;0,€% in (3.110) and similar to above lemma, we

conclude the proof. O

We will use the following estimate to obtain the pressure error.
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Lemma 3.18. Let the assumption of Lemma 3.15 be satisfied. Then, for 0 <n < N,
the following holds
1
0|2, < Kk(1 + log E)

Proof. Take n =i and vi, = 0;(—Ag)~'9,el; in (3.100) and use (3.7) with uy replaced
by u%;, then we arrive at
200 ||> ) + paoidi|ler || + 2(qi(en), oi0iel) < 2R} (0/(—Ap) " Drely)
+2AH(Ji(—AH)_18teiH) + QEE(UZ(—AH)_lateZH)

We apply the “Cauchy-Schwarz inequality” to obtain

n . 1 tn
|Dre 12, < O(HVezn D0 Bt~ Vel 4 [ (5= bt s
tn—1

i=1
n ti

+Z/ (s = ti-1)B(t: = 5) (8] V| + ||VuHs)dS)H3te’£f||—1-
i=1 Yti-1

Incorporating with the “Young’s inequality” and Lemma 3.16, we conclude the re-

maining of the proof. m

To derive pressure errors, we first recall the mixed finite element formulation of

semidiscrete approximations (3.1) as: Find ug(t) € Hy and ,py(t) € Ly satisfying
t
(upt, vy) + pa(ug, vy) + b(ug,ug, vy) + / Bt — s)a(ug(s),vy)ds
0
= (pH,V'VH)—l—(f,VH), Vvyg € Hpy, (3111)

and (V -ugy,xy) =0, Vx € Ly. Also the mixed formulation of fully discrete approx-
imations (3.100) is as below: Find (U%,, Pj;) € Hy x Ly such that

(815UT;I7 VH) + Ma(UTIEb VH) + b(U?D UTIED VH) + a(Q;L<UH)7 VH)

= (P}},V'VH)—{—(fn,VH), VVH S HH; (3112)

with (V . UnH,XH) =0, Vx € Ly.
Take t = t,, in (3.111) and subtract it from (3.112) to obtain
(Pr; — P, V- vi) = (0, i) + paleq, vi) + b(ugy, ey, vi) + (e, ufy, Vi)

+a(q(en), ve) — (Ry(ve) + Au(ve) + Eg(va)),

where p; = py(t,). Now proceed similar as semidiscrete pressure error estimate along

with the “Cauchy-Schwarz inequality” and Lemma 3.16, we derive the following result:
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Lemma 3.19. Suppose the assumption of Lemma 3.15 be satisfied. Then, for 0 < n <
N, the following holds

* 7 n 1
TPy — P l? < Kok(1 + log o)

Error Estimates in Step 2 and 3

We present below the optimal error estimates for steps II and III. We refrain from the
proofs of the estimates involving steps 2 and 3, since they are quite similar to step 1.
If we compare the error equations at the three steps, they differ only in terms of the

nonlinear terms. And these terms can be handled by means of Lemma 3.2.

Lemma 3.20. Let the assumption of Lemma 3.15 be satisfied. Then, for 0 <n < N,
the following holds

* *1, —2a - 7 1
Tallen||* + ket ZaiH@te 12, < Knk?(1+log E)’

=1

n ‘ 1
|| Vet 2 k —2atn ; o,e’ 2 < Knk 1 1 -
Ve |F + ke Y Joil|Ore’||* < Kuk(1+log 1),

i=1

* *1 *n 1
1B = pitl)? < Kpk(1 4 log E)

Lemma 3.21. Let the assumption of Lemma 3.15 be satisfied. Then, for 0 <n < N,
the following holds

n

* n —2a % 1
rllerll* + ke > > " gil|dhep |2, < Kok (1+ log 7))

=1

* n —2a - 7 1
TlIVen | + ke Y "oyl 0w l|* < Knk(1 + log )

=1

* n n 1
| Bp = ppll? < Kpk(1 +log E)

Now from the Theorem 3.3 and Lemma 3.21, we conclude our main results of this

chapter:

Theorem 3.6. Suppose the assumptions of Theorem 3.3 and Lemma 3.15 be satisfied.
Then, for 0 <n < N, the following holds:

1
|u(t,) — Uy < Kn(h2t51/2 +HY 4 k(1 + log E)%t;I/Q)’

1 ]_ 1
IV (utn) = U < K (bt 2 + H '+ k2 (14 log )2, 1%),
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1

Moreover, under the uniqueness condition (3.11) the above estimates are uniform in

time, that 1s, K, = K.

3.5 Numerical Experiments

In this section, we present some numerical experiments that conforms with the results
from the previous section, namely, verify the order of convergence of the fully discrete
errors. For simplicity, we will use examples with known solutions. All the numerical
computations have been done in MATLAB.

We consider the Oldroyd model of order one subject to zero boundary conditions.
We approximate the equation using (P;b, P;) over a regular triangulation of Q2. We take
[0,1] x [0,1] as the domain which is partitioned into triangles with size h = 27%, i =

2,3,...,6. To verify the theoretical result, we consider the following examples:

Example 3.1. In our first example, we consider the forcing term f(x,t) so as to get

the following exact solutions

ui(w,t) = 2e'a*(z — 1)y(y — 1)(2y — 1),
ug(z,t) = —2e'z(x — 1)(22 — 1)y (y — 1)%,
p(z,t) = e'y.
Table 3.1: Numerical results for the three step two-grid method with k = h?% u =
1,v=0.1,0 = 0.1 at time T" = 1 for Example 3.1

b U —u(t)e: CR. U —u(t)|m CR. |[P"—p(t)lz CR.

1/4 0.01022974 0.10009952 0.03204744

1/8 0.00332044 1.6233 0.05339255 0.9067 0.01724230 0.8943
1/16 0.00088486 1.9079 0.02700925 0.9832 0.00536430 1.6845
1/32 0.00022110 2.0007 0.01353995 0.9962 0.00146472 1.8728
1/64 0.00005159 2.0995 0.00677458 0.9990 0.00039991 1.8729

Example 3.2. In our second example, we consider the forcing term f(x,t) so as to

get the following exact solutions

jw

u(a,t) = 5e'ws (x — 1)%y2 (y — 1)(9y — 5),
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us(z,t) = —5€tl‘%($ —1)(9z — 5)yg(y —1)%

p(z,t) = €'y.

Table 3.2: Numerical results for the three step two-grid method with p = 2,7 =
0.1,6 = 0.1,k = O(h?) at time T = 1 for Example 3.2

h U —u(t,)|z CR. [[U*—u(t,)|lm CR. ||[P"—pt.)|z C.R.

1/4 0.04956891 0.54851138 0.19727316

1/8 0.01527122 1.6986 0.30612031 0.8414 0.10400004 0.9236
1/16 0.00412764 1.8874 0.16005459 0.9355 0.03013737 1.7870
1/32 0.00107618 1.9394 0.08206322 0.9638 0.00811187 1.8934
1/64 0.00027926 1.9463 0.04182879 0.9722 0.00318134 1.3504

The theoretical analysis shows that the rates of convergence are of O(h?) and O(h)
for the velocity in L?-norm and H'-norm, respectively. And the rate of convergence
for the pressure in L? norm is O(h). We take the time step k& = O(h?) and the final
T =1 for our experiments. Tables 3.1 and 3.2 give the numerical results for example
3.1 and 3.2, respectively. The optimal rates of convergence derived in Theorem 3.6 are
supported by these numerical findings. In Figures 3.1 and 3.2 below we present the

error graphs of Examples 3.1 and 3.2, respectively.

Velocity error in L2-norm Velocity error in H-norm N Pressure error in L%-norm

10
—+—Error —+— Error
—e—h ——h

10" 10!

error
error
error

Figure 3.1: Velocity and pressure error for Example 3.1.

At final time ¢ = 1 and h = 27%, i = 2,3,...,5 with H = O(hz) for a choice
of k = h?, we have shown a comparison of computing time (CPU time) between the
“direct solution” and the solution produced by the “three step two-grid method” in
Table 3.3. In this table, we can see that the three-step two-grid method takes almost

half the time that the direct method take. As we add more mesh refreshments, the
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computational time gap between the three-step two-grid method and the direct method

grows.

Velocity error in L2-norm Velocity error in H-norm Pressure error in L%-norm
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Figure 3.2: Velocity and pressure error for Example 3.2.

Table 3.3: Comparison of the “direct solution” versus the “three step two-grid solution”

in terms of computing time (in second) for Example 3.2

h “Direct solution” “Two-grid solution”
1/4 1.97 2.30
1/8 7.68 5.74
1/16 105.16 63.10
1/32 2512.28 1167.20

3.6 Conclusion

In the first part of our work, we have discussed the semidiscrete error analysis for three
step two-grid finite element method applied to the Oldroyd model of order one. We
have proved that the largest scaling between the coarse mesh size H and the fine mesh
size h are h = O(H*7*) and h = O(H3™*) for velocity in L°°(L?)-norm and in L>(H')-
norm. It is h = O(H3*) for the pressure in L>(L?)-norm, for arbitrary small ¢ > 0.
In the second part, we have applied BE method in the temporal direction and have
obtained optimal L2-error estimates for velocity of order k(1 + log %)% Also, we have
found H'-error for the velocity and L?-error for the pressure of order k(1 + log )2,
The error analysis has been carried out for nonsmooth initial data (that is, ug € H}),
which tells us that the singular behaviour of the (discrete) solutions as ¢ — 0 is more

prominent in case of fully discrete error analysis and hence is more involved than usual.
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