
Chapter 4

Penalty Method

This chapter deals with the analysis based on a penalty finite element method for the

Oldroyd model of order one. Our model being a coupled model, the velocity and the

pressure are coupled together by the incompressibility condition, it is difficult to solve

the system numerically due to restrictions on the finite element spaces. Penalty method

is one of the methods that decouples velocity and pressure by penalizing the continuity

equation. We first obtain the a priori and regularity estimates for penalized solution

with nonsmooth initial data. Then, we obtain optimal error bounds for semidiscrete as

well as fully discrete penalized problem. All the results are shown to be uniform in time

under the uniqueness condition. Finally, a few numerical examples are considered to

validate the theoretical findings. Part of this work has been published in [14].

4.1 Introduction

It is known for a long time that coupling of the velocity u and the pressure p by means

of the “incompressibility condition div u = 0” in case of incompressible fluid flow model

is a hurdle in case of numerical computing. A common way to handle this difficulty is

to address the incompressibility condition, in other words, to relax this condition, in

an appropriate way. The standard methods that do the job are the projection method,

the pressure stabilized method, the artificial compressibility method and the penalty

method (see for instance, J. Shen [125] and references therein). We consider to work

with the penalty method, it being the simplest and an effective finite element method

to address this incompressibility.

The main idea of this method is to approximate the pair of solution (u, p) of the
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system (1.4)-(1.6) by the penalized solution (uε, pε) satisfying the following penalized

system:

∂uε
∂t
− µ∆uε −

∫ t
0
β(t− s)∆uε(s) ds+ uε · ∇uε + 1

2
(∇ · uε)uε +∇pε

= f(x, t) in Ω, t > 0

µ∇ · uε + εpε = 0, on Ω, t > 0,

uε|t=0 = uε0, in Ω, uε = 0 on ∂Ω, t ≥ 0.


(4.1)

Note that, we have added a term 1
2
(∇ · uε)uε to the nonlinear term, introduced by

Temam [128], to ensure the dissipativity of the system (4.1). Next, we eliminate the

penalized pressure term pε from (4.1) to find a system of equations in uε as:

∂uε
∂t

+ µAεuε + B̃(uε,uε)−
∫ t

0

β(t− s)∆uε(s) ds = f (4.2)

with uε(0) = uε0, where

Aεw := −∆w − 1

ε
∇(∇ ·w) and B̃(w,φ) := (w · ∇)φ+

1

2
(∇ ·w)φ.

The corresponding weak formulation of penalized Oldroyd model of order one as: Find

(uε(t), pε(t)), t > 0 in H1
0 × L2 satisfying

(uεt,v) + µa(uε,v) +
∫ t

0
β(t− s)a(uε(s),v) ds+ b̃(uε,uε,v)

−(pε,∇ · v) = (f ,v), ∀ v ∈ H1
0,

µ(∇ · uε, χ) + ε(pε, χ) = 0, ∀ χ ∈ L2,

 (4.3)

where

a(w,v) = (∇w,∇v), and b̃(w,φ,v) = (B̃(w,φ),v).

The equivalent weak form of (4.3) reads as: Find uε(t) ∈ H1
0, t > 0 such that

(uεt,v) + µaε(uε,v) +

∫ t

0

β(t− s)a(uε(s),v) ds = (f ,v)− b̃(uε,uε,v), (4.4)

for all v ∈ H1
0 with uε(0) = uε0. Here,

aε(u,v) = a(u,v) +
1

ε
(∇ · u,∇ · v).

For semidiscrete formulation, we consider a finite triangulation Th of the domain Ω̄

where h, 0 < h < 1 is the space discretization parameter. We also consider the finite

element spaces Hh and Lh that approximate the velocity space H1
0 and the pressure

space L2, respectively. For simplicity, we assume that both the spaces comprise of

piecewise linear polynomial functions like MINI element.
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The discrete version of the weak formulations (4.3) reads as: Seek (uεh, pεh) in Hh×Lh
satisfying

(uεht,vh) + µa(uεh,vh) +
∫ t

0
β(t− s)a(uεh(s),vh) ds+ b̃(uεh,uεh,vh)

−(pεh,∇ · vh) = (f ,vh), ∀ vh ∈ Hh,

µ(∇ · uεh, χh) + ε(pεh, χh) = 0, ∀ χh ∈ Lh.

 (4.5)

Choose χh = ∇ · uεh in the second equation of (4.5) and use it to the first equation,

then we obtain for all vh ∈ Hh

(uεht,vh) +µaε(uεh,vh) +

∫ t

0

β(t− s)a(uεh(s),vh)ds = (f ,vh)− b̃(uεh,uεh,vh). (4.6)

The semidiscrete formulation(s) mentioned above are still continuous in time and in a

fully discrete scheme, we further discretize (it) in the temporal direction. We consider

the first-order implicit backward Euler (BE) method to discretize in the time direction.

Assuming [0, T ] to be the time interval, we proceed as follows: Let k = T
N
> 0 be the

time step with tn = nk, n ≥ 0 representing the n-th time step. Here N is a positive

integer. We next define for a sequence {φn}n≥0 ⊂ Hh, the backward difference quotient

∂tφ
n =

1

k
(φn − φn−1).

For any continuous function φ(t) we set φn = φ(tn). We approximate the integral

term in (4.5) by right rectangle rule, the BE method being of first-order, with the

notation βnj = β(tn − tj):

qnr (φ) = k
n∑
j=1

βnjφ
j ≈

∫ tn

0

β(tn − s)φ(s) ds. (4.7)

Now, the fully discrete formulation after applying backward Euler method for the

penalized semidiscrete Oldroyd problem (4.5) read as: Find {Un
ε}1≤n≤N ∈ Hh and

{P n
ε }1≤n≤N ∈ Lh for 1 ≤ n ≤ N satisfying

(∂tU
n
ε ,vh) + µa(Un

ε ,vh) + a(qnr (Uε),vh) = (P n
ε ,∇ · vh) + (fn,vh)

−b̃(Un
ε ,U

n
ε ,vh),∀vh ∈ Hh

µ(∇ ·Un
ε , χh) + ε(P n

ε , χh) = 0, ∀ χh ∈ Lh, n ≥ 0,

 (4.8)

with U0
ε = Phuε0. It can be written in another form for all vh ∈ Hh

(∂tU
n
ε ,vh) + µaε(U

n
ε ,vh) + a(qnr (Uε),vh) = (fn,vh)− b(Un

ε ,U
n
ε ,vh). (4.9)
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Using variant of Brouwer fixed point theorem and standard uniqueness arguments,

one can show the well-posedness of the discrete problem (4.9) as well as (4.8).

The penalty approach was initially introduced by Courant [36] in the context of the

calculus of variations, there has been considerable developments in different directions

by many researchers. For Oldroyd model of order one, the literature is relatively

limited. Only in early 90’s, Kotsiolis and Oskolkov [89] and later Oskolkov [112] have

studied the penalty method for the Oldroyd model of order one and also of higher

orders. After that, Wang et al. [138] have investigated the relations between the

penalty parameter and the time step, for the linearized Oldroyd model of order one. In

fact, they have obtained optimal error estimate for the penalized system and the time

discretized (backward Euler) penalized system. In Wang and He [136], similar results

are observed as in [138], except for the fact that the problem is now nonlinear and the

estimates are uniform, derived under the uniqueness condition. Subsequently, Wang

et. al. have extended the analysis in [139, 140] to the finite element approximations

of (1.4)-(1.6) and have derived the following optimal error estimates for smooth initial

data for all tn ∈ [0, T ], T > 0

τ(tn)‖u(tn)−Un
ε‖H1 +

(
k

n∑
m=0

τ 2(tm)‖p(tm)− P n
ε ‖2

L2

) 1
2 ≤ C(ε+ h+ k),

where τ(tn) = min{tn, 1}.

We would like to point out here that, the optimal error estimate for the spatial

discretization of the penalized system in L∞(L2)-norm is not available till now in the

literature. Also, for the time discretization, there is hardly any result on optimal

error estimate in L∞(L2)-norm. Therefore, in this chapter, an attempt is made to

establish L∞(L2)-norm for both spatial and time-discretization schemes. And unlike

[139], where the initial data uε0 belongs to H1
0 ∩H2, we aim to discuss error analysis

for the nonsmooth initial data, that is, the initial data uε0 in H1
0. The followings are

the primary outcomes of this chapter:

(i) Uniform in time regularity bounds are derived for the penalized solution with

nonsmooth initial data.

(ii) A priori estimates for the semidiscrete as well as fully discrete penalized solution

are established for nonsmooth initial data.
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(iii) Optimal error estimates for the semidiscrete and fully discrete penalty approxi-

mation of the velocity and the pressure are obtained.

(iii) Uniform in time bounds are proved for the discrete solutions.

(iv) Numerical experiments to validate the theoretical findings.

The rest of the part of this chapter comprise of the following sections. Section

4.2 deals with the penalty method and some new a priori results for the penalized

solution. In Section 4.3, the semidiscrete error analysis is carried out and in Section

4.4, BE method is applied to the penalized system. Finally, in the last Section we give

a few numerical experiments that are consistent with our theoretical findings.

Throughout this chapter, C > 0 treats as a generic constant which may depend on the

given data Ω,uε0, f , µ, δ, γ, λ1 and T but not on h, k and ε.

4.2 Preliminaries

We begin this section by considering the assumptions on the given data. Then, we

give few results, which will be used in our later analysis. Next, we study some new a

priori and regularity bounds of penalized solution. Finally, we state the error due to

penalization which is already available in the literature.

We consider the following assumption on the given data for the penalized Oldroyd

model.

(A3) For a constant M0 > 0, the external force f and the initial velocity u0 satisfy

u0 ∈ H1
0 with ‖A

1
2
ε u0‖ ≤M0, and f , ft ∈ L∞([0,∞]; L2) with sup

t>0

{
‖f‖, ‖ft‖

}
≤M0.

Note that the operator Aε, which is associated with the penalty method, is a self-

adjoint and positive operator from H2 ∩H1
0 onto L2, and we can talk of the powers

Arε, r ∈ R. For details, we refer to Temam [18] and Shen [125]. It is observed in [18]

that ‖Aεv‖ is a norm on H2 ∩H1
0 and is, in fact, equivalent to that of H2, i.e.,

‖Aεv‖ ≈ ‖v‖2, (4.10)

with constants depending on ε. But in [18], one of the inequalities (4.10) is proved to

be independent of ε. We present below the following Lemma, to support this. For a

proof, see [18] and [125].



118

Lemma 4.1. For a positive and sufficiently small ε, the following estimates hold:

‖∆v‖ ≤c0‖Aεv‖ ∀ v ∈ H2 ∩H1
0

‖∇v‖ ≤c0‖A
1
2
ε v‖ ∀ v ∈ H1

0

‖A−1
ε v‖ ≤c0‖v‖−2 ∀ v ∈ H−2(Ω),

where c0 > 0 is independent of ε.

We need another estimate, independent of ε, which we state in the next Lemma.

Lemma 4.2. For ε > 0 sufficiently small, the following holds:

‖A−
1
2

ε v‖ ≤ c0‖v‖−1 ∀ v ∈ H−1(Ω).

Proof. With w ∈ H1
0, we use Lemma 4.1 to find that

(A
− 1

2
ε v,w) = (v, A

− 1
2

ε w) ≤ ‖v‖−1‖∇(A
− 1

2
ε w)‖ ≤ c0‖v‖−1‖w‖,

and

‖A−
1
2

ε v‖ = sup
06=w∈L2

(A
− 1

2
ε v,w)

‖w‖
≤ c0‖v‖−1.

This completes the proof. Alternative way is to consider the following problem: Let

w be a solution of

Aεw = v, w|∂Ω = 0.

Clearly ‖Aεw‖ = ‖v‖ and

‖A
1
2
ε w‖2 = (Aεw,w) = (v,w) = (A

− 1
2

ε v, A
1
2
ε w) ≤ ‖A−

1
2

ε v‖‖A
1
2
ε w‖

and therefore,

‖A
1
2
ε w‖ ≤ ‖A−

1
2

ε v‖. (4.11)

Now, using (4.11) and Lemma 4.1, we note that

‖A−
1
2

ε v‖2 = (A−1
ε v,v) = (A−1

ε v, Aεw) = (v,w) ≤ ‖v‖−1‖∇w‖

≤ c0‖v‖−1‖‖A
1
2
ε w‖ ≤ c0‖v‖−1‖‖A

− 1
2

ε v‖.

This concludes the desired proof.
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From the definition of b̃(·, ·, ·), we can easily check with the help of integration by parts

that

b̃(w,φ,v) =
1

2

{
b(w,φ,v)− b(w,v,φ)

}
, ∀v,w,φ ∈ H1

0,

where,

b(w,φ,v) = ((w · ∇)φ,v).

Hence,

b̃(w,φ,φ) = 0, and b̃(w,φ,v) = −b̃(w,φ,v), ∀ v,w,φ ∈ H1
0. (4.12)

We now present below a few bounds for nonlinear term b(·, ·, ·) which will be used for

our later analysis. The proofs go similar to [80] with a use of Lemma 4.1.

Lemma 4.3. [80] Suppose the condition (A1) is satisfied. Then, the trilinear form

b(·, ·, ·) satisfies the following properties:

|b(v,w,φ)| = C



‖v‖ 1
2‖A

1
2
ε v‖ 1

2‖A
1
2
ε w‖ 1

2‖Aεw‖
1
2‖φ‖, ∀v,φ ∈ H1

0,w ∈ H1
0 ∩H2,

‖A
1
2
ε v‖ 1

2‖Aεv‖
1
2‖w‖ 1

2‖A
1
2
ε w‖ 1

2‖φ‖, ∀w,φ ∈ H1
0,v ∈ H1

0 ∩H2,

‖v‖ 1
2‖A

1
2
ε v‖ 1

2‖w‖ 1
2‖A

1
2
ε w‖ 1

2‖A
1
2
ε φ‖, ∀v,w,φ ∈ H1

0,

‖v‖‖A
1
2
ε w‖ 1

2‖Aεw‖
1
2‖A

1
2
ε φ‖, ∀v,φ ∈ H1

0,w ∈ H1
0 ∩H2,

‖v‖‖w‖ 1
2‖A

1
2
ε w‖ 1

2‖A
1
2
ε φ‖‖Aεφ‖, ∀v,w,∈ H1

0,φ ∈ H1
0 ∩H2,

‖v‖ 1
2‖A

1
2
ε v‖ 1

2‖w‖‖A
1
2
ε φ‖‖Aεφ‖, ∀v,w,∈ H1

0,φ ∈ H1
0 ∩H2.

We recall the following result, which is a counter part of the L’Hospital rule.

Theorem 4.1. (“Stolz-Cesaro Theorem”) Let us assume two real sequences {φn}∞n=0

and {ψn}∞n=0 with {ψn}∞n=0 is divergent and strictly monotone. If

lim
n→∞

(
φn − φn−1

ψn − ψn−1

)
= l,

then

lim
n→∞

(
φn

ψn

)
= l,

holds.

4.2.1 A Priori and Regularity Estimates for the Penalized

Solution

We take a quick glance into the a priori estimates of the penalized problem.
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Lemma 4.4. Suppose the condition (A1) and (A3) hold. Moreover, assume 0 < α <

min (δ, µλ1/2c
2
0). Then, the penalized solution uε(t) satisfies the following results for

any t > 0:

‖A
r
2
ε uε(t)‖2 + e−2αt

∫ t

0

e2αs‖A
r+1
2

ε uε(s)‖2ds ≤ C, r ∈ {0, 1}.

where C > 0 is a constant may depends on given data but not depend on ε.

Proof. Choose v = uε in (4.4) and use the “Cauchy-Schwarz inequality”, the “Poincaré

inequality” with Lemma 4.1 (‖uε‖2 ≤ 1
λ1
‖∇uε‖2 ≤ c20

λ1
‖A

1
2
ε uε‖2) for the term on the

right left of equality. Then we obtain

d

dt
‖uε‖2 + µ‖A

1
2
ε uε‖2 + 2

∫ t

0

β(t− s)a(uε(s),uε) ds ≤
c2

0

µλ1

‖f‖2. (4.13)

Note that the nonlinear term vanishes due to (4.12). Multiply (4.13) by e2αt, then

with ûε = eαtuε, we find that

d

dt
‖ûε‖2 − 2α‖ûε‖2 + µ‖A

1
2
ε ûε‖2 + 2e2αt

∫ t

0

β(t− s)a(uε(s),uε) ds =
c2

0

µλ1

‖f̂‖2.

After integration, the resulting double integral term drops out, since it is positive (see,

Lemma 1.5), since by our assumption δ > α > 0. Using the “Poincaré inequality”

with Lemma 4.1, we reach at

‖ûε(t)‖2 + (µ− 2c2
0α

λ1

)

∫ t

0

‖A
1
2
ε ûε(s)‖2ds ≤ ‖uε0‖2 +

c2
0(e2αt − 1)

2αµλ1

‖f‖2
∞.

With 0 < α < min (δ, µλ1/2c
2
0), we have µ − 2c20α

λ1
= β1 > 0. Finally, we multiply

throughout by e−2αt to conclude that

‖uε(t)‖2 + β1e
−2αt

∫ t

0

e2αs‖A
1
2
ε uε(s)‖2ds ≤ e−2αt‖uε0‖2 +

c2
0(1− e−2αt)

2αµλ1

‖f‖2
∞, (4.14)

which concludes the proof for the case r = 0. For the second estimate, first we integrate

(4.13) from t to t+ T0, for a fixed T0 and use (4.14) to find

‖uε(t+ T0)‖2 + µ

∫ t+T0

t

‖A
1
2
ε uε(s)‖2ds ≤ ‖uε(t)‖2 +

c2
0T0

µλ1

‖f‖2
∞. (4.15)

Then, put v = Aεuε in (4.4), we deduce that

1

2

d

dt
‖A

1
2
ε uε‖2 + µ‖Aεuε‖2 +

∫ t

0

β(t− s)(−∆uε(s), Aεuε)ds

= (f , Aεuε)− b̃(uε,uε, Aεuε). (4.16)
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We use the “Cauchy-Schwarz inequality” and the “Young’s inequality” to bound the

following as

|(f , Aεuε)− b̃(uε,uε, Aεuε)| ≤ ‖f‖‖Aεuε‖+ 2
1
2‖uε‖

1
2‖A

1
2
ε uε‖‖Aεuε‖3/2

≤ 3

2µ
‖f‖2 + (

9

2µ
)3‖uε‖2‖A

1
2
ε uε‖4 +

µ

3
‖Aεuε‖2. (4.17)

A use of (4.17) in (4.16) yields

d

dt
‖A

1
2
ε uε‖2 +

4µ

3
‖Aεuε‖2 + 2

∫ t

0

β(t− s)(−∆uε(s), Aεuε)ds

≤ 3

µ
‖f‖2 + 2(

9

2µ
)3‖uε‖2‖A

1
2
ε uε‖4. (4.18)

Choose γ0 > 0, then a use of “Cauchy-Schwarz inequality” shows

γ0‖A
1
2
ε uε‖ = γ0(Aεuε,uε) ≤ γ0‖Aεuε‖‖uε‖ ≤

µ

3
‖Aεuε‖2 +

3

4µ
γ2

0‖uε‖2. (4.19)

Now, add γ0‖A
1
2
ε uε‖ on both sides of (4.18) and use (4.19) with the “Poincaré inequal-

ity”, and Lemma 4.1 (µ‖Aεuε‖2 ≥ µλ1
c20
‖A

1
2
ε uε‖2) to find

d

dt
‖A

1
2
ε uε‖2 +

(
γ0 +

µλ1

c2
0

− 2(
9

2µ
)3‖uε‖2‖A

1
2
ε uε‖2

)
‖A

1
2
ε uε‖2

+ 2

∫ t

0

β(t− s)(−∆uε(s), Aεuε)ds ≤
3

µ
‖f‖2 +

3

4µ
γ2

0‖uε‖2. (4.20)

Setting

h(t) = γ0 +
µλ1

c2
0

− 2(
9

2µ
)3‖uε‖2‖A

1
2
ε uε‖2. (4.21)

Then, using (A3) and (4.14) in (4.20), we deduce that

d

dt
‖A

1
2
ε uε‖2+h(t)‖A

1
2
ε uε‖2 + 2

∫ t

0

β(t− s)(−∆uε(s), Aεuε)ds ≤ C.

Multiply both sides by e
∫ t
0 h(τ)dτ and tale time integration to obtain

‖A
1
2
ε uε(t)‖2 + 2e−

∫ t
0 h(τ) dτ

∫ t

0

e
∫ s
0 h(τ) dτ

∫ s

0

β(s− τ)(−∆uε(τ), Aεuε(s))dτds

≤ e−
∫ t
0 h(τ) dτ‖A

1
2
ε uε0‖2 + C

∫ t

0

e−
∫ t
s h(τ) dτ ds. (4.22)

We integrate (4.21) from t to t+ T0, for a fixed T0 and use (4.14) and (4.15) to find∫ t+T0

t

h(s)ds = (γ0 +
µλ1

c2
0

)T0 − 2(
9

2µ
)3

∫ t+T0

t

‖uε‖2‖A
1
2
ε uε‖2ds

≥ (γ0 +
µλ1

c2
0

)T0 −K1.
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Choose γ0 such that K1 = γ0T0 then with 0 < α < min (δ, µλ1/2c
2
0), we obtain∫ t+T0

t

h(s)ds ≥ T0
µλ1

c2
0

≥ 2αT0.

Next, we choose two non-negative integers l1 and l2 such that l1T0 ≤ s ≤ (l1 + 1)T0

and l2T0 ≤ t ≤ (l2 + 1)T0. From (4.21), we have h(t) ≤ (γ0 + µλ1
c20

). Then, we find that

∫ t

s

h(τ)dτ =

∫ (l2+1)T0

l1T0

h(τ)dτ −
∫ s

l1T0

h(τ)dτ −
∫ (l2+1)T0

t

h(τ)dτ

≥ (l2 + 1− l1)2αT0 − (γ0 +
µλ1

c2
0

)T0 − (γ0 +
µλ1

c2
0

)T0

≥ (t− s)2α− 2(γ0 +
µλ1

c2
0

)T0. (4.23)

A use of (4.23) in the right of inequality (4.22) yields

‖A
1
2
ε uε(t)‖2 + 2e−

∫ t
0 h(τ) dτ

∫ t

0

e
∫ s
0 h(τ) dτ

∫ s

0

β(s− τ)(−∆uε(τ), Aεuε(s))dτds

≤ e
2(γ0+

µλ1
c20

)T0
(
e−2αt‖Aεuε0‖2 +

C

2α
(1− e−2αt)

)
. (4.24)

Now, it is enough to show that the double integral term is positive. For this, we use

the property ∆uε = ∇(∇ · uε)−∇×∇× uε, then we obtain

(−∆uε, Aεuε) = (−∆uε,−∆uε −
1

ε
∇(∇ · uε))

= (∆uε,∆uε) + (∆uε,
1

ε
∇(∇ · uε))

= (∆uε,∆uε) +
1

ε
(∇(∇ · uε)−∇×∇× uε,∇(∇ · uε)) (4.25)

= (∆uε,∆uε) +
1

ε
(∇(∇ · uε),∇(∇ · uε))−

1

ε
(∇×∇× uε,∇(∇ · uε)).

Note that

(∇×∇× uε,∇(∇ · uε)) = −〈∇× uε,∇× (∇(∇ · uε))〉+ (∇× uε,∇(∇ · uε))∂Ω

Since curl of gradient of a scalar is zero, so ∇ × (∇(∇ · uε)) = 0 in the sense of

distribution and since uε vanishes on the boundary, so the last term on the right of

inequality (4.25) vanishes. Hence, a use of (4.23) yields∫ t

0

e
∫ s
0 h(τ) dτ

∫ s

0

β(s− τ)(−∆uε(τ), Aεuε(s))dτds

≥ e
−2(γ0+

µλ1
c20

)T0
∫ t

0

e2αs

∫ s

0

β(s− τ)
(

(∆uε(τ),∆uε(s))



123

+
1

ε
(∇(∇ · uε(τ)),∇(∇ · uε(s)))

)
dτds ≥ 0.

So, we drop the second term from the left of inequality (4.24) to reach at

‖A
1
2
ε uε(t)‖ ≤ C. (4.26)

Finally, we multiply (4.18) by e2αt and take time integration and use (4.26) to conclude

the remaining of the proof.

Remark 4.1. The results in Lemma 4.4 are uniform in time, which are sufficient to

prove the existence of a global weak solution of the penalized system. In fact, with the

regularity results (that are established below), we are now in a position to establish

a unique global strong solution of the penalized system. We refrain from going into

the details, as the procedure of establishing existence and uniqueness of solution of the

system (4.2) as well as of (4.1) follows similar techniques as done in [63].

Lemma 4.5. Suppose the hypothesis of Lemma 4.4 be satisfied. Then, for any t > 0,

the following results hold:

‖A
1
2
ε uε(t)‖2 + e−2αt

∫ t

0

e2αs‖uεs(s)‖2ds ≤ C,

τ ∗(t)‖Aεuε(t)‖2 + τ ∗(t)‖uεt(t)‖2 + e−2αt

∫ t

0

σ(s)‖A
1
2
ε uεs(s)‖2ds ≤ C,

where σ(t) = e2αtτ ∗(t) and τ ∗(t) = min{1, t}.

Proof. For the first one, we take v = e2αtuεt in (4.4) to establish

µ

2

d

dt
‖A

1
2
ε ûε‖2 + ‖ûεt‖2 = αµ‖A

1
2
ε ûε‖2 + (f̂ ,uεt)− e2αtb̃(uε,uε,uεt)

+e2αt

∫ t

0

β(t− s)(∆uε(s),uεt) ds.

After using Lemma 4.3 and the “Cauchy-Schwarz inequality” and Lemma 4.1, we take

time integration to obtain

µ‖A
1
2
ε ûε(t)‖2 +

∫ t

0

‖ûεs(s)‖2ds ≤ C

[ ∫ t

0

(
‖A

1
2
ε ûε‖2 + ‖f̂‖2 + ‖Aεûε‖2

)
ds

+

∫ t

0

‖A
1
2
ε uε‖2‖Aεûε‖2 ds+

∫ t

0

e2αs
(∫ s

0

β(s− τ)‖A
1
2
ε uε(τ)‖ dτ

)2

ds

]
. (4.27)

The double integral term in (4.27) can be written in a single integral similar to the

estimate (2.17) of Chapter 2. Finally, a use of Lemma 4.4 concludes the proof of the
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first estimate.

For the second one, we differentiate (4.4) with respect to time to arrive

(uεtt,v) + µaε(uεt,v) + β(0)a(uε,v) +

∫ t

0

βt(t− s)a(uε(s),v) ds

= −b̃(uεt,uε,v)− b̃(uε,uεt,v) + (ft,v), ∀v ∈ H1
0. (4.28)

Set v = σ(t)uεt in (4.28) and use βt(t− s) = −δβ(t− s) and β(0) = γ to obtain

1

2

d

dt
(σ(t)‖uεt‖2) + µσ(t)‖A

1
2
ε uεt‖2 =

1

2
σt(t)‖uεt‖2 − σ(t)b̃(uεt,uε,uεt)

+σ(t)(ft,uεt) + γσ(t)a(uε,uεt) + δσ(t)

∫ t

0

β(t− s)a(uε(s),uεt)ds. (4.29)

A use of Lemma 4.3 with the “Young’s inequality” yields

|b̃(uεt,uε,uεt)| ≤ C‖uεt‖
1
2‖A

1
2
ε uεt‖

1
2‖A

1
2
ε uε‖‖uεt‖

1
2‖A

1
2
ε uεt‖

1
2

≤ C(µ)‖uεt‖2‖A
1
2
ε uε‖2 +

µ

2
‖A

1
2
ε uεt‖2. (4.30)

Using the fact σ(t) ≤ e2αt, σt(t) ≤ e2αt and (4.30) in (4.29), we take time integration

and use the “Cauchy Schwarz inequality” with Lemma 4.1 to derive

σ(t)‖uεt(t)‖2 + µ

∫ t

0

σ(s)‖A
1
2
ε uεs(s)‖2ds

≤ C

[ ∫ t

0

(
‖ûεs(s)‖2 + ‖ûεs(s)‖2‖A

1
2
ε ûε(s)‖)ds

∫ t

0

‖f̂s‖2ds

+

∫ t

0

‖A
1
2
ε ûε(s)‖2ds+

∫ t

0

(∫ s

0

β(s− τ)eα(s−τ)‖A
1
2
ε ûε(τ)‖ dτ

)2

ds

]
(4.31)

We estimate the double integral as above and then use the first result of this lemma.

Finally multiply by e−2αt to establish the last part of the required result. To estimate

‖Aεuε‖, we choose v = Aεuε in (4.4) and apply Lemma 4.3 with Lemma 4.1 to arrive

µ‖Aεuε‖2 ≤ C
(
‖uεt‖2 + ‖uε‖2‖A

1
2
ε uε‖4 +

(∫ t

0

β(t− s)‖Aεuε(s)‖ds
)2

+ ‖f‖2
)
.

Multiply both sides by σ(t) and use (4.31) to concludes the remaining of proof.

Now we present the error due to penalization. For a proof, see [136, Theorem 4.1].

Theorem 4.2. “Let us assume the hypothesis of Lemma 4.4 be satisfied, then the

following holds true

τ ∗(t)‖(u− uε)(t)‖2 + (τ ∗)2(t)‖∇(u− uε)(t)‖2 + e−2αt

∫ t

0

σ1(s)‖(p− pε)(s)‖2ds ≤ Cε2,
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where the positive constant C depends exponentially on time and σ1(t) = (τ ∗(t))2e2αt.

The above estimate is uniform in time under the uniqueness condition:

N

ν2
‖f∞‖−1 < 1 and N = sup

u,v,w

b̃(u,v,w)

‖∇u‖‖∇v‖‖∇w‖
, (4.32)

where ν = µ
2

+ γ
δ

and ‖f∞‖−1 = ‖f‖L∞(0,∞;H−1(Ω)).”

4.3 Semidiscrete Formulation

In this section, we first define some operators which will be used for our analysis. Then,

we concentrate on a priori and regularity results of semidiscrete solution. Finally, we

discuss about the error analysis due to space discretization.

We begin by defining a discrete analogue Aεh : Hh → Hh of Aε satisfying

(Aεhwh,vh) = a(wh,vh) +
1

ε
(∇ ·wh,∇ · vh), ∀wh,vh ∈ Hh. (4.33)

Let us now define two linear inverse operators A−1
ε : L2 → H1

0 and A−1
εh : Hh → Hh as

follows: For g ∈ L2,

aε(A
−1
ε g,φ) = (∇A−1

ε g,∇φ) +
1

ε
(∇ · A−1

ε g,∇ · φ) = (g,φ), ∀φ ∈ H1
0,

aε(A
−1
εh Phg,φh) = (∇A−1

εh Phg,∇φh) +
1

ε
(∇ · A−1

εh Phg,∇ · φh) = (Phg,φh),∀φh ∈ Hh.

Now, arguing in similar lines of [79, Corollary 4.3], one can obtain the followings:

Proposition 4.1. The map ∆−1
h Ph∆ : H1

0 ∩H2 → Hh satisfying

‖v −∆−1
h Ph∆v‖+ h‖∇(v −∆−1

h Ph∆v)‖ ≤ Ch2‖∆v‖,

and the map A−1
εh PhAε : H1

0 ∩H2 → Hh satisfying

‖v − A−1
εh PhAεv‖+ h‖∇(v − A−1

εh PhAεv)‖ ≤ Ch2‖Aεv‖.

We now present the discrete version of the Lemma 4.1 and 4.2.

Lemma 4.6. For ε > 0 sufficiently small, the following estimates hold:

‖∇vh‖ ≤ c0‖A
1
2
εhvh‖, ∀ vh ∈ Hh,

‖∆hvh‖ ≤ c0‖Aεhvh‖, ∀ vh ∈ Hh,

‖A−
r
2

εh vh‖ ≤ c0‖vh‖−r, ∀ vh ∈ Hh, r ∈ {1, 2}.
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Proof. Let vh ∈ Hh and Aεhvh = g. With qh = −1
ε
∇ · vh, (4.33) can be written as

(∇vh,∇φh)− (qh,∇ · φh) = (g,φh), ∀φh ∈ Hh,

(∇ · vh, ψh) + ε(qh, ψh) = 0, ∀ψh ∈ Lh.

From regularity estimate, one can find that (see, [18, (1.20)])

‖∆hvh‖+ ‖∇qh‖ ≤ c0‖g‖+ εc0‖∇qh‖.

Now choose ε sufficiently small such that c0ε < 1, then we conclude the second result.

For the first result, we choose φh = vh in (4.33) and arrive at

‖A
1
2
εhvh‖

2 = ‖∇vh‖2 +
1

ε
‖∇ · vh‖2 ≥ ‖∇vh‖2.

For the third one, let wh be the solution of A
r
2
εhwh = A

− r
2

εh vh.

‖A−
r
2

εh vh‖2 = (A
r
2
εhwh, A

− r
2

εh vh) = (wh,vh) ≤ ‖wh‖r‖vh‖−r

≤ c0‖A
r
2
εhwh‖‖vh‖−r ≤ c0‖A

− r
2

εh vh‖‖vh‖−r.

Cancelling one ‖A−
r
2

εh vh‖ from both sides concludes the remaining of the proof.

4.3.1 A Priori Estimates

The a priori estimates in the semidiscrete case is similar to those of the continuous

case (see Lemma 4.4 and 4.5) and in fact, the proofs are also similar to the continuous

case.

Lemma 4.7. Let us assume the hypothesis of Lemma 4.4 be satisfied. In addition,

we assume that (B1) and (B2) hold. Then, with uεh(0) = Phuε0, the following result

holds for any t > 0:

‖uεh(t)‖2 + e−2αt

∫ t

0

e2αs‖A
1
2
εhuεh(s)‖

2ds+ ‖A
1
2
εhuεh(t)‖

2 ≤ C,

where C > 0 is a constant may depends on the given data but not on ε and h.

Proof. We take vh = uεh in (4.6) and follow the exact sequence of arguments as in the

proof of Lemma 4.4 to find

‖uεh(t)‖2 + β1e
−2αt

∫ t

0

e2αs‖A
1
2
εhuεh(s)‖

2ds ≤ e−2αt‖Phuε0‖2 +
c2

0

2αµλ1

‖f‖2
∞, (4.34)
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where β1 = µ− 2c20α

λ1
. This concludes the first part of the proof.

Now, we obtain two intermediate estimates which will be used in the last part of the

proof. A simple modification of the above estimate (4.34) gives

‖uεh(t)‖2 + µe−2αt

∫ t

0

‖A
1
2
εhûεh(s)‖

2ds ≤ e−2αt‖Phuε0‖2 +
c2

0(1− e−2αt)

2αµλ1

‖f‖2
∞

+2αe−2αt

∫ t

0

‖ûεh(s)‖2ds.

Take limit supremum as t→∞, then a use of L’Hospital rule yields

µ

2α
lim sup
t→∞

‖A
1
2
εhuεh(t)‖

2 ≤ c2
0

2αµλ1

‖f‖2
∞. (4.35)

Again, in the process of obtaining the estimate (4.34), if we avoid multiplying e2αt and

simply integrate, we find that

‖uεh(t)‖2 + µ

∫ t

0

‖A
1
2
εhuεh(s)‖

2ds ≤ ‖Phuε0‖2 +
c2

0t

µλ1

‖f‖2
∞. (4.36)

Armed with these estimates, we now proceed for the second part. Choose vh = Aεhuεh

and use the similar set of analysis of (4.17) to find

d

dt
‖A

1
2
εhuεh‖

2 + µ‖Aεhuεh‖2 ≤ 3

µ
‖f‖2 + 2(

9

2µ
)3‖uεh‖2‖A

1
2
εhuεh‖

4

+
3

µ

(∫ t

0

β(t− s)‖∆huεh(s)‖ds
)2

. (4.37)

We rewrite the integral term as

3

µ

(∫ t

0

β(t− s)‖∆huεh(s)‖ds
)2

≤ 3γ2c2
0e
−2αt

2µ(δ − α)

∫ t

0

‖Aεhûεh(s)‖2ds.

Use this in (4.37), then multiply by e2αt and take time integration to obtain

‖A
1
2
εhûεh(t)‖2 + µ

∫ t

0
‖Aεhûεh‖2ds ≤ ‖A

1
2
εhuεh(0)‖2 + 2α

∫ t

0
‖A

1
2
εhûεh‖

2ds+
3

µ

∫ t

0

ˆ‖f‖
2
ds

+ 2(
9

2µ
)3

∫ t

0
‖uεh‖2‖A

1
2
εhuεh‖

2‖A
1
2
εhûεh‖

2ds+
3γ2c2

0

2µ(δ − α)

∫ t

0

∫ s

0
‖Aεhûεh(τ)‖2dτds. (4.38)

We set

g(t) := max

{
2(

9

2µ
)3‖uεh‖2‖A

1
2
εhuεh‖

2,
3γ2c2

0

2µ2(δ − α)

}
,

and now from (4.38), we obtain

‖A
1
2
εhûεh(t)‖

2 + µ

∫ t

0

‖Aεhûεh‖2ds ≤ ‖A
1
2
εhuεh(0)‖2 + 2α

∫ t

0

‖A
1
2
εhûεh‖

2ds+
3

µ

∫ t

0

ˆ‖f‖
2
ds

+

∫ t

0

(
‖A

1
2
εhûεh‖

2ds+ µ

∫ s

0

‖Aεhûεh(τ)‖2dτ
)
g(s) ds.
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We use the “Gronwall’s lemma” to deduce

‖A
1
2
εhuεh(t)‖

2 + µe−2αt

∫ t

0

‖Aεhûεh‖2ds ≤ e−2αt
(
‖A

1
2
εhuεh(0)‖2 + 2α

∫ t

0

‖A
1
2
εhûεh‖

2ds

+
3

µ

∫ t

0

ˆ‖f‖
2
ds
)

exp{
∫ t

0

g(s)ds}. (4.39)

Note that, for a fixed and finite T0 with 0 < t ≤ T0, we use (4.34) and (4.36) to find∫ T0

0

g(s)ds ≤ CT0. (4.40)

We now use (4.34) and (4.40) in (4.39) to obtain

‖A
1
2
εhuεh(t)‖

2 + µe−2αt

∫ t

0

‖Aεhûεh‖2ds ≤ C(α, µ, λ1, c
2
0,M0, γ, δ, T0). (4.41)

Therefore, the inequality (4.41) is valid for all finite, but fixed time T0 > 0. Also from

(4.35), we can say that lim supt→∞ ‖A
1
2
εhuεh(t)‖ is bounded, which together leads that

‖A
1
2
εhuεh(t)‖ is bounded for all t > 0, which concludes the remaining of the proof.

Lemma 4.8. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, for any

t > 0, the following results hold,

‖A−
1
2

εh uεht(t)‖2 + e−2αt

∫ t

0

e2αs‖uεhs(s)‖2ds ≤ C,

τ ∗(t)‖uεht(t)‖2 + e−2αt

∫ t

0

σ(s)‖A
1
2
εhuεhs(s)‖

2ds ≤ C,

where σ(t) = e2αtτ ∗(t) and τ ∗(t) = min{1, t}.

Proof. First, we differentiate (4.6) with respect to time to deduce

(uεhtt,vh) + µaε(uεht,vh) + β(0)a(uεh,vh) +

∫ t

0

βt(t− s)a(uεh(s),vh) ds

= −b̃(uεht,uεh,vh)− b̃(uεh,uεht,vh) + (ft,vh), ∀vh ∈ Hh. (4.42)

Now set vh = A−1
εh uεht in (4.42) with βt(t− s) = −δβ(t− s) and β(0) = γ to obtain

1

2

d

dt
(‖A−

1
2

εh uεht‖2) + µ‖uεht‖2 ≤ δ

∫ t

0

β(t− s)a(uεh(s), A
−1
εh uεht)ds− γa(uεh, A

−1
εh uεht)

−b̃(uεht,uεh, A−1
εh uεht)− b̃(uεh,uεht, A−1

εh uεht) + (ft, A
−1
εh uεht). (4.43)

A use of Lemma 4.3 with Lemma 4.6 and the “Young’s inequality” yield

| − b̃(uεht,uεh, A−1
εh uεht)− b̃(uεh,uεht,A−1

εh uεht)| ≤ C‖uεht‖3/2‖A−
1
2

εh uεh‖
1
2‖A

1
2
εhuεh‖
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≤ C‖A−
1
2

εh uεh‖2‖A
1
2
εhuεh‖

4 +
µ

4
‖uεht‖2. (4.44)

We bound the followings using the “Cauchy-Schwarz inequality” and the “Young’s

inequality” with Lemma 4.6:∫ t

0

β(t− s)a(uεh(s), A
−1
εh uεht)ds− γa(uεh, A

−1
εh uεht) + (ft, A

−1
εh uεht)

≤ C
(
‖uεh‖2 + ‖ft‖2 +

( ∫ t

0

β(t− s)‖uεh(s)‖ds
)2
)

+
µ

4
‖uεht‖2

≤ C
(
‖uεh‖2 + ‖ft‖2 +

∫ t

0

e2αs‖uεh(s)‖2ds
)

+
µ

4
‖uεht‖2. (4.45)

We use (4.44) and (4.45) in (4.43) to find

d

dt
(‖A−

1
2

εh uεht‖2) + µ‖uεht‖2 ≤ C
(
‖uεh‖2 + ‖ft‖2 +

∫ t

0

e2αs‖uεh(s)‖2ds
)

+C‖A−
1
2

εh uεh‖2‖A
1
2
εhuεh‖

4. (4.46)

Now, we drop the second term from the left of inequality (4.46) and use the “uniform

Gronwall’s lemma” with Lemma 4.7 to conclude that ‖A−
1
2

εh uεht(t+ T0)‖2 is uniformly

bounded with respect to time, which simply says, ‖A−
1
2

εh uεht(t)‖2 is uniformly bounded

on [T0,∞). Also, a use of the “classical Gronwall’s lemma” implies that ‖A−
1
2

εh uεht(t)‖2

is bounded on (0, T0). Hence, both of these lead to

‖A−
1
2

εh uεht(t)‖2 ≤ C, t > 0. (4.47)

We now multiply (4.46) by e2αt and take time integration on the both sides. Then, we

use (4.47) and Lemma 4.7 and multiply by e−2αt to conclude the first result.

For the second proof, we set vh = σ(t)uεht in (4.42) to obtain

1

2

d

dt
(σ(t)‖uεht‖2) + µσ(t)‖A

1
2
εhuεht‖

2 =
1

2
σt(t)‖uεht‖2 − γσ(t)a(uεh,uεht)

+ δσ(t)

∫ t

0

β(t− s)a(uεh(s),uεht)ds− σ(t)b̃(uεht,uεh,uεht) + σ(t)(ft,uεht). (4.48)

A use of Lemma 4.3 with the “Young’s inequality” yields

|b̃(uεht,uεh,uεht)| ≤ C‖uεht‖
1
2‖A

1
2
εhuεht‖

3/2‖uεh‖
1
2‖A

1
2
εhuεh‖

1
2

≤ C(µ)‖uεht‖2 +
µ

2
‖A

1
2
εhuεht‖

2. (4.49)

After using the fact σ(t) ≤ e2αt, σt(t) ≤ e2αt and (4.49) in (4.48), we take time inte-

gration and apply the “Cauchy-Schwarz inequality” to find

σ(t)‖uεht‖2 + µ

∫ t

0

σ(s)‖A
1
2
εhuεhs(s)‖

2ds ≤ C

[ ∫ t

0

e2αs
(
‖uεhs‖2 + ‖A

1
2
ε uεh‖2+‖fs‖2)ds
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+

∫ t

0

e2αs
(∫ s

0

β(s− τ)‖A
1
2
εhuεh(τ)‖ dτ

)2

ds

]
. (4.50)

The double integral term in (4.50) can be written in a single integral similar to Lemma

4.4. We use the first estimate of this lemma and use Lemma 4.7. Finally, multiply by

e−2αt to establish the second result.

Lemma 4.9. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, for any

t > 0, the following results hold:

e−2αt

∫ t

0

σr(s)‖A(r−2)/2
εh uεhss‖2ds ≤ C, r ∈ {0, 1, 2}.

Proof. The proof is quite similar for the cases r = 0, 1 and r = 2. Therefore we sketch

a proof for the r = 0 case. For r = 1, we simply point out the extra term and its

estimate. And for r = 2 case, it follows r = 1, and hence is avoided completely.

For r = 0, choose vh = e2αtA−2
εh uεhtt in (4.42) to obtain

e2αt‖A−1
εh uεhtt‖2 +

µ

2

d

dt
(e2αt‖A−

1
2

εh uεht‖2 ≤ e2αt
(
µα‖A−

1
2

εh uεht‖2

− β(0)a(uεh, A
−2
εh uεhtt)− b̃(uεht,uεh, A−2

εh uεhtt)− b̃(uεh,uεht, A−2
εh uεhtt)

+ (ft, A
−2
εh uεhtt)−

∫ t

0

βt(t− s)a(uεh(s), A
−2
εh uεhtt)ds

)
.

Use (4.12) and Lemma 4.3 with Lemma 4.6 to bound the followings as

| − b̃(uεht,uεh, A−2
εh uεhtt)− b̃(uεh,uεht, A−2

εh uεhtt)|

≤ |b̃(uεht,uεh, A−2
εh uεhtt)|+ |b̃(uεh, A−2

εh uεhtt,uεht)|

≤ C‖uεht‖2‖A
1
2
εhuεh‖

2 +
1

4
‖A−1

εh uεhtt‖2.

Now using above result, we finally obtain

e2αt‖A−1
εh uεhtt‖2 +

µ

2

d

dt
(e2αt‖A−

1
2

εh uεht‖2) ≤ Ce2αt
(
‖A−

1
2

εh uεht‖2 + ‖uεht‖2‖A
1
2
εhuεh‖

2

+‖uεh‖2 + ‖ft‖2 + (

∫ t

0

βt(t− s)‖uεh‖ds)2
)
.

Integrate both the sides and use Lemmas 4.7 and 4.8 to conclude the proof in the

case r = 0. For r = 1, we choose vh = σ(t)A−1
εh uεhtt in (4.42) and proceed as above.

Due to the presence of σ(t), we see a variational crime, an extra term in the form of∫ t
0
σt(t)‖uεht‖2ds, which can be estimated using Lemma 4.8. This completes the case

r = 1 and the overall proof.
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Lemma 4.10. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, the fol-

lowing result holds for 0 ≤ t ≤ T0,

τ ∗(t)‖Aεhuεh‖2 + e−2αt

∫ t

0

e2αs‖Aεhuεh‖2ds ≤ C

where τ ∗(t) = min{1, t}.

Proof. From (4.41), we obtain the second part. To estimate ‖Aεhuεh‖, we choose

vh = Aεhuεh in (4.6) and use Lemmas 4.3 and 4.6 and the “Young’s inequality” to find

‖Aεhuεh‖2 ≤ C
(
‖uεht‖2 + ‖uεh‖2‖A

1
2
εhuεh‖

4 +
(∫ t

0

β(t− s)‖Aεhuεh(s)‖ds
)2

+ ‖f‖2
)
.

Now multiply both sides by σ(t) and use (4.50) to concludes the remaining of the

proof.

Remark 4.2. Since the estimate (4.41) is valid for 0 < t ≤ T0. Hence, the result

in Lemma 4.10 is only local and not uniform with respect to time. This is either

a technical problem which we have not been able to resolve or a shortcoming of the

penalised scheme for our model.

4.3.2 Error Analysis for the Velocity

In this subsection, we analyze the semidiscrete penalized velocity. Let us denote eε =

uε − uεh, then from (4.4) and (4.6), we find

(eεt,vh) + µaε(eε,vh) +

∫ t

0
β(t− τ)a(eε(τ),vh) dτ = b̃(uεh,uεh,vh)− b̃(uε,uε,vh). (4.51)

We first introduce an intermediate solution wεh satisfy the following linearized penal-

ized Oldroyd model, that is, wεh is a solution of

(wεht,vh)+µaε(wεh,vh)+

∫ t

0

β(t−s)a(wεh(s),vh) ds = (f ,vh)− b̃(uε,uε,vh), (4.52)

for all vh ∈ Hh with wεh(0) = Phuε0. Now split the semi discrete penalized error as

eε := uε − uεh = (uε −wεh) + (wεh − uεh) = ξ + η.

Note that the error ξ occurs due to the linearized part and η due to the presence of

nonlinear part. Below, we obtain a few results for ξ. Subtracting (4.52) from (4.4),

the equation in ξ is written as

(ξt,vh) + µaε(ξ,vh) +

∫ t

0

β(t− s)a(ξ(s),vh) ds = 0, vh ∈ Hh. (4.53)
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Lemma 4.11. Suppose the hypothesis of the Lemma 4.7 be satisfied and wεh(t) ∈ Hh

be a solution of (4.52) with wεh(0) = Phuε0 and uε be a weak solution of (4.2) with

uε0 ∈ H1
0. Then, for any time t > 0, ξ satisfies∫ t

0

e2αs‖ξ(s)‖2 ds ≤ Ch4

∫ t

0

e2αs‖Aεuε(s)‖2ds.

Proof. We rewrite the equation (4.2) and (4.52) as

A−1
ε uεt + µuε − A−1

ε

∫ t

0

β(t− s)∆uε(s) ds = A−1
ε (f − B̃(uε,uε)),

and

A−1
εh wεht + µwεh − A−1

εh

∫ t

0

β(t− s)∆hwεh(s) ds = A−1
εh Ph(f − B̃(uε,uε)).

From the above two equations, we find that

A−1
ε uεt − A−1

εh wεht + µξ − A−1
ε

∫ t

0

β(t− s)∆uε(s) ds+ A−1
εh

∫ t

0

β(t− s)∆hwεh(s) ds

= (A−1
ε − A−1

εh Ph)(f − B̃(uε,uε)).

Using (4.2) and rearranging the terms, we arrive at

A−1
εh (Phuεt −wεht) + µξ −A−1

εh

∫ t

0
β(t− s)(Ph∆huε −∆hwεh)(s)ds = µ(uε −A−1

εh PhAεuε).

Now use the fact Phuεt −wεht = Phξ, we obtain

A−1
εh (Phuεt −wεht) + µξ − A−1

εh

∫ t

0

β(t− s)∆hPhξ(s) ds = µ(uε − A−1
εh PhAεuε)

−A−1
εh

∫ t

0

β(t− s)∆hPh(uε −∆−1
h Ph∆uε)(s) ds.

Now we multiply the above equation by Phξ and take integration over Ω to obtain

1

2

d

dt
‖A−

1
2

εh Phξ‖
2 + µ‖ξ‖2 + A−1

εh

∫ t

0

β(t− s)a(Phξ(s), Phξ) ds

= µ(ξ,uε − Phuε) + µ((uε − A−1
εh PhAεuε), Phξ)

+ A−1
εh

∫ t

0

β(t− s)a(Ph(uε −∆−1
h Ph∆uε)(s), Phξ) ds.

Multiplying by e2αt and using the “Cauchy-Schwarz inequality” with Lemma 4.6 we

find

d

dt
‖A−

1
2

εh Phξ̂‖
2 − 2α‖A−

1
2

εh Phξ̂‖
2 + µ‖ξ̂‖2 + 2A−1

εh

∫ t

0
β(t− s)a(Phξ̂(s), Phξ̂) ds

≤ C
(
µ‖ûε − Phûε‖2 + µ‖(ûε −A−1

εh PhAεûε)‖
2 +

( ∫ t

0
β(t− s)‖(ûε −∆−1

h Ph∆ûε)(s)‖ds
)2)

,
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where ξ̂ = eαtξ. Using the fact ‖A−
1
2

εh Phξ̂‖2 ≤ c2
0‖Phξ̂‖2

−1 ≤
c20
λ1
‖ξ̂‖2, (1.15) and Propo-

sition 4.1, we finally arrive at

d

dt
‖A−

1
2

εh Phξ̂‖
2 +

(
µ− 2c2

0α

λ1

)
‖ξ̂‖2 + 2A−1

εh

∫ t

0

β(t− s)a(Phξ̂(s), Phξ̂) ds

≤ Ch4
(
‖∆ûε‖2 + ‖Aεûε‖2 + (

∫ t

0

β(t− s)‖∆ûε‖ds)2
)
.

Now, we take time integration on the both sides and use the fact ‖A−
1
2

εh Phξ(0)‖ = 0

with Lemma 4.6 to obtain

‖A−
1
2

εh ξ̂(t)‖2 +
(
µ− 2c2

0α

λ1

)∫ t

0

‖ξ̂‖2ds+ 2

∫ t

0

A−1
εh

∫ s

0

β(s− τ)a(Phξ̂(τ), Phξ̂(s)) dτds

≤Ch4

∫ t

0

‖Aεûε(s)‖2ds+ Ch4

∫ t

0

(∫ s

0

β(s− τ)‖∆ûε(τ)‖ dτ ds
)2

. (4.54)

We drop the double integration term on the left of inequality, it being positive and

the double integration term on the right of inequality is converted to a single integral

(see, (2.17)) thereby completing the remaining of the proof.

In order to find optimal estimate of ξ in L∞(L2)-norm, we consider a projection which

we call as penalized Stokes-Volterra projection, which is motivated form the original

Stokes-Volterra projection, see [63, 116]. Let V ε
h : [0, T0]→ Hh, for some T0 > 0 satisfy

µaε(uε − V ε
huε,vh) +

∫ t

0

β(t− s)a((uε − V ε
huε)(s),vh) ds = 0, ∀ vh ∈ Hh, (4.55)

for some fixed ε > 0. We note that the above system, similar to the Stokes-Volterra,

has a positive definite operator, which in this case is Aεh. Therefore, we can establish

the well-posedness of the system (4.55) as in the case of the Stokes-Volterra projection.

For details, we refer to [24] and [97].

We now write

ξ = (uε − V ε
huε) + (V ε

huε −wεh) =: ζ + θ.

We are interested in the estimates of ‖uε− V ε
huε‖, ‖∇(uε− V ε

huε)‖, as this is the first

step towards obtaining the optimal estimate of ξ. With the notation

ζ = uε − V ε
huε,

we present the following Lemma.
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Lemma 4.12. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, for any

t > 0, the following results hold:

‖ζ(t)‖2 + h2‖∇ζ(t)‖2 ≤ Ch4
(
‖Aεuε(t)‖2 + e−2αt

∫ t

0

‖Aεûε(s)‖2ds
)
.

Moreover, the following result holds:

‖ζt(t)‖2 + h2‖∇ζt(t)‖2 ≤ Ch4
(
‖Aεuε(t)‖2 + ‖Aεuεt(t)‖2 + e−2αt

∫ t

0

‖Aεûε(s)‖2ds
)
.

Proof. We rewrite the equation (4.2) and the equation of V ε
huε as

µuε − A−1
ε

∫ t

0

β(t− s)∆uε(s) ds = A−1
ε (f − uεt − B̃(uε,uε)), (4.56)

µV ε
huε − A−1

εh

∫ t

0

β(t− s)∆hV
ε
huε(s) ds = A−1

εh Ph(f − uεt − B̃(uε,uε)). (4.57)

Hence, similar to Lemma 4.11 one can take inner product with Phζ and use the

“Cauchy-Schwarz inequality” to find that

µ‖ζ‖2 + 2A−1
εh

∫ t

0
β(t− s)a(Phζ(s), Phζ) ds = C

(
µ‖uε − Phuε‖2 + µ‖uε −A−1

εh PhAεuε‖
2

+
( ∫ t

0
β(t− s)‖(uε −∆−1

h Ph∆uε)(s)‖ ds
)2)

. (4.58)

We now multiply both sides by e2αt and integrate. Then we drop the double integration

term from the left of inequality due to positivity and use (1.15) and Proposition 4.1

with Lemma 4.6. Then we write the double integration term on the right of inequality

as single integration term and finally we deduce that

µ

∫ t

0

‖ζ̂(s)‖2ds ≤ Ch4

∫ t

0

‖Aεûε(s)‖2ds. (4.59)

From (4.58), one can obtain

‖ζ(t)‖2 ≤ Ch4
(
‖Aεuε(t)‖2 + e−2αt

∫ t

0

‖Aεûε(s)‖2ds
)
.

A use of triangular inequality concludes the first proof. For estimate involving ζt, we

differentiate (4.56) and (4.57) with respect to t. Then similar to above one can find

the required result. This concludes the proof.

Armed with the estimates of ζ and ζt, we now pursue the estimates of θ to find the

optimal L∞(L2) and L∞(H1)-error for ξ. From (4.53) and (4.55), the equation in θ

turns out to be

(θt,vh) + µaε(θ,vh) +

∫ t

0

β(t− s)a(θ(s),vh) ds = −(ζt,vh), ∀vh ∈ Hh. (4.60)
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Now, we choose vh = σ(t)θ in (4.60) to find

d

dt

(
σ(t)‖θ‖2

)
+ 2µσ(t)‖A

1
2
εhθ‖

2 =− 2σ(t)(ζt,θ) + σt(t)‖θ‖2

− 2σ(t)

∫ t

0

β(t− τ)a(θ(τ),θ) dτ. (4.61)

An application of the “Young’s inequality” and the “Cauchy-Schwarz inequality” with

σt(t) ≤ Ce2αt and (σ(t))2

σt(t)
≤ Cσ1(t) (where σ1(t) = (τ ∗(t))2e2αt) yields

|2σ(t)(ζt,θ)| ≤ (σ(t))2

σt(t)
‖ζt‖2 + σt(t)‖θ‖2 ≤ Cσ1(t)‖ζt‖2 + Ce2αt‖θ‖2.

Incorporate this in (4.61) and integrate from to deduce

σ(t)‖θ(t)‖2 + 2µ

∫ t

0

σ(s)‖A
1
2
εhθ(s)‖2ds ≤ C(

∫ t

0

σ1(s)‖ζs(s)‖2ds+

∫ t

0

e2αs‖θ(s)‖2ds)

−2

∫ t

0

σ(s)

∫ s

0

β(s− τ)a(θ(τ),θ(s))dτds.

The double integration term no longer positive. Similar to (3.62), we rewrite this as∫ t

0
σ(s)

∫ s

0
β(s− τ)a(θ(τ),θ(s))dτds ≤ C

∫ t

0
e2αs‖∇θ̃(s)‖2ds+

µ

2c2
0

∫ t

0
σ(s)‖∇θ(s)‖2

≤ C
∫ t

0
e2αs‖A

1
2
εhθ̃(s)‖2ds+

µ

2

∫ t

0
σ(s)‖A

1
2
εhθ(s)‖2, (4.62)

where θ̃ =
∫ t

0
θ(s) ds. Combining above two equations and using ‖θ‖ ≤ ‖ξ‖ + ‖ζ‖,

we reach at

σ(t)‖θ(t)‖2 + µ

∫ t

0

σ(s)‖A
1
2
εhθ(s)‖2ds ≤ C

∫ t

0

σ1(s)‖ζs(s)‖2ds.

+ C

∫ t

0

e2αs(‖ξ(s)‖2 + ‖ζ(s)‖2)ds+ C

∫ t

0

e2αs‖A
1
2
εhθ̃(s)‖2ds. (4.63)

In order to find the bound for the term involving ‘tilde’ operator, we take integration

on the both sides of (4.60) and write the double integral term as in (3.64) to obtain

(θ̃t,vh) + µaε(θ̃,vh) +

∫ t

0

β(t− τ)a(θ̃(τ),vh) dτ ds = −(ζ,vh), vh ∈ Hh. (4.64)

Choose vh = e2αtθ̃ in (4.64) and integrate the resulting equation. Drop the double

integral term, as it is non-negative. Using (4.59), we deduce that

e2αt‖θ̃(t)‖2 + (µ− 2αc2
0

λ1

)

∫ t

0

e2αs‖A
1
2
εhθ̃(s)‖2 ds ≤ Ch4

∫ t

0

e2αs‖Aεuε‖2ds. (4.65)

Incorporate (4.65) in (4.63) and use the Lemmas 4.11 and 4.12 and (4.65) to conclude

τ ∗(t)‖θ(t)‖2 + e−2αt

∫ t

0

σ(s)‖A
1
2
εhθ(s)‖2 ds ≤ Ch4. (4.66)

Now withthe triangle inequality, the inverse hypothesis, (4.66) and Lemma 4.12, we

conclude the following results:



136

Lemma 4.13. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, the fol-

lowing results hold for any t > 0,

‖ξ(t)‖+ h‖∇ξ(s)‖ ≤ Ch2t−
1
2 .

With the desired estimate of ξ, we aim to achieve the estimates of eε by means of η.

Note that eε = ξ + η.

Lemma 4.14. Suppose the hypothesis of the Lemma 4.7 be satisfied and uεh(t) be a

solution of (4.6) with uεh(0) = Phuε0. Then, the following

e−2αt

∫ t

0

e2αs‖eε(s)‖2 ds ≤ K(t)h4,

holds for 0 < t ≤ T0, where K(t) = CeCt.

Proof. As mentioned above, it suffices to find estimates for η. From (4.6) and (4.52),

we find that

(ηt,vh) + µaε(η,vh) +

∫ t

0

β(t− s)a(η(s),vh) ds = Λh(vh), vh ∈ Hh, (4.67)

where

Λh(vh) = b̃(uεh,uεh,vh)− b̃(uε,uε,vh) = −b̃(eε,uεh,vh)− b̃(uε, eε,vh). (4.68)

Choose vh = e2αt(A−1
εh η) and use Lemma 4.2 and the “Poincaré inequality” to obtain

1

2

d

dt
‖A−

1
2

εh η̂‖
2 +

(
µ− c2

0α

λ1

)
‖η̂‖2 +

∫ t

0

β(t− s)eα(t−s)a(A
− 1

2
εh η̂(s), A

− 1
2

εh η̂) ds

≤ eαtΛh(A
−1
εh η̂). (4.69)

By writing eε = ξ + η and using Lemma 4.3, we estimate Λh as

|eαtΛh(A
−1
εh η̂)| ≤ µ

2
‖η̂‖2 + C(µ)

(
‖uεh‖‖A

1
2
εhuεh‖+ ‖uε‖‖A

1
2
εhuε‖

)
‖ξ̂‖2

+C(µ)‖A−
1
2

εh η̂‖
2
(
‖uεh‖2‖A

1
2
εhuεh‖

2 + ‖uε‖2‖A
1
2
εhuε‖

2
)
.

We now integrate (4.69) with respect to time. Remove the resulting double integration

term due to positivity property and obtain

‖A−
1
2

εh η̂‖
2 +

(
µ− 2c2

0α

λ1

)∫ t

0

‖η̂‖2ds ≤ C(K,µ)

∫ t

0

‖ξ̂‖2ds+ C(K,µ)

∫ t

0

‖A−
1
2

εh η̂‖
2ds.

After using the “Gronwall’s Lemma” we use Lemma 4.11 to conclude the remaining

of the proof.
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The main result of this section, that is, the finite element Galerkin approximation

error estimate for the penalized system is presented now.

Theorem 4.3. Suppose the conditions (A1),(A3), (B1) and (B2) be satisfied. Also,

assume that the uεh(0) ∈ Hh with uεh(0) = Phuε0, where uε0 ∈ H1
0(Ω). Then, for

0 < t ≤ T0, the following holds:

‖(uε − uεh)(t)‖+ h‖∇(uε − uεh)(t)‖ ≤ K(t)h2t−
1
2 ,

where K(t) = CeCtand C > 0 is a constant not depend on ε and h.

Proof. Since eε = uε − uεh = (uε −wεh) + (wεh − uεh) = ξ + η and the bounds for ξ

are already obtained above, it is now enough to estimate η. Choosing vh = σ(t)η in

(4.67), we arrive at

1

2

d

dt
(σ(t)‖η‖2) + µσ(t)‖A

1
2
εhη‖

2 =
1

2
σt(t)‖η‖2 − σ(t)

∫ t

0
β(t− s)a(η(s),η) ds+ σ(t)Λh(η).

Use Lemma 1.4 to bound the nonlinear terms as

Λh(η) = −b̃(eε,wεh,η)− b̃(uε, eε,η)

≤ C(‖∇uε(s)‖‖∆uε(s)‖+ ‖∇wεh(s)‖‖∆hwεh(s)‖)‖eε‖‖∇η‖.

A use of the inverse hypothesis and the approximation property yield

‖∆hwεh‖ ≤ ‖∆hwεh −∆hPhuε‖+ ‖∆hPhuε‖ ≤ Ch−2‖wεh − Phuε‖+ C‖∆uε‖

≤ Ch−2(‖ξ‖+ ‖uε − Phuε‖) + C‖∆uε‖ ≤ C‖∆uε‖. (4.70)

Combining above three equations and integrating the resulting equation, we find that

σ(t)‖η‖2 + µ

∫ t

0

σ(s)‖A
1
2
εhη(s)‖2 ≤ 2(1 + α)

∫ t

0

‖η̂(s)‖2ds+ C

∫ t

0

e2αs‖A
1
2
εhη̃(s)‖2ds

+C

∫ t

0

τ ∗(s)(‖A
1
2
ε uε(s)‖‖Aεuε(s)‖)‖êε(s)‖2. (4.71)

Note that the resulting double integration term is estimated similar to (4.62) with

η̃(t) =
∫ t

0
η(s) ds. In order to bound the second term of (4.71), we integrate (4.67)

and similar to (4.64), we deduce

(η,vh) + µaε(η̃,vh) +

∫ t

0

β(t− s)a(η̃(s),vh) ds =

∫ t

0

Λh(vh) ds. (4.72)

Put vh = e2αtη̃ in (4.72) and take time integration. Then, drop the double integral

term from the left side due to positivity to find

e2αt‖η̃‖2 + 2(µ− c2
0α

λ1

)

∫ t

0

e2αs‖A
1
2
εhη̃(s)‖2 ds ≤ 2

∫ t

0

e2αs|
∫ s

0

Λh(η̃(s)) dτ | ds. (4.73)



138

We bound the nonlinear terms using Lemma 4.3 as

2

∫ t

0

e2αs

∫ s

0

|Λh(η̃(s))|dτds ≤ Ch4t
1
2 e4αt + µ

∫ t

0

e2αs‖A
1
2
εhη̃(s)‖2ds. (4.74)

Incorporate (4.74) in (4.73) with (µ− 2c20α

λ1
) > 0 to obtain

‖η̃(t)‖2 + e−2αt

∫ t

0

e2αs‖A
1
2
εhη̃(s)‖2 ds ≤ K(t)h4t

1
2 . (4.75)

Now, insert (4.75) in (4.71) and apply the Lemmas 4.4, 4.5 and 4.14. Then, multiplying

by e−2αt, we deduce

τ ∗(t)‖η(t)‖2 + e−2αtµ

∫ t

0

σ(s)‖A
1
2
εhη‖

2 ds ≤ K(t)h4.

Since η ∈ Hh, one can apply the inverse hypothesisto find the bounds for ‖∇η‖.

We apply the triangle inequality with Lemma 4.13 to conclude the remaining of the

proof.

4.3.3 Error Analysis for the Pressure

Below, we present the error estimate for the penalized pressure term, which turns out

to be straight forward, given that error estimates of uε are known. Subtract the second

equation of (4.3) from the second equation of (4.5) and obtain

(pε − pεh, χh) =
µ

ε
(∇ · eε, χh). (4.76)

Choose χh = pεh − jhpε = ep − (pε − jhpε) with ep = pε − pεh in (4.76) to find that

‖ep‖2 = (ep, pε − jhpε) +
µ

ε
(∇ · eε, ep)−

µ

ε
(∇ · eε, pε − jhpε)

≤ Ch2‖pε‖2
1 +

C

ε2
‖∇ · eε‖2 +

1

2
‖ep‖2.

If we use a direct bound like ‖∇ ·v‖ ≤ C‖∇v‖, then the error bound for pressure will

depend on 1/ε. Alternatively, if we estimate the divergence form, say from Lemma

4.12, as ‖∇ · (uε − V ε
huε)‖ ≤ C

√
εht−

1
2 , then we will find that 1

ε
‖∇ · eε‖ depends

on 1/
√
ε and so does ep. Therefore it is clear that the error bound for the pressure

always depends on 1/ε or 1/
√
ε if we find it directly using velocity error. A similar

discussion for penalized NSE can be seen in [100] where the authors concluded that

higher regularity on the data allow them to derive ε independent result. In our case, if

we choose the finite element spaces Hh and Lh in such a way that satisfy the discrete
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inf-sup condition (B2), then we can find the ε-uniform pressure error estimate as given

below.

First we split the pressure error as

‖ep‖ = ‖pε − pεh‖ ≤ ‖pε − jhpε‖+ ‖jhpε − pεh‖. (4.77)

From (B2), we observe that

‖jhpε − pεh‖ ≤ C sup
vh∈Hh\{0}

{
|(jhpε − pεh,∇ · vh)|

‖∇vh‖

}
≤ C

(
‖jhpε − pε‖+ sup

vh∈Hh\{0}

{
|(pε − pεh,∇ · vh)|

‖∇vh‖

})
. (4.78)

Using (B1), we bound the first term of (4.78). For the second term, we subtract (4.5)

from (4.3) to obtain for all vh ∈ Hh

(ep,∇ · vh) = (eεt,vh) + µa(eε,vh) +

∫ t

0

β(t− s)a(eε,vh)ds− Λh(v). (4.79)

To estimate Λh, we use b̃(uh,vh,vh) ≤ C‖∇uh‖‖∇vh‖‖∇vh‖ to bound

|Λh(vh)| ≤ C(‖∇uε‖+ ‖∇uεh‖)‖∇eε‖‖∇vh‖. (4.80)

After inserting (4.80) in (4.79), we apply the “Cauchy-Schwarz inequality” to arrive

at

(ep,∇ · vh) ≤
[
C‖eεt‖−1;h + C‖∇eε‖+

∫ t

0

β(t− s)‖∇eε‖ds
]
‖∇vh‖ (4.81)

where,

‖eεt‖−1;h = sup
{〈eεt,vh〉
‖∇vh‖

: vh ∈ Hh,vh 6= 0
}
. (4.82)

Since all the estimate on the right of inequality in (4.81) are known except ‖eεt‖−1;h,

and since ‖eεt‖−1;h ≤ ‖eεt‖−1 := sup
{
〈eεt,v〉
‖∇v‖ : v ∈ H1

0,v 6= 0
}

, it is sufficient to derive

the following estimate.

Lemma 4.15. Suppose the hypothesis of Theorem 4.3 be satisfied. Then, the following

negative error estimate holds for 0 < t < T :

‖eεt‖−1 ≤ C
(
h(‖uεt‖+ ‖∇eε‖+

∫ t

0

β(t− s)‖∇eε‖ds
)
.
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Proof. For any ψ ∈ H1
0, we use the orthogonal projection Ph : L2 → Hh and (4.51)

with vh = Phψ to obtain

(eεt,ψ) = (eεt,ψ − Phψ) + (eεt, Phψ) (4.83)

= (eεt,ψ − Phψ)− µaε(eε, Phψ)−
∫ t

0

β(t− s)a(eε, Phψh)ds− Λh(Phψ).

We use the approximation property of Ph to bound the following as

(eεt,ψ − Phψ) = (uεt − Phuεt,ψ − Phψ) ≤ Ch‖uεt‖‖∇ψ‖. (4.84)

Also, using Lemma 4.3 with boundedness of uε and uεh to bound

Λh(Phψ) ≤ C(‖∇uε‖+ ‖∇uεh‖)‖∇eε‖‖∇ψ‖ ≤ C‖∇eε‖‖∇ψ‖. (4.85)

Now substitute (4.84)-(4.85) in (4.83) to obtain

(eεt,ψ) ≤ C
(
h(‖uεt‖+ C‖∇eε‖+

∫ t

0

β(t− s)‖∇eε‖ds
)
‖∇ψ‖.

and therefore,

‖eεt‖−1 ≤ sup
{< eεt,v >

‖∇v‖
: v ∈ H1

0,v 6= 0
}

≤ C
(
h(‖uεt‖+ C‖∇eε‖+

∫ t

0

β(t− s)‖∇eε‖ds
)
.

This completes the proof.

A use of (4.77)-(4.81) and Lemma 4.15 with Lemma 4.5 and Theorem 4.4 will now

result in the following:

Lemma 4.16. Let us assume the hypothesis of the Lemma 4.11 be satisfied. Then, for

0 < t < T0, it holds:

‖(pε − pεh)(t)‖ ≤ K(t)ht−
1
2 ,

where K(t) = CeCt.

4.3.4 Uniform in Time Bounds

The estimates derived in Theorem 4.3 are not uniform in time due to the exponential

in time behaviour of the error bounds. But under the uniqueness condition (4.32), we

find the following uniform (in time) estimates.
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Theorem 4.4. Suppose the assumptions of Theorem 4.3 and the uniqueness condition

(4.32) hold. Then, for any t > 0 following holds :

‖(uε − uεh)(t)‖+ h‖∇(uε − uεh)(t)‖+ h‖(pε − pεh)(t)‖ ≤ Ch2t−
1
2 .

Proof. Recall eε = ξ+η and the bounds of ξ are uniformly in time (see, Lemma 4.13),

but the estimates of η are not uniform (see, Lemma 4.14) due to use of the ‘wall’s

lemma. Hence, it is enough to make the estimates of η are uniform in time. The idea

is to estimate nonlinear term in a different manner using uniqueness condition (4.32)

such that we can avoid the use of “Gronwall’s lemma”. For this, we choose vh = e2αtη

in (4.67) to obtain

1

2

d

dt
(e2αt‖η‖2)+µe2αt‖A

1
2
εhη‖

2+e2αt

∫ t

0
β(t−s)a(η(s),η) ds = e2αt(α‖η‖2+Λh(η)). (4.86)

From (4.68) and (4.12), we rewrite the nonlinear terms as

Λh(η) = −b̃(eε,uεh,η)− b̃(uε, eε,η) = b̃(ξ,wεh,η)− b̃(η,uεh,η)− b̃(uε, ξ,η).

A use of (4.32) help us to bound the second nonlinear term as

|b̃(η,uεh,η)| ≤ N‖∇uεh‖‖∇η‖2.

We apply Lemma 1.4 with (4.70) and the “Cauchy-Schwarz inequality” to find

|b̃(ξ,wεh,η)− b̃(uε, ξ,η)| ≤ C(‖∇uε‖
1
2‖∆uε‖

1
2 + ‖∇wεh‖

1
2‖∆hwεh‖

1
2 )‖ξ‖‖∇η‖

≤ C(‖∇uε‖2 + ‖∆uε‖2)‖ξ‖2 +
µ

2
‖∇η‖2.

Substitute the above two in (4.86) and integrate to find

e2αt‖η(t)‖2 + 2

∫ t

0

e2αs(
µ

2
−N‖∇uεh‖)‖∇η‖2ds+

2µ

ε

∫ t

0

e2αs‖∇ · η‖2ds

+ 2

∫ t

0

e2αs

∫ s

0

β(s− τ)a(η(τ),η(s)) dτ ds ≤ ‖η(0)‖2 + 2α

∫ t

0

e2αs‖η(s)‖2ds

+ C

∫ t

0

e2αs(‖∇uε(s)‖2 + ‖∆uε(s)‖2)‖ξ(s)‖2 ds. (4.87)

We rewrite the last term as∫ t

0

e2αs(‖∇uε(s)‖2 + ‖∆uε(s)‖2)‖ξ(s)‖2ds

≤ ‖ξ(t)‖2
L∞(L2)

∫ t

0

e2αs(‖∇uε(s)‖2 + ‖∆uε(s)‖2)ds (4.88)
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Use (4.88) with Lemma 4.4 in (4.87) and multiply both sides by e−2αt to find

‖η(t)‖2 + 2e−2αt

∫ t

0

e2αs(
µ

2
−N‖∇uεh‖)‖∇η‖2ds+

2µ

ε
e−2αt

∫ t

0

e2αs‖∇ · η‖2ds

+ 2e−2αt

∫ t

0

e2αs

∫ s

0

β(s− τ)a(η(τ),η(s)) dτ ds

≤ e−2αt‖η(0)‖2 + 2αe−2αt

∫ t

0

e2αs‖η(s)‖2ds+ C‖ξ(t)‖2
L∞(L2).

Now, take limit supremum as t→∞ and L’Hospital rule with the followings from [63]

lim
t→∞

sup e−2αt

∫ t

0

e2αs

∫ s

0

β(s− τ)a(η(τ),η(s)) dτ ds =
γ

2αδ
lim
t→∞

sup ‖∇η‖2,

lim
t→∞

sup ‖∇uεh‖ ≤ ν−1‖f∞‖−1,

to conclude

[
µ

2
−Nν−1‖f∞‖−1 +

γ

δ
] lim
t→∞

sup ‖∇η‖2 ≤ C lim
t→∞

sup ‖ξ(t)‖2
L∞(L2).

With 1−Nν−2‖f∞‖−1 > 0, we have [µ
2
−Nν−1‖f∞‖−1 + γ

δ
] = 1

ν
[1−Nν−2‖f∞‖−1] > 0

and we obtain the following

lim
t→∞

sup ‖η‖ ≤ lim
t→∞

sup ‖∇η‖ ≤ C lim
t→∞

sup ‖ξ(t)‖L∞(L2).

Combine with the estimates of ξ, we conclude the first two parts of the proof. For the

pressure estimate, we use these uniform results in (4.77)-(4.81) and Lemma 4.15.

4.4 Fully Discrete Formulation

We begin this section with short discussion about a priori bounds of the fully discrete

solution. And then we move on to the error estimates due to time discretization.

We prove a priori bounds for the discrete solutions {Un}1≤n≤N .

Lemma 4.17. Suppose the conditions (A1) and (A3) be satisfied. Then, for 1 ≤ n ≤

N , the following results hold:(
‖Un

ε‖2 + µe−2αtnk

n∑
i=1

e2αti‖A
1
2
εhU

i
ε‖2
)

+ ‖A
1
2
εhU

n
ε‖2 ≤ C, (4.89)

where we choose α > 0 such that 0 < α < min{δ, µλ1
2c20
} and the following holds

1 +
(µλ1

2c2
0

)
k ≥ e2αk. (4.90)
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Remark 4.3. We would like to note here that the assumption (4.90) above can be

rephrased as: for 0 < α < α0, (4.90) holds. And therefore both the conditions of

Lemma 4.17 can be incorporated in one: 0 < α < min{α0, δ,
µλ1
2c20
}. See Reamrk 2.1,

Chapter 2 for details.

Proof of Lemma 4.17: For n = i, we substitute vh = Ui
ε (4.9) and use the fact

(∂tU
i
ε,U

i
ε) ≥ 1

2
∂t‖Ui

ε‖2 and b̃(Ui
ε,U

i
ε,U

i
ε) = 0. Then we use the “Cauchy-Schwarz

inequality” and the “Poincaré inequality” with Lemma 4.6 (‖Ui
ε‖2 ≤ 1

λ1
‖∇Ui

ε‖2 ≤
c20
λ1
‖A

1
2
εhU

i
ε‖2) to deduce

∂t‖Ui
ε‖2 +

3µ

2
‖A

1
2
εhU

i
ε‖2 + 2a(qir(Uε),U

i
ε) ≤

2c2
0

µλ1

‖f i‖2. (4.91)

Multiply by ke2αti and take summation over 1 ≤ i ≤ n and then use the following fact

k
n∑
i=1

e2αti∂t‖Ui
ε‖2 ≥ e2αtn‖Un

ε‖2 − ‖U0
ε‖2 − k

n−1∑
i=1

c2
0

(e2αk − 1

kλ1

)
e2αti‖A

1
2
εhU

i
ε‖2

to obtain

e2αtn‖Un
ε‖2 +

(3µ

2
− c2

0

(e2αk − 1

kλ1

))
k

n∑
i=1

e2αti‖A
1
2
εhU

i
ε‖2 + 2k

n∑
i=1

e2αtia(qir(Uε),U
i
ε)

≤ ‖U0
ε‖2 +

2c2
0

µλ1

‖f‖2
∞k

n∑
i=1

e2αti , (4.92)

where we denote ‖f‖∞ = ‖f‖L∞(R+;L2(Ω)). Third term of the left of inequality (4.92)

is positive due to (1.18), hence we drop it. With 0 < α < min{α0, δ,
µλ1
2c0
}, we have

µ
2
≥ c2

0

(
e2αk−1
kλ1

)
. Hence, multiply both sides by e−2αtn to conclude

‖Un
ε‖2 + µe−2αtnk

n∑
i=1

e2αti‖A
1
2
εhU

i
ε‖2 ≤ e−2αtn‖U0

ε‖2 +
c2

0e
2αk

αµλ1

‖f‖2
∞ = M11, (4.93)

which concludes the first part of the proof.

For the remaining part, first we obtain two intermediate estimates. We drop the first

term on the left of inequality (4.93) and let

φn = µk
n∑
i=1

e2αti‖A
1
2
εhU

i
ε‖2 and ψn = e2αtn .

Note that here, ψn is a monotonically increasing sequence with ψ →∞ as n→∞ and

lim sup
n→∞

(
φn − φn−1

ψn − ψn−1

)
=

µk

1− e−2αk
lim sup
n→∞

‖A
1
2
εhU

n
ε‖2,
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and from (4.93), it is clear that

lim sup
n→∞

(
φn

ψn

)
≤ c2

0

αµλ1

‖f‖2
∞e

2αk.

Then, an application of the Theorem 4.1 and the mean value theorem yield

lim sup
n→∞

‖A
1
2
εhU

n
ε‖2 ≤ c2

0

αµ2λ1

‖f‖2
∞

(e2αk − 1

k

)
≤ 2c2

0

µ2λ1

‖f‖2
∞e

2αk. (4.94)

Again, we take sum in (4.91) over i = m to m + l, for m, l ≥ 0 and drop the third

term on the left of the resulting inequality due to positivity property to obtain

‖Um+l
ε ‖2 +

3µ

2
k
m+l∑
i=m

‖A
1
2
εhU

i
ε‖2 ≤ ‖Um

ε ‖2 +
2c2

0l

µλ1

‖f‖2
∞ ≤M11 +

2c2
0l

µλ1

‖f‖2
∞. (4.95)

Now, we choose vh = AεhU
i
ε in (4.9) and argue with the similar set of analysis of

(4.37) to arrive

∂t‖A
1
2
εhU

i
ε‖2+µ‖AεhUi

ε‖2 ≤ 3

µ
‖f i‖2 + 2(

9

2µ
)3‖Ui

ε‖2‖A
1
2
εhU

i
ε‖4 +

3

µ
‖qir(∆hUε)‖2.

Using (4.7), the last term can be written as

3

µ
‖qir(∆hUε)‖2 ≤ 3

µ

(
k

i∑
j=1

β(tn − tj)‖∆hU
j
ε‖
)2

≤ 3γ2c2
0e
−2αti

2µ(δ − α)
k

i∑
j=1

e2αtj‖AεhUj
ε‖2

Combine above two equations and multiply by e2αti and take sum i = 1 to n to find

e2αtn‖A
1
2
εhU

n
ε‖2 + µk

n∑
i=1

e2αti‖AεhUi
ε‖2 ≤ ‖A

1
2
εhU

0
ε‖2 +

(e2αk − 1

k

)
k

n∑
i=1

e2αti‖A
1
2
εhU

i
ε‖2

+
3

µ
k

n∑
i=1

e2αti‖f i‖2 + 2(
9

2µ
)3k

n∑
i=1

e2αti‖Ui
ε‖2‖A

1
2
εhU

i
ε‖4

+
3γ2c2

0

2µ(δ − α)
k

n∑
i=1

k

i∑
j=1

e2αtj‖AεhUj
ε‖2.

We now set,

gi = max{2(
9

2µ
)3‖Ui

ε‖2‖A
1
2
εhU

i
ε‖2,

3γ2c2
0

2µ2(δ − α)
}. (4.96)

Then

e2αtn‖A
1
2
εhU

n
ε‖2 + µk

n∑
i=1

e2αti‖AεhUi
ε‖2 ≤ ‖A

1
2
εhU

0
ε‖2 +

(e2αk − 1

k

)
k

n∑
i=1

e2αti‖A
1
2
εhU

i
ε‖2

+
3

µ
k

n∑
i=1

e2αti‖f i‖2 + k
n∑
i=1

[
e2αti‖A

1
2
εhU

i
ε‖2 + µk

i∑
j=1

e2αtj‖AεhUj
ε‖2
]
gi.
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Now, an application of the “discrete Gronwall’s lemma” yields

e2αtn‖A
1
2
εhU

n
ε‖2 + µk

n∑
i=1

e2αti‖AεhUi
ε‖2 ≤

(
‖A

1
2
εhU

0
ε‖2 +

3

µ
k

n∑
i=1

e2αti‖f i‖2

+
(e2αk − 1

k

)
k

n∑
i=1

e2αti‖A
1
2
εhU

i
ε‖2

)
exp{k

n∑
i=1

gi}. (4.97)

For a finite but fixed N and 1 ≤ n ≤ N , from (4.96) and (4.95), it follows that

k
N∑
i=1

gi ≤ CN. (4.98)

Now, a use of (4.93) and (4.98) in (4.97) gives

‖A
1
2
εhU

n
ε‖2 + µe−2αtnk

n∑
i=1

e2αti‖AεhUi
ε‖2 ≤ C(α, µ, λ1, c0, γ, δ,M0, N) (4.99)

Therefore, the inequality (4.99) is valid for all finite but fixed N . Also, from (4.94),

we can say that lim supn→∞ ‖A
1
2
εhU

n
ε‖ is bounded, which together leads the uniform in

time bound for ‖A
1
2
εhU

n
ε‖ for all n > 0. This concludes the remaining of the proof.

Remark 4.4. We note here that since the bounds proved above are independent of

n, 1 ≤ n ≤ N , these bounds are uniform in time, that is, they are still valid as the

final time tN → +∞.

4.4.1 Fully Discrete Error Estimates

Define uεh(tn) = unεh and enε = Un
ε − unεh. Consider (4.6) at t = tn and subtract from

(4.9) to arrive at

(∂te
n
ε ,vh) + µaε(e

n
ε ,vh) + a(qnr (eε),vh) = Rn

h(vh) + Λn
h(vh) + En

h (vh) (4.100)

where,

Rn
h(vh) = (unεht,vh)− (∂tu

n
εh,vh) =

1

k

∫ tn

tn−1

(t− tn−1)(uεhss,vh) ds, (4.101)

Λn
h(vh) = b̃(unεh,u

n
εh,vh)− b̃(Un

ε ,U
n
ε ,vh)

= b̃(enε , e
n
ε ,vh)− b̃(enε ,unεh,vh)− b̃(unεh, enε ,vh), (4.102)

En
h (vh) =

∫ tn

0

β(tn − s)a(uεh(s),vh) ds− a(qnr (uεh),vh) (4.103)

≤ C

n∑
i=1

∫ ti

ti−1

(s− ti−1)
(
βs(tn − s)a(uεh,vh) + β(tn − s)a(uεhs,vh)

)
ds.

Below, we discuss the error analysis and prove optimal error estimates through a series

of lemmas.
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Lemma 4.18. Suppose the conditions of Lemma 4.17 hold true. Further, assume that

(B1) and (B2) be satisfied. Then, for 0 < n < N , the following results hold:

‖Ar/2εh enε‖2 + ke−2αtn

n∑
i=1

e2αti‖A(1+r)/2
εh eiε‖2 ≤ Knk

1−r, r = −1, 0.

Proof. For r = 0, we choose vh = eiε in (4.100) with n = i, and multiply by ke2αti and

take sum from i = 1 to n. Then using the fact

k
n∑
i=1

e2αti∂t‖eiε‖2 ≥ e2αtn‖enε‖2 − k
n−1∑
i=1

c2
0

(e2αk − 1

kλ1

)
e2αti‖A

1
2
εhe

i
ε‖2, (4.104)

we arrive at

e2αtn‖enε‖2 +
(

2µ− c2
0

(e2αk − 1

kλ1

))
k

n∑
i=1

e2αti‖A
1
2
εhe

i
ε‖2 + 2k

n∑
i=1

e2αtia(qir(eε), e
i
ε)

≤ 2k
n∑
i=1

e2αti
(
Ri
h(e

i
ε) + Λi

h(e
i
ε) + Ei

h(e
i
ε)
)
. (4.105)

Third term on the left of inequality vanishes due to the positivity property (1.18). We

use (4.101) with the “Cauchy-Schwarz inequality” and t− ti−1 ≤ t, t ∈ [ti−1, ti] to find

2k
n∑
i=1

e2αtiRi
h(e

i
ε) ≤ 2k

n∑
i=1

e2αti
(1

k

∫ ti

ti−1

(s− ti−1)‖A−
1
2

εh uεhss‖ds
)
‖A

1
2
εhe

i
ε‖

≤ Ck
n∑
i=1

e2αti
(1

k

∫ ti

ti−1

(s− ti−1)‖A−
1
2

εh uεhss‖ds
)2

+
µ

3
k

n∑
i=1

e2αti‖A
1
2
εhe

i
ε‖2

≤ C

k

n∑
i=1

e2αti
(∫ ti

ti−1

(s− ti−1)ds
)(∫ ti

ti−1

(s− ti−1)‖A−
1
2

εh uεhss‖2ds
)

+
µ

3
k

n∑
i=1

e2αti‖A
1
2
εhe

i
ε‖2

≤ Ck

∫ tn

0

σ(s)‖A−
1
2

εh uεhss‖2ds+
µ

3
k

n∑
i=1

e2αti‖A
1
2
εhe

i
ε‖2. (4.106)

Using (4.103) and similar argument as (4.106), we arrive at

2k

n∑
i=1

e2αtiEih(eiε) ≤ Ck
n∑
i=1

e2αti
( i∑
j=1

∫ tj

tj−1

(s− tj−1)β(ti − s){δ‖∇uεh‖+ ‖∇uεhs‖}
)
‖∇eiε‖

≤ Cke2αtn +
µ

3
k

n∑
i=1

e2αti‖A
1
2
εhe

i
ε‖2. (4.107)

We use (4.12) and Lemma 4.3 with the “Cauchy-Schwarz inequality” in (4.102) to

bound the nonlinear terms as

2k
n∑
i=1

e2αtiΛi
h(e

i
ε) ≤ Ck

n∑
i=1

e2αti‖eiε‖
1
2‖A

1
2
εhe

i
ε‖

1
2‖A

1
2
εhu

i
ε‖‖eiε‖

1
2‖A

1
2
εhe

i
ε‖

1
2
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≤ Ck

n∑
i=1

e2αti‖eiε‖2 +
µ

3
k

n∑
i=1

e2αti‖A
1
2
εhe

i
ε‖2

≤ Cke2αtn + Ck

n−1∑
i=1

e2αti‖eiε‖2 +
µ

3
k

n∑
i=1

e2αti‖A
1
2
εhe

i
ε‖2. (4.108)

Note that, in the last line of (4.108), we use ‖enε‖ ≤ ‖unε‖+‖Un
ε‖ ≤ C. Now, inserting

(4.106)-(4.108) in (4.105), we find that

e2αtn‖enε‖2 +
(
µ− c2

0

(e2αk − 1

kλ1

))
k

n∑
i=1

e2αti‖A
1
2
εhe

i
ε‖2 ≤ Cke2αtn + Ck

n−1∑
i=1

e2αti‖eiε‖2.

With 0 < α < min{α0, δ,
µλ1
2c20
}, we have µ− c2

0

(
e2αk−1
kλ1

)
> 0. Then, we use the “discrete

Gronwall’s lemma” to conclude the proof for the case r = 0.

For r = −1, we take vh = A−1
εh enε in (4.100) with n = i. Then multiply by ke2αti and

sum from i = 1 to n to arrive at

e2αtn‖A−
1
2

εh enε‖2+
(

2µ− c2
0

(e2αk − 1

kλ1

))
k

n∑
i=1

e2αti‖eiε‖2 + 2k
n∑
i=1

e2αtia(qir(eε), A
−1
εh eiε)

≤ 2k
n∑
i=1

e2αti
(
Ri
h(A

−1
εh eiε) + Λi

h(A
−1
εh eiε) + Ei

h(A
−1
εh eiε)

)
. (4.109)

We use the positivity property (1.18) to drop the quadrature term from the left of

inequality. A use of the “Cauchy-Schwarz inequality” and Lemma 4.9 with (4.101),

we bound the Ri
h term as:

2k
n∑
i=1

e2αtiRi
h(A

−1
εh eiε) ≤ 2k

n∑
i=1

e2αti
(1

k

∫ ti

ti−1

(s− ti−1)‖A−1
εh uεhss‖ds

)
‖eiε‖

≤ 2k
n∑
i=1

e2αti
1

k

(∫ ti

ti−1

(s− ti−1)2ds
) 1

2
(∫ ti

ti−1

‖A−1
εh uεhss‖2ds

) 1
2‖eiε‖

≤ Ck2e2αtn +
µ

3
k

n∑
i=1

e2αti‖eiε‖2. (4.110)

Using (4.103) and similar argument as (4.110), we estimate Ei
h as:

2k
n∑
i=1

e2αtiEih(A−1
εh e

i
ε) ≤ Ck

n∑
i=1

e2αti
( i∑
j=1

∫ tj

tj−1

(s− tj−1)β(ti − s){δ‖uεh‖+ ‖uεhs‖}
)
‖eiε‖

≤ Ck2e2αtn +
µ

3
k

n∑
i=1

e2αti‖eiε‖2. (4.111)

Next we use Lemma 4.3 and “Young’s inequality” to bound Λi
h as

2k
n∑
i=1

e2αtiΛi
h(A

−1
εh eiε) ≤ 2k

n∑
i=1

e2αti‖eiε‖3/2(‖A
1
2
εhu

i
εh‖+ ‖A

1
2
εhU

i
ε‖)‖A

− 1
2

εh eiε‖
1
2
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≤ Ck

n∑
i=1

e2αti‖A−
1
2

εh eiε‖2 +
µ

3
k

n∑
i=1

e2αti‖eiε‖2

≤ Cke2αtn‖A−
1
2

εh enε‖2 + Ck

n−1∑
i=1

e2αti‖A−
1
2

εh eiε‖2 +
µ

3
k

n∑
i=1

e2αti‖eiε‖2. (4.112)

Use (4.110)-(4.112) in (4.109) with ‖A−
1
2

εh enε‖2 ≤ c2
0‖enε‖2

−1 ≤ C‖enε‖2 ≤ Ck to obtain

e2αtn‖A−
1
2

εh enε ‖2 +
(
µ− c2

0

(e2αk − 1

kλ1

))
k

n∑
i=1

e2αti‖eiε‖2 ≤ Ck2e2αtn + Ck
n−1∑
i=1

e2αti‖A−
1
2

εh eiε‖2.

we apply the “discrete Gronwall’s Lemma” to conclude the proof for the case r =

−1.

Remark 4.5. Due to use of the “discrete Gronwall’s lemma”, the generic constant

Kn > 0, which is the form of CeCtn , C > 0, depends on n, hence the above estimates

are local in time.

Note that the error estimates obtained in Lemma 4.18 are sub-optimal. But based

on these, we derive our optimal results. We first present below an optimal error in

L∞(L2)-norm.

Lemma 4.19. Let the assumptions of Lemma 4.18 be satisfied. Then, for 0 < n < N ,

the following holds

τn‖enε‖2 + ke−2αtn

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2 ≤ Knk

2,

where σi = τie
2αti and τi = min{1, ti}.

Proof. Take n = i and vh = σie
i
ε in (4.100) to arrive at

σi∂t‖eiε‖2 + 2µσi‖A
1
2
εhe

i
ε‖2 + 2a(qir(eε), σie

i
ε) ≤ 2Ri

h(σie
i
ε) + 2Λi

h(σie
i
ε) + 2Ei

h(σie
i
ε).

Now multiply by k and take summation over 1 ≤ i ≤ n and use the fact

k
n∑
i=1

σi∂t‖eiε‖2 ≥ σn‖enε‖2 − e2αkk
n−1∑
i=1

e2αti‖eiε‖2 − c2
0

(e2αk − 1

kλ1

)
k

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2,

to obtain

σn‖enε‖2 +
(

2µ− c2
0

(e2αk − 1

kλ1

))
k

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2 ≤ e2αkk

n−1∑
i=1

e2αti‖eiε‖2

−2k
n∑
i=1

a(qir(eε), σie
i
ε) + 2k

n∑
i=1

σi
(
Ri
h(e

i
ε) + Λi

h(e
i
ε) + Ei

h(e
i
ε)
)
. (4.113)
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With v̂nh = k
∑n

i=1 vih, a use of (1.21) with the “Poincaré inequality” and Lemma 4.6

gives

|2k
n∑
i=1

a(qir(eε), σie
i
ε)| = k

n∑
i=1

σik

i∑
j=1

β(ti − tj)a(ejε, e
i
ε)

= k
n∑
i=1

σi

(
γa(êiε, e

i
ε)− k

i−1∑
j=1

∂tβ(ti − tj)a(êjε, e
i
ε)
)

≤ µ

8
k

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2 + Ck

n∑
i=1

e2αti‖A
1
2
εhê

i
ε‖2. (4.114)

A use of (4.101) with the “Cauchy-Schwarz inequality” yields

k
n∑
i=1

σiR
i
h(e

i
ε) ≤ k

n∑
i=1

σi

(1

k

∫ ti

ti−1

(s− ti−1)‖A−
1
2

εh uεhss‖ ds
)
‖A

1
2
εhe

i
ε‖

≤ Ck

n∑
i=1

(∫ ti

ti−1

ds

)(∫ ti

ti−1

σ(s)‖A−
1
2

εh uεhss‖2ds

)
+
µ

8
k

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2

≤ Ck2e2αtn +
µ

8
k

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2. (4.115)

We use (4.103) with the “Cauchy-Schwarz inequality” and Lemma 4.6 to bound

k
n∑
i=1

σiE
i
h(e

i
ε) ≤ Ck2e2αtn +

µ

8
k

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2. (4.116)

From Lemma 4.3 and 4.18, we bound the nonlinear terms as

k
n∑
i=1

σiΛ
i
h(e

i
ε) ≤ Ck

n∑
i=1

σi‖A
1
2
εhu

i
εh‖2‖eiε‖2 +

µ

8
k

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2

≤ CeCtnk2e2αtn +
µ

8
k

n∑
i=1

σi‖A
1
2
εhe

i
ε‖2. (4.117)

Incorporating (4.114)-(4.117) in (4.113) and assuming

ke−2αtn

n∑
i=1

e2αti‖A
1
2
εhê

i
ε‖2 ≤ Knk

2, (4.118)

completes the remaining of the proof.

We now prove (4.118) in the following lemma.

Lemma 4.20. Let the assumptions of Lemma 4.18 be satisfied. Then, for 0 < n < N ,

the following holds

‖ênε‖2 + ke−2αtn

n∑
i=1

e2αti‖A
1
2
εhê

i
ε‖2 ≤ Knk

2.
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Proof. First we multiply (4.100) by k and take summation over 1 ≤ i ≤ n to obtain

(∂tê
n
ε ,vh) + µa(ênε ,vh) + a(qnr (êε),vh) = k

n∑
i=1

(Rih(vh) + Λih(vh) + Eih(vh)). (4.119)

For n = i and choose vh = êiε in (4.119) then we find that

∂t‖êiε‖2 + 2µ‖A
1
2
εhê

i
ε‖2 + 2a(qir(êε), ê

i
ε) = 2k

i∑
j=1

(Rj
h(ê

i
ε) + Λj

h(ê
i
ε) + Ej

h(ê
i
ε)).

Now multiply by ke2αti and take summation over 1 ≤ i ≤ n and use the similar fact

as like (4.104). Then, we use the “Poincaré inequality” and Lemma 4.1 to arrive at

e2αtn‖ênε‖2 +

(
2µ− c2

0(e2αk − 1)

kλ1

)
k

n∑
i=1

e2αti‖A
1
2
εhê

i
ε‖2 + 2k

n∑
i=1

e2αtia(qir(êε), ê
i
ε)

≤ 2k
n∑
i=1

e2αtik
i∑

j=1

(Rj
h(ê

i
ε) + Λj

h(ê
i
ε) + Ej

h(ê
i
ε)). (4.120)

The quadrature term vanishes due to positivity property (1.18). From (4.101), we

obtain

2k
n∑
i=1

e2αtik
i∑

j=1

Rj
h(ê

i
ε) = 2k

n∑
i=1

e2αti
(
k

i∑
j=1

1

k

∫ tj

tj−1

(s− tj−1)(uεhss, ê
i
ε)ds

)
≤ 2k

n∑
i=1

e2αti
(
k

i∑
j=1

1

k

∫ tj

tj−1

(s− tj−1)‖A−
1
2

εh uεhss‖ds
)
‖A

1
2
εhê

i
ε‖. (4.121)

We use the “Cauchy-Schwarz inequality” with τn ≤ τn−1 + k ≤ Cτ(t), t ∈ [tn−1, tn] to

estimate the term in the bracket on the right of inequality (4.121) as

i∑
j=1

∫ tj

tj−1

(s− tj−1)‖A−
1
2

εh uεhss‖ds ≤ k
( i∑
j=1

∫ tj

tj−1

e−2αs

τj
ds
) 1

2
( i∑
j=1

∫ tj

tj−1

τje
2αs‖A−

1
2

εh uεhss‖2ds
) 1

2

≤ Ck
( i∑
j=1

k

τj

) 1
2
(∫ ti

0
τ(s)e2αs‖A−

1
2

εh uεhss‖2ds
) 1

2
. (4.122)

If 0 < tj < 1, then τj = tj = jk and hence

i∑
j=1

k

τj
=

i∑
j=1

k

tj
=

i∑
j=1

1

j
= log(i) + r,

where r is Euler constant. And when tj ≥ 1, then τj = 1 and hence

i∑
j=1

k

τj
=

i∑
j=1

k = ti,
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Now use (4.122) in (4.121) to obtain

2k
n∑
i=1

e2αtik
i∑

j=1

Rj
h(ê

i
ε) ≤ Ck2e2αtn +

µ

3
k

n∑
i=1

e2αti‖A
1
2
εhê

i
ε‖2. (4.123)

Using (4.103) and similar argument as (4.122), we arrive at

2k
n∑
i=1

e2αtik
i∑

j=1

Ej
h(ê

i
ε) ≤ Ck2e2αtn +

µ

3
k

n∑
i=1

e2αti‖A
1
2
εhê

i
ε‖2. (4.124)

Also using the Lemma 4.3 to bound the nonlinear term as:

2k

n∑
i=1

e2αtik

i∑
j=1

Λjh(êiε) = 2k

n∑
i=1

e2αtik

i∑
j=1

(b̃(ejε, e
j
ε, ê

i
ε)− b̃(ejε,u

j
εh, ê

i
ε)− b̃(u

j
εh, e

j
ε, ê

i
ε)

≤ Ck
n∑
i=1

e2αti
(
k

i∑
j=1

(‖ejε‖
1
2 ‖A

1
2
εhe

j
ε‖3/2 + ‖ejε‖‖A

1
2
εhu

j
εh‖

1
2 ‖Aεhujεh‖

1
2 )
)
‖A

1
2
εhê

i
ε‖

≤ Ck
n∑
i=1

e2αti

[(
k

i∑
j=1

e2αtj‖ejε‖2
)1/4(

k
i∑

j=1

e2αtj‖A
1
2
εhe

j
ε‖2
) 1

2
(
k

i∑
j=1

e−6αtj‖A
1
2
εhe

j
ε‖2
)1/4

+
(
k

i∑
j=1

e2αtj‖ejε‖2
) 1

2
(
k

i∑
j=1

e2αtj‖Aεhujεh‖
2
) 1

2
(
k

i∑
j=1

e−6αtj‖A
1
2
εhu

j
εh‖

2
) 1

4

]
‖A

1
2
εhê

i
ε‖

≤ CeCtnk2e2αtn +
µ

3
k

n∑
i=1

e2αti‖A
1
2
εhê

i
ε‖2. (4.125)

A use of (4.121)-(4.125) in (4.120) concludes the remaining of the proof.

Arguing with the similar way, we can derive the optimal H1-velocity error.

Lemma 4.21. Suppose the hypothesis of Lemma 4.18 be satisfied. Then, for 0 < n <

N , the following holds

(τn)2‖∇enε‖2 + ke−2αtn

n∑
i=1

(τi)
2e2αti‖Aεheiε‖2 ≤ Knk

2.

Proof. The proof is very close to the previous lemma’s proof. So we only give a sketch

of the proof. Let σ2
i = (τi)

2e2αti and choose vh = σ2
iAεhe

n
ε with n = i in (4.100) and

multiplying by k and summing over 1 ≤ i ≤ n, we reach at

σ2
n‖A

1
2
εhe

n
ε‖2 + 2µk

n∑
i=1

σ2
i ‖Aεheiε‖2 + 2k

n∑
i=1

σ2
i a(qir(eε), Aεhe

i
ε) ≤ k

n−1∑
i=1

σi‖A
1
2
εhe

i
ε‖2

+ 2k
n∑
i=1

σ2
i

(
Ri
h(Aεhe

i
ε) + Λi

h(Aεhe
i
ε) + Ei

h(Aεhe
i
ε)
)
. (4.126)
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As in (4.117), an application of (1.21) with the “Poincaré inequality” and Lemma 4.6

gives

|2k
n∑
i=1

a(qir(eε), σ
2
iAεhe

i
ε)| ≤

µ

8
k

n∑
i=1

σ2
i ‖Aεheiε‖2 + Ck

n∑
i=1

σi‖Aεhêiε‖2. (4.127)

We use the “Cauchy-Schwarz inequality” and the “Young’s inequality” with (4.101)

and Lemma 4.2 to bound

k

n∑
i=1

σ2
iR

i
h(Aεhe

i
ε) ≤ k

n∑
i=1

σ2
i

(1

k

∫ ti

ti−1

(s− ti−1)‖uεhss‖ ds
)
‖Aεheiε‖

≤ Ck
n∑
i=1

(∫ ti

ti−1

ds

)(∫ ti

ti−1

σ2
i (s)‖uεhss‖2ds

)
+
µ

4
k

n∑
i=1

σ2
i ‖Aεheiε‖2

≤ Ck2

∫ tn

0

σ2(s)‖uεhss‖2ds+
µ

8
k

n∑
i=1

σ2
i ‖Aεheiε‖2. (4.128)

Incorporating with the Lemmas 4.3, 4.6 and 4.18, we can bound the nonlinear terms

as

k
n∑
i=1

σ2
i Λh(Aεhe

i
ε) ≤ Ck

n∑
i=1

σ2
i

(
‖∆hu

i
εh‖‖A

1
2
εhe

i
ε‖+ ‖eiε‖2‖‖A

1
2
εhe

i
ε‖2
)
‖Aεheiε‖

≤ Ck
n∑
i=1

σi‖A
1
2
εhe

i
ε‖2 +

µ

8
k

n∑
i=1

σ2
i ‖Aεheiε‖2. (4.129)

A use of (4.103) with the “Cauchy-Schwarz inequality” and Lemma 4.6 gives

k
n∑
i=1

σ2
iE

i
h(Aεhe

i
ε) ≤ Ck2e2αtn +

µ

8
k

n∑
i=1

σ2
i ‖Aεheiε‖2. (4.130)

Inserting (4.127)-(4.130) in (4.126), then using the Lemmas 4.18 and 4.21 and the

following assumption

k
n∑
i=1

σi‖Aεhêiε‖2 ≤ Knk
2, (4.131)

we conclude the rest of the proof.

In order to proof the estimate (4.131), we choose vh = êiε in (4.119) with n = i and

exactly similar to Lemma 4.20, we prove the following result.

Lemma 4.22. Suppose the hypothesis of Lemma 4.18 be satisfied. Then, for 0 < n <

N , the following holds

τn‖∇ênε‖2 + ke−2αtn

n∑
i=1

σi‖Aεhêiε‖2 ≤ Knk
2.
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We now also find the error bounds for the pressure term. In fact, similar to the above

analysis, we can easily prove that τn‖∂tenε‖ ≤ Knk. Now using this and the available

estimates for enε , we can easily prove the following result:

Lemma 4.23. Suppose the hypothesis of Lemma 4.18 be satisfied. Then, for 0 < n <

N , the following holds

τn‖P n
ε − pεh(tn)‖ ≤ Knk.

Proof. From (4.5) and (4.8), we find the following equation

(Pnε − pnεh,∇ · vh) = (∂te
n
ε ,vh) + νa(enε ,vh) + a(qnr (eε),vh)−Rnh(vh)− Enh (vh)− Λnh(vh),

where Rn
h, En

h and Λn
h are defined by (4.101), 4.103 and (4.102), respectively. A use of

Lemma 1.4 gives

(Pnε − pnεh,∇ · vh) =
(
‖∂tenε ‖−1,h + ν‖∇enε ‖+ ‖qnr (∇eε)‖+ C(‖∇unεh‖+ ‖∇Un

ε ‖)‖∇enε ‖

+ C
n∑
i=1

∫ ti

ti−1

(s− ti−1)β(tn − s)(δ‖∇uεh‖+ ‖∇uεhs‖) ds

+
1

k

∫ tn

tn−1

(t− tn−1)‖uεhss‖−1 ds
)
‖∇vh‖,

where ‖ · ‖−1,h is defined in (4.82) and clearly ‖ · ‖−1,h ≤ ‖ · ‖−1 ≤ C‖ · ‖. Finally, we

use the Lemmas 4.7, 4.17 and 4.21 to conclude the remaining of the proof.

Finally, combining Theorem 4.2, 4.3, 4.16 and Lemma 4.19, 4.21, we conclude our

main result of this chapter.

Theorem 4.5. Suppose the conditions (A1),(A3), (B1) and (B2) be satisfied. Then,

for 0 < n < N , the followings hold:

√
τn‖u(tn)−Un

ε‖ ≤ Kn(ε+ h2 + k),

τn‖∇(u(tn)−Un
ε )‖ ≤ Kn(ε+ h+ k),

τn‖p(tn)− P n
ε ‖ ≤ Kn(ε+ h+ k),

where Kn = CeCtn and C > 0 is a constant may depends on the given data but not

on ε, h and k. Moreover, the above results are uniform in time under the uniqueness

condition (4.32).
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Optimal Penalty Error Estimate for the Navier-Stokes Equations (NSEs)

We would like to point out that the optimal L∞(L2)-error for the velocity, in case

of NSEs, is not available in the literature to the best of our knowledge. The result

of [73] is sub-optimal in nature. We have in fact studied the penalty method for

the NSEs to begin with and have analyzed the system with nonsmooth initial data.

Using the time weighted estimates, the negative norm estimates and the inverse of the

penalized Stokes operator, we have obtained optimal error estimates for higher order

finite element approximations. Our work on penalized Oldroyd model of order one is

an extension of this work. Although worked out for linear polynomial approximation,

the presence of the integral term makes things more technical.

Instead of a detailed presentation in the Navier-Stokes’ case, we simply present the

main results here. For details, see [12].

Theorem 4.6. Suppose the conditions (A1),(A3), (B1) and (B2) be satisfied. Then,

for 0 < n < N , the followings hold:

‖u(tn)−Un
ε‖ ≤ Kn

(
(ε+ k)t−

1
2 + hm+1t−

m
2

)
,

‖∇(u(tn)−Un
ε )‖ ≤ Kn

(
(ε+ k)t−1 + hmt−

m
2

)
,

‖p(tn)− P n
ε ‖ ≤ Kn

(
(ε+ k)t−1 + hmt−

m
2

)
,

where the positive constant Kn = CeCtn depends exponentially on time. The estimates

are uniform in time under the uniqueness condition (4.32), that is, the constant Kn

becomes C.

4.5 Numerical Experiments

This section is devoted for numerical verification of our theoretical findings, mainly

verify the order of convergence of the error estimates.

4.5.1 Oldroyd Model of Order One

We consider the Oldroyd model of order one subject to homogeneous Dirichlet bound-

ary conditions. We approximate the equation using (P2, P0) and (P1b, P1) elements

over a regular triangulation of Ω. We take the domain Ω = [0, 1] × [0, 1], which is
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partitioned into triangles with size h = 2−i, i = 2, 3, . . . , 6. To verify the theoreti-

cal result, we first consider Example 2.1 from Chapter 2 and perform the following

numerical simulations.

Table 4.1: Errors and convergence rates (C.R.) for Example 2.1 using (P2, P0) element

h ‖u(tn)−Un
ε‖L2 C.R. ‖u(tn)−Un

ε‖H1 C.R. ‖p(tn)− P n
ε ‖L2 C.R.

1/4 0.12555664 3.00836657 0.36152403

1/8 0.03021356 2.0551 1.50243340 1.0017 0.16959213 1.0920

1/16 0.00833015 1.8588 0.78440706 0.9376 0.08582330 0.9826

1/32 0.00208880 1.9957 0.39392201 0.9937 0.04245084 1.0156

1/64 0.00052683 1.9877 0.19764538 0.9950 0.02114583 1.0054

Table 4.2: Errors and convergence rates (C.R.) for Example 2.1 using (P1b, P1) element

h ‖u(tn)−Un
ε‖L2 C.R. ‖u(tn)−Un

ε‖H1 C.R. ‖p(tn)− P n
ε ‖L2 C.R.

1/4 0.05078143 0.32553170 0.18223676

1/8 0.01200307 2.0809 0.07571734 2.0141 0.02962798 2.6208

1/16 0.00296632 2.0167 0.02670858 1.5033 0.01127635 1.3937

1/32 0.00073988 2.0033 0.01102859 1.2761 0.00430807 1.3882

1/64 0.00018605 1.9916 0.00498786 1.1448 0.00137334 1.6494

In Tables 4.1 and 4.2, we give the numerical errors and rates of convergence derived

on successive meshes using (P2, P0) and (P1b, P1) elements for BE scheme applied to

the penalized system (4.1) with µ = 0.1, γ = 0.01, δ = 0.1 and time t = [0, 1]. The

numerical results show that the rates of convergence are O(h2) and O(h) for the

velocity in L2 and energy norms, respectively. And the rate of convergence for the

pressure in L2-norm is O(h). We choose the time step k = O(h2), penalty parameter

ε = O(h2) and the final time T = 1. The optimal rates of convergence derived in

previous sections are supported by these numerical findings. The error graphs are

presented in Fig 4.1.
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Figure 4.1: Velocity and pressure errors for example 2.1.

In order to verify the rate of convergence for nonsmooth data, we consider the

following example [150].

Example 4.1. For initial data u0 ∈ H1
0, we consider the forcing term f(x, t) so as to

get the following exact solutions

u1(x, t) = 5etx5/2(x− 1)2y3/2(y − 1)(9y − 5),

u2(x, t) = −5etx3/2(x− 1)(9x− 5)y5/2(y − 1)2,

p(x, t) = 2et(x− y).

Tables 4.3 and 4.4 represent the numerical errors and rates of convergence for

nonsmooth initial data. In this case, we take µ = 0.1, γ = 0.01, δ = 0.1, k = O(h2)

and ε = O(h2). The error graphs are presented in Fig 4.2. The Tables 4.3 and 4.4 as

well as the Fig 4.2 show that the rates of convergence for the velocity are 2 and 1 in

L2 and H1-norms, respectively. And it is linear rate in case of pressure in L2-norm.

Table 4.3: Numerical results for Example 4.1 using (P2, P0) element

h ‖u(tn)−Un
ε‖L2 C.R. ‖u(tn)−Un

ε‖H1 C.R. ‖p(tn)− P n
ε ‖L2 C.R.

1/4 0.12541167 3.00855024 0.36172525

1/8 0.03022854 2.0527 1.50246564 1.0017 0.17009449 1.0886

1/16 0.00837611 1.8516 0.78454574 0.9374 0.08690876 0.9688

1/32 0.00221660 1.9179 0.39406891 0.9934 0.04458552 0.9629

1/64 0.00057676 1.9423 0.19787680 0.9938 0.02515063 0.8260
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Table 4.4: Numerical results for Example 4.1 using (P1b, P1) element

h ‖u(tn)−Un
ε‖L2 C.R. ‖u(tn)−Un

ε‖H1 C.R. ‖p(tn)− P n
ε ‖L2 C.R.

1/4 0.08746297 0.86228925 0.64287436

1/8 0.01646827 2.4090 0.27053709 1.6723 0.12551514 2.3567

1/16 0.00407032 2.0165 0.13114574 1.0447 0.05406822 1.2150

1/32 0.00102293 1.9924 0.06421120 1.0303 0.02652004 1.0277

1/64 0.00026565 1.9451 0.03184465 1.0118 0.01379871 0.9425
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Figure 4.2: Velocity and pressure errors for example 4.1.

The next example is related to “2D Lid driven Cavity Flow Benchmark problem”.

Example 4.2. “We consider a benchmark problem related to a 2D lid driven cav-

ity flow on a unit square with zero body force. Also, no slip boundary condition are

considered everywhere except the non zero velocity u = (1, 0)T on upper boundary.”

For numerical simulations, we choose the lines (x, 0.5) and (0.5, y). In Figure 4.3,

we present the values of the velocity and the pressure of unsteady problem (4.1) and

it’s steady version at final time T = 75, and ν = 1, 0.01, 0.0025, 0.001 with the choice

of time step k = 0.01, h = 1/64, δ = 0.1 and γ = 0.1µ. From the graphs, it is observed

that the unsteady velocity and pressure profiles coincide with the steady profiles very

well for a large time.
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Figure 4.3: Velocity and pressure profiles for different values of µ for Example 4.2.

If γ = 0, then the system reduces to the well-known Navier-Stokes equations. In

Fig 4.4, we present the velocity along vertical line and horizontal line through the

geometric center of the cavity for different values of µ = 0.01, 0.0025, 0.001 and each

of the values of µ, we vary γ from 0.001 to 10 with fixed δ = 0.01, k = 0.01, h = 1/32,

ε = µh2 and final time T = 10. From the graphs, first we observe that when γ = 0,

then the velocity profiles coincide with well-known Ghia’s [54] results. Secondly, as µ

decreases, the difference between the velocity profiles of Navier-Stokes equations and

Oldroyd model of order one become larger as γ increases. Now, we fixed γ = 0.1 and

vary δ from 0.001 to 10 for each values of µ and the results are presented in Fig 4.5.

In Fig 4.5, we can see that as δ changes the velocity profiles remain almost same for

any values of µ that is the parameter δ has a little influence to the solution. It is clear

from the above graphs that the influence of γ on numerical solution is larger than δ.
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Figure 4.4: Velocity and pressure profiles for different values of γ for Example 4.2.
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Figure 4.5: Velocity and pressure profiles for different values of δ for Example 4.2.

4.5.2 Navier-Stokes Equations

We approximate NSEs using (P2, P1), (P3, P2) and (PNC
1 , P0) elements over a triangu-

lation of Ω. Here also we discretize the domain with mesh size h = 2−i, i = 1, 2, . . . , 6.

To verify the theoretical result, we consider Example 2.1

In Table 4.5 and 4.6, we present the numerical errors and rates of convergence

derived for the fully discrete penalized NSEs using (Pm, Pm−1) elements for m = 2, 3,

respectively. The numerical analysis shows that the rates of convergence are O(hm+1)

and O(hm) for the velocity in L2-norm and H1-norm, respectively. The rate of con-

vergence for the pressure is O(hm) in L2-norm. We choose the time step and penalty

parameter as k = ε = O(hm+1) and T = 1 and ν = 1 for our experiments. These find-

ings support the results found in Theorem 4.6. The error graphs are presented below
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in Fig 4.6-4.7. In Table 4.7, we give the numerical results for (PNC
1 , P0) element. It is

observed in Table 4.7 as well as Fig 4.8 that the rates of convergence for the velocity

in L2-norm and H1-norm are 2 and 1, respectively. Moreover it is linear in pressure in

L2-norm.

Table 4.5: Numerical results for Example 2.1 using (P2, P1) element for NSEs

h ‖u(tn)−Un
ε‖L2 C.R. ‖u(tn)−Un

ε‖H1 C.R. ‖p(tn)− P n
ε ‖L2 C.R.

1/2 3.30633896e-03 - 2.96918336e-02 - 3.29192462e-02 -

1/4 5.11077157e-04 2.6936 8.36078857e-03 1.8284 6.96272136e-03 2.2412

1/8 5.25170055e-05 3.2826 1.99271639e-03 2.0689 9.29102388e-04 2.9057

1/16 6.32080598e-06 3.0546 5.32350596e-04 1.9042 2.78763334e-04 1.7368

1/32 7.91350016e-07 2.9977 1.35504728e-04 1.9740 7.93302459e-05 1.8131

1/64 9.89942025e-08 2.9989 3.39036941e-05 1.9988 2.01622898e-05 1.9762

Table 4.6: Numerical results for Example 2.1 using (P3, P2) element for NSEs

h ‖u(tn)−Un
ε‖L2 C.R. ‖u(tn)−Un

ε‖H1 C.R. ‖p(tn)− P n
ε ‖L2 C.R.

1/2 8.72519439e-04 - 9.64515599e-03 - 2.42266708e-02 -

1/4 7.86457181e-05 3.4717 2.53372020e-03 1.9285 3.77601493e-03 2.6816

1/8 5.40305188e-06 3.8635 3.35107263e-04 2.9156 4.04997117e-04 3.2209

1/16 3.65287201e-07 3.8866 4.34389795e-05 2.9476 3.73502090e-05 3.4387

1/32 2.40020778e-08 3.9278 5.55651552e-06 2.9667 3.34112960e-06 3.4827

Table 4.7: Numerical results for Example 2.1 using (PNC
1 , P0) element for NSEs

h ‖u(tn)−Un
ε‖L2 C.R. ‖u(tn)−Un

ε‖H1 C.R. ‖p(tn)− P n
ε ‖L2 C.R.

1/4 6.46328013e-02 - 4.53947780e-01 - 4.68679354e-01 -

1/8 2.01782694e-02 1.6795 2.39739250e-01 0.9211 1.74839152e-01 1.4226

1/16 5.43929542e-03 1.8913 1.21753766e-01 0.9775 5.78140714e-02 1.5965

1/32 1.39082972e-03 1.9675 6.12053289e-02 0.9922 1.98791319e-02 1.5401

1/64 3.49954196e-04 1.9907 3.06603901e-02 0.9973 7.92197390e-03 1.3273
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Figure 4.6: Velocity and pressure error for Example 2.1 using (P2, P1) element.

0.0313 0.0625 0.125 0.25 0.5

h

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

or

Velocity error in L2-norm for P
3
-P

2
 element

Error

h4

0.0313 0.0625 0.125 0.25 0.5

h

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr

or
Velocity error in H1-norm for P

3
-P

2
 element

Error

h3

0.0313 0.0625 0.125 0.25 0.5

h

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr

or

Pressure error in L2-norm for P
3
-P

2
 element

Error

h3

Figure 4.7: Velocity and pressure error for Example 2.1 using (P3, P2) element.
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Figure 4.8: Velocity and pressure error for Example 2.1 using (PNC
1 , P0) element.

Next we consider Example 4.2, that is,“ 2D Lid driven Cavity Flow Benchmark

problem”. In Figure 4.9, we present the comparison between velocity obtained by

penalty method and velocity obtained by Ghia et. al. [54] of NSEs for final time

t = 75, for ν = 10−2, 10−3 and t = 150, for ν = 10−4, respectively, with the choice of

time step k = 0.01. From the graphs, it is observed that the velocity profiles coincide

with those of Ghia’s results very well for a large time and that for ν small.
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Figure 4.9: Velocity components for Example 4.1.

Finally, in Fig. 4.10, we present contours of pressure and the velocity vector of the

NSEs and the Oldroyd model of order one with different values of µ = 1/100, 1/400,

1/1000. And we observe that the swirls in the corners of the cavity in the NSEs are

larger than those in the Oldroyd model. This is happened due to the presence of the

integral term, and the integral term plays the vital role of stabling the velocity field.

All the computation for Examples 2.1 and 4.1 were done in MATLAB and the others

were done in FreeFem++ [78].

4.6 Conclusion

In this chapter, a penalized Oldroyd model of order one has been analysed for nons-

mooth initial data, that is, uε0 ∈ H1
0. Based on penalized Stokes operator, and ap-

propriate application of weighted time estimates with positivity of the memory term,

uniform in time regularity results are established for the penalized problem which

are valid as the penalty parameter ε tends to zero. This is followed by semidiscrete

analysis of the model based on conforming finite element method. With the help of

discrete penalty Stokes operator and “uniform Gronwall’s Lemma”, uniform in time

bound for the discrete velocity in the Dirichlet norm is derived. Subsequently, optimal

velocity error in L∞(L2) and L∞(H1)-norms and pressure in L∞(L2)-norm have been

established, and these are uniform in time. Our analysis relies on the application of

the inverse penalized Stokes operator with its discrete version, the penalized Stokes-

Volterra projection, weighted time estimates and positivity of the memory term. Then,

based on BE method, a fully discrete penalized system has been analyzed with nons-

mooth initial data. We have shown the first-order rate of convergence in time direction



164

for the velocity and the pressure. Finally, we have considered some numerical examples

to validate our theoretical findings. Also, several numerical experiments are conducted

on benchmark problems and for various small values of µ and γ.

Figure 4.10: The velocity vector and contour of the pressure obtained from Navier-

Stokes equations (first column) and Oldroyd model (second column) at final time

T = 10, δ = 0.001 and µ = 0.01, 0.0025, 0.001 from top to bottom.
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