Chapter 4

Penalty Method

This chapter deals with the analysis based on a penalty finite element method for the
Oldroyd model of order one. Our model being a coupled model, the velocity and the
pressure are coupled together by the incompressibility condition, it is difficult to solve
the system numerically due to restrictions on the finite element spaces. Penalty method
is one of the methods that decouples velocity and pressure by penalizing the continuity
equation. We first obtain the a priori and regularity estimates for penalized solution
with nonsmooth initial data. Then, we obtain optimal error bounds for semidiscrete as
well as fully discrete penalized problem. All the results are shown to be uniform in time
under the uniqueness condition. Finally, a few numerical examples are considered to

validate the theoretical findings. Part of this work has been published in [14].

4.1 Introduction

It is known for a long time that coupling of the velocity u and the pressure p by means
of the “incompressibility condition div u = 0” in case of incompressible fluid flow model
is a hurdle in case of numerical computing. A common way to handle this difficulty is
to address the incompressibility condition, in other words, to relax this condition, in
an appropriate way. The standard methods that do the job are the projection method,
the pressure stabilized method, the artificial compressibility method and the penalty
method (see for instance, J. Shen [125] and references therein). We consider to work
with the penalty method, it being the simplest and an effective finite element method
to address this incompressibility.

The main idea of this method is to approximate the pair of solution (u,p) of the
113
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system (1.4)-(1.6) by the penalized solution (u., p.) satisfying the following penalized

system:

\

3“8 — pAu, — fo B(t — s)Au(s)ds + u. - Vu. + (V- u.)u. + Vp,
=f(z,t) inQ, t>0
uV-u.+ep. =0, on €, t>0,
Uclimop = U, In €, uw.=0 onod, t>0.

(4.1)

Vs
Note that, we have added a term 1(V - u.)u. to the nonlinear term, introduced by
Temam [128], to ensure the dissipativity of the system (4.1). Next, we eliminate the

penalized pressure term p. from (4.1) to find a system of equations in u. as:

ou,
ot

+ pA.u, + B(ug, u.) — /t Bt — s)Auc(s) ds =f (4.2)
0
with u.(0) = u.g, where
Aw = —Aw — éV(V -w) and B(w,p):=(w-V)p+ = (V w) .

The corresponding weak formulation of penalized Oldroyd model of order one as: Find

u.(t),p-(t)), t > 0in H} x L? satisfying
0

(UEta )‘i‘ﬂ@ Ug,V +f0 t—S ( ),V) ds—kl;(ua’ua’v)
—<pe,v V)= (Ev), VveH) p  (43)
lu(v : u&aX) + g(pSaX) = 07 \ X € L2,
where

a(w,v) = (Vw,Vv), and b(w,o¢,v)=(B(w,o),v).

The equivalent weak form of (4.3) reads as: Find u.(t) € H}, t > 0 such that
(Uee, V) + pac (v / B(t — s)a(us(s),v) ds = (£,v) — b(usu.,v),  (4.4)
for all v € H}, with u.(0) = u.. Here,
1
a-(u,v) =a(u,v) + E(V -u,V-v).

For semidiscrete formulation, we consider a finite triangulation 7, of the domain ¢
where h, 0 < h < 1 is the space discretization parameter. We also consider the finite
element spaces H;, and L;, that approximate the velocity space H} and the pressure
space L2, respectively. For simplicity, we assume that both the spaces comprise of

piecewise linear polynomial functions like MINI element.
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The discrete version of the weak formulations (4.3) reads as: Seek (ugp, pep) in Hy, X Ly,

satisfying

(Went, Vi) + pa(uen, vi) + fot B(t — s)a(ucn(s), vn) ds + é(uem Uy, Vi)
—(pen, V- vi) = (£, vs), Vv, € Hy, (4.5)
w(V - e, Xn) + €Pen, Xn) =0, YV xn € Ly

Choose x;, = V - ug, in the second equation of (4.5) and use it to the first equation,

then we obtain for all v;, € H,

(Wene, Vi) + pae (e, Vi) —1—/0 Bt — s)a(ucn(s), vy)ds = (£, vy) — l;(ugh, Ucp, V). (4.6)

The semidiscrete formulation(s) mentioned above are still continuous in time and in a
fully discrete scheme, we further discretize (it) in the temporal direction. We consider
the first-order implicit backward Euler (BE) method to discretize in the time direction.
Assuming [0, 7] to be the time interval, we proceed as follows: Let k = % > (0 be the
time step with ¢, = nk, n > 0 representing the n-th time step. Here N is a positive

integer. We next define for a sequence {¢" },,>0 C Hj,, the backward difference quotient

04" = (9"~ "),

For any continuous function ¢(t) we set ¢" = ¢(t,). We approximate the integral
term in (4.5) by right rectangle rule, the BE method being of first-order, with the
notation f,; = S(t, — t;):

FO) =EY = [ 5t — 9)6(6) ds 47

Now, the fully discrete formulation after applying backward Euler method for the
penalized semidiscrete Oldroyd problem (4.5) read as: Find {U?}1<,<y € H;, and

{P?}i<n<n € Lp, for 1 < n < N satisfying

(atUga Vh) + Ma’(Ugv Vh) + a(%?}(U&)? Vh) = (Psn7 V- Vh) + (fn, Vh)
—ZN)(U?, U?a Vh)a vvh € H, (48)
w(V U2 xp) +e(Prxn) =0, ¥V xn €Ly, n>0,

with U? = P,u.. It can be written in another form for all v, € Hy,

(0, U2, vp) + pua.(UZ,vy) + alqr(Ue), vy) = (£, vi) — b(UZ, UL, vy,). (4.9)
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Using variant of Brouwer fixed point theorem and standard uniqueness arguments,
one can show the well-posedness of the discrete problem (4.9) as well as (4.8).

The penalty approach was initially introduced by Courant [36] in the context of the
calculus of variations, there has been considerable developments in different directions
by many researchers. For Oldroyd model of order one, the literature is relatively
limited. Only in early 90’s, Kotsiolis and Oskolkov [89] and later Oskolkov [112] have
studied the penalty method for the Oldroyd model of order one and also of higher
orders. After that, Wang et al. [138] have investigated the relations between the
penalty parameter and the time step, for the linearized Oldroyd model of order one. In
fact, they have obtained optimal error estimate for the penalized system and the time
discretized (backward Euler) penalized system. In Wang and He [136], similar results
are observed as in [138], except for the fact that the problem is now nonlinear and the
estimates are uniform, derived under the uniqueness condition. Subsequently, Wang
et. al. have extended the analysis in [139, 140] to the finite element approximations
of (1.4)-(1.6) and have derived the following optimal error estimates for smooth initial
data for all ¢, € [0,7],7 > 0

n

() lu(t) = Uzl + (k32 P ()lp(tn) = PI:) < Cle+htk),

m=0
where 7(t,,) = min{t,, 1}.

We would like to point out here that, the optimal error estimate for the spatial
discretization of the penalized system in L°°(L?)-norm is not available till now in the
literature. Also, for the time discretization, there is hardly any result on optimal
error estimate in L>(L?)-norm. Therefore, in this chapter, an attempt is made to
establish L>°(L?)-norm for both spatial and time-discretization schemes. And unlike
[139], where the initial data u.q belongs to Hj N H?, we aim to discuss error analysis
for the nonsmooth initial data, that is, the initial data u.y in H}. The followings are

the primary outcomes of this chapter:

(i) Uniform in time regularity bounds are derived for the penalized solution with

nonsmooth initial data.

(ii) A priori estimates for the semidiscrete as well as fully discrete penalized solution

are established for nonsmooth initial data.
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(iii) Optimal error estimates for the semidiscrete and fully discrete penalty approxi-

mation of the velocity and the pressure are obtained.
(iii) Uniform in time bounds are proved for the discrete solutions.

(iv) Numerical experiments to validate the theoretical findings.

The rest of the part of this chapter comprise of the following sections. Section
4.2 deals with the penalty method and some new a priori results for the penalized
solution. In Section 4.3, the semidiscrete error analysis is carried out and in Section
4.4, BE method is applied to the penalized system. Finally, in the last Section we give
a few numerical experiments that are consistent with our theoretical findings.
Throughout this chapter, C' > 0 treats as a generic constant which may depend on the

given data ), u, f, i, 9,7, A1 and T but not on h, k and ¢.

4.2 Preliminaries

We begin this section by considering the assumptions on the given data. Then, we
give few results, which will be used in our later analysis. Next, we study some new a
priori and regularity bounds of penalized solution. Finally, we state the error due to
penalization which is already available in the literature.

We consider the following assumption on the given data for the penalized Oldroyd
model.

(A3) For a constant My > 0, the external force f and the initial velocity ug satisfy
uy € Hj with [[A2u,|| < My, and f,f; € L®([0,00]; L?) with sup{||£]|, |]|} < Mo.
>0

Note that the operator A., which is associated with the penalty method, is a self-
adjoint and positive operator from H? N H} onto L?, and we can talk of the powers
AL, r € R. For details, we refer to Temam [18] and Shen [125]. It is observed in [18§]

that ||A.v]| is a norm on H? N H} and is, in fact, equivalent to that of H? i.e.,
[Aev]] = [[v]]2, (4.10)

with constants depending on . But in [18], one of the inequalities (4.10) is proved to
be independent of €. We present below the following Lemma, to support this. For a

proof, see [18] and [125].
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Lemma 4.1. For a positive and sufficiently small €, the following estimates hold:

|AV]| <col|Av] ¥V v e H2NH]
1
IV <colA2v| ¥ v € Hy

IAZ'V] <collv]-2 ¥ v e H?(Q),
where cg > 0 is independent of €.
We need another estimate, independent of €, which we state in the next Lemma.

Lemma 4.2. For e > 0 sufficiently small, the following holds:
|43l < collv Vv e H@).
Proof. With w € H}, we use Lemma 4.1 to find that
(A= v, w) = (v, A2t w) < VIV (A P w) | < aollviwll,

and

_1 A2
HA& 2VH: sup —( ° V’W)

< col[v|-1.
0#£wEL? [wl|

This completes the proof. Alternative way is to consider the following problem: Let
w be a solution of

Aw =v, wlgo =0.
Clearly ||A.w|| = ||v|| and
1 1 1 1
[AZw]]" = (Aew, w) = (v,w) = (A *v, A2w) < [|A: *v ||| A2 w]

and therefore,

1 _1
[AZwl| < [|As 2. (4.11)

Now, using (4.11) and Lemma 4.1, we note that

1A v|[? = (AZv,v) = (ATv, Aew) = (v, w) < [V VW]

1 _1
< col VIl A2 wl[ < coll vl -l A= *v]].

This concludes the desired proof. O
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From the definition of B(, -,+), we can easily check with the help of integration by parts

that
b(w, ¢, V) ——{bw¢, —b(w,v,9)}, Vv,w,¢ € Hj,
where,
b(w,¢,v) = ((w-V)e,v).
Hence,

b(w,¢,¢) =0, and b(w,¢p,v)=—b(w,p,v), Vv,wpecH; (412

We now present below a few bounds for nonlinear term b(-, -, -) which will be used for

our later analysis. The proofs go similar to [80] with a use of Lemma 4.1.

Lemma 4.3. [80] Suppose the condition (A1) is satisfied. Then, the trilinear form
b(-,-,-) satisfies the following properties:

( 1 1
[v]|zllAZ vz | AZw]|z || A-w|z[|@]l, Vv, ¢ € Hi,w e HNH?,
1 1
|AZv]2 | Acv]|z|[wl2 | AZw]|z[|@]l, Yw,¢ € HE v € H} N H?,
1 1 1

Iv]|2llAZv| 2 [wl|z[|AZ w2 [ AZ ||, Vv, w,¢ € H,

b(v,w, )| =C L L
[vill[A2wl|z[[A.w]|2[|A2 p||, Vv, ¢ € Hj,w € HyNH?,

IvIllIwll2 | A2 w2 ]| A2 p|l[| A, Vv, w,e HE, ¢ € HiNH?,

T 1
IVIE[IAZ vz wl[[A2 gl A-@ll, Vv, w, e Hy, ¢ € Hy N H?.
We recall the following result, which is a counter part of the L’Hospital rule.

Theorem 4.1. (“Stolz-Cesaro Theorem”) Let us assume two real sequences {¢"}o2,

and {P"}2, with {Y™}22, is divergent and strictly monotone. If

. ¢n an 1
Jim (w = 1) =h

then

holds.

4.2.1 A Priori and Regularity Estimates for the Penalized

Solution

We take a quick glance into the a prior: estimates of the penalized problem.



120

Lemma 4.4. Suppose the condition (A1) and (A3) hold. Moreover, assume 0 < o <
min (0, u\; /2¢3). Then, the penalized solution u.(t) satisfies the following results for

any t > 0:
T t r+1 9
| A2u.(t)]|* + e_%‘t/ 2| A u.(s)||Pds < C, re{0,1}.
0
where C' > 0 is a constant may depends on given data but not depend on e.
Y

Proof. Choose v = u. in (4.4) and use the “Cauchy-Schwarz inequality”, the “Poincaré
1
inequality” with Lemma 4.1 ([Ju.|* < -[|[Vu[]* < /C\—(Q;HAguEHZ) for the term on the

right left of equality. Then we obtain
HusH2 | A2 +2/ Bt = s)a(uc(s), uc) ds SN HfH2 (4.13)

Note that the nonlinear term vanishes due to (4.12). Multiply (4.13) by e?**, then

with 4, = e®u,., we find that

d ) 1 t 2
—mw—mww+M£wW+wﬁ/mwwwuwmwwviww
dt 0 ,LL)\l

After integration, the resulting double integral term drops out, since it is positive (see,
Lemma 1.5), since by our assumption 6 > « > 0. Using the “Poincaré inequality”

with Lemma 4.1, we reach at

. 20204 t 1 2 e2at
o)+ (- ())/‘WQuA@wwssnumW4—og Yiepz,
0 apiA

With 0 < o < min (6, uA;/2¢3), we have = f1 > 0. Finally, we multiply

throughout by e=2%* to conclude that

2 1 — 672011‘,)

t 1
e+ gree [ e b (o) Ps < el + L= pe, (a1
0 QAL

which concludes the proof for the case r = 0. For the second estimate, first we integrate

(4.13) from ¢ to t + Ty, for a fixed T and use (4.14) to find
2 L 2 > @To o
[ (t + To) || +M/ [AZu.(s)|[Pds < [Ju.(t)]° + Ellflloo- (4.15)
t
Then, put v = A.u. in (4.4), we deduce that

sl At + [ 5t — 9)(-du.(o) A

= (f, Acu.) — b(u., u,, A.u,). (4.16)
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We use the “Cauchy-Schwarz inequality” and the “Young’s inequality” to bound the

following as

1 1 %
[(f, Acue) — b(ue, ue, Acu)| < ||f|[| Acuc|| + 22]|u.]|2[| A2 uf-:HHAEu6H3/2
< 3 £ 9 13 2 A% 1 Py 2 417
_@H | +<ﬂ) [[uc |7 A2 u.|] +§H uft (4.17)

A use of (4.17) in (4.16) yields

dy g0 Au 2 '
gl AZuel” + ol Aeuc " +2 | B(t - 5)(—Auc(s), Acue)ds
0

3 9 1
< 2% + 2(=—=)2 | ||?|| A2 ua |2 4.18
< MII 1 (2M> [uc][ | | (4.18)

Choose 79 > 0, then a use of “Cauchy-Schwarz inequality” shows

1 1 3
Yol Az u.|| = yo(Acue, us) < Yol Acuc|[Juc]] < g”AEUEHQ + @73”“5”2' (4.19)

Now, add 7o ||A2u.|| on both sides of (4.18) and use (4.19) with the “Poincaré inequal-
1
ity”, and Lemma 4.1 (pf|A-u.||* > £34||A2u.|?) to find
0
d, 1 LA 9 1 1
_A8252 __2_3 52148252 A6252
e e o L P DT FENN
t
Bipz L S 2 2
+2 [ B(t—s)(—Auc(s), Au.)ds < ;||f|| + @%HUEH : (4.20)
0

Setting
pAL 9 L
h(t) =70+~ = 25 ue P A2 e, (4.21)
0 H

Then, using (A3) and (4.14) in (4.20), we deduce that
d 1 1 t
Az u PR A2 |* + 2/ Bt = 5)(—Auc(s), A-uc)ds < C.
0
Multiply both sides by eJo MDA and tale time integration to obtain
1 t t s s
| A2 ()2 + 26 o nr) e / i hir) i / B(s — 7)(—Auu(r), Ao, (s))drds
0 0
t
< e do M) dT|]A§u€0H2 + C/ e~ S MDA g (4.22)
0
We integrate (4.21) from ¢ to ¢ + Ty, for a fixed Ty and use (4.14) and (4.15) to find

o pAL 9.5 [T 20 AZ e 1|12
[ bs = o+ BT -2, [ A
t € weJt

LA
> (v + C—QI)TO — K.
0
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Choose 7y such that K; = T then with 0 < o < min (8, u);/2c3), we obtain

o pA1
/ h(s)ds > Ty—5 > 2aTy.
t =0

Next, we choose two non-negative integers l; and [y such that ;7 < s < (i1 + 1)Tj

and 1Th <t < (la+1)Ty. From (4.21), we have h(t) < (yo + %) Then, we find that
0

t (12+1)TO S (l2+1)TO
/ h(T)dr :/ h(T)dT —/ h(T)dT —/ h(T)dr
s l l t

170 1To
A A
> (1 +1-1)20T) - (0 + 55Ty — (0 + BT,
0 0
A
> (t = s)2a = 2(3 + S50, (4.23)

0

A use of (4.23) in the right of inequality (4.22) yields

1 t t s §
AR (£)|2 + 26~ i nr)ar / o3 ) dr / B(s — 7)(—Au.(r), Acu(s))drds
0 0
2(70—&-%
e 0

o (e*MHAaquH? + %(1 . e*M)). (4.24)

Now, it is enough to show that the double integral term is positive. For this, we use

the property Au, = V(V -u.) — V x V x u., then we obtain
(~Au., Aw) = (~Au., ~du. — V(Y -u)
— (Aw,Aw) + (A, éwv ‘)
~ (Aw,Au) + é(wv W) -V XV xu, V(Y1) (4.25)
~ (Au,Au) + %(wv W), V(V-w) — é(v XV x 1., V(V - ).
Note that

(VxVxu,V(V-u))=—(Vxu,Vx(V(V-u)))+(Vxu,V(V-u))sa

Since curl of gradient of a scalar is zero, so V x (V(V - u.)) = 0 in the sense of
distribution and since u. vanishes on the boundary, so the last term on the right of

inequality (4.25) vanishes. Hence, a use of (4.23) yields

/tefos h(r)dr /S B(S — T)(_Aue(r), Asue(s))deS
0 0
_2(70+%)T0 ! 2as ° . A A
>e /0 e /0 5(8 7') (( us(T)7 ue(s))



123

%(V(V cu. (7)), V(V - ue(s)))>drds > 0.

So, we drop the second term from the left of inequality (4.24) to reach at
JAFu ()] < C. (4.26)

Finally, we multiply (4.18) by e?* and take time integration and use (4.26) to conclude

the remaining of the proof. O

Remark 4.1. The results in Lemma 4.4 are uniform in time, which are sufficient to
prove the existence of a global weak solution of the penalized system. In fact, with the
reqularity results (that are established below), we are now in a position to establish
a unique global strong solution of the penalized system. We refrain from going into
the details, as the procedure of establishing existence and uniqueness of solution of the

system (4.2) as well as of (4.1) follows similar techniques as done in [63].

Lemma 4.5. Suppose the hypothesis of Lemma 4.4 be satisfied. Then, for anyt > 0,
the following results hold:

L t
JAdu () + e / 2w (s)Pds < C,
0
t 1
P ONA O + 7 Olla(@)]? + e / o(s) | Abuad(s)?ds < C,

where o(t) = 2 7*(t) and 7*(t) = min{1,t}.

Proof. For the first one, we take v = e**u,; in (4.4) to establish

B Akl + o = apl AR + (£ u) — B e, )

e /O B(t — 5)(Au.(s), uy) ds.

After using Lemma 4.3 and the “Cauchy-Schwarz inequality” and Lemma 4.1, we take

time integration to obtain
L t t L . A
AR+ [ aolPas < €| [ (LA + 1P + L)
/ ||A2u€|| | Aca.|? ds+/ / B(s—T ||A2ua( )| dT) } (4.27)

The double integral term in (4.27) can be written in a single integral similar to the

estimate (2.17) of Chapter 2. Finally, a use of Lemma 4.4 concludes the proof of the
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first estimate.

For the second one, we differentiate (4.4) with respect to time to arrive
t
(Uetr, v) + pac(ug, v) + B(0)a(ue, v) + / Bt — s)a(uc(s),v) ds
0
= —b(ugy,u.,v) — b(ug, ug, v) + (f,v), ¥v e HL. (4.28)

Set v = o(t)uy in (4.28) and use f,(t — s) = —05(t — s) and S(0) = v to obtain

1d 1 1 -
5@(0@)!\%“2) + po(t)[|AZug|® = Sou(t)lual® — o (t)b(ue, ue, ugy)

2
+o(t) (£, uet) + yo(t)a(ue, usy) + do(t) /0 Bt — s)a(us(s),uy)ds. (4.29)

A use of Lemma 4.3 with the “Young’s inequality” yields

1 1 1
b(uer, v, weg)| < Cflug|2 [ AZus |2 ]| A2 w | lue]| 2| A2 use | 2

1 ol 1
< C(p)Jua Pl AZue]” + A2 e (4.30)

Using the fact o(t) < e**, 0,(t) < e and (4.30) in (4.29), we take time integration

and use the “Cauchy Schwarz inequality” with Lemma 4.1 to derive
t 1
o(t)u(t)]* + u/o o(s)[| A2 u(s)||*ds
t 1 to
< C{/O (Ies(s)1” + ||ﬁ58(s)||2||A§ﬁg(s)||)ds/0 I£s*ds
t 1 t s 1 2
+/ ||A§ﬁ5(s)||2ds+/ </ B(s — 1) || A2 (7)) d7‘> ds} (4.31)
0 0o ~Jo

We estimate the double integral as above and then use the first result of this lemma.
Finally multiply by e~2° to establish the last part of the required result. To estimate

|Acu. ||, we choose v = A.u. in (4.4) and apply Lemma 4.3 with Lemma 4.1 to arrive

1 t 2
M&mWSC@%W+Wwﬂ£mW+(Aﬁﬁ—MMw$M%)+MW)
Multiply both sides by o(t) and use (4.31) to concludes the remaining of proof. [

Now we present the error due to penalization. For a proof, see [136, Theorem 4.1].

Theorem 4.2. “Let us assume the hypothesis of Lemma 4.4 be satisfied, then the

following holds true

T (@)l (w—w) O + ()OI V(u —w) (O] + 6_2“/0 a1(s)ll(p — pe)(s)l*ds < Ce?,
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where the positive constant C' depends exponentially on time and oy(t) = (7*(t))%e**.

The above estimate is uniform in time under the uniqueness condition:

N b(u, v, w)
—|fxll-1 <1 and N = sup ;
V2 wvw [Vul[[Vv[[[[Vw]|

(4.32)

»

where v =8 + 1 and [[fxo]| -1 = ||f]| 2o (0,001 () -

4.3 Semidiscrete Formulation

In this section, we first define some operators which will be used for our analysis. Then,
we concentrate on a priori and regularity results of semidiscrete solution. Finally, we
discuss about the error analysis due to space discretization.

We begin by defining a discrete analogue A,y : H, — Hj, of A, satisfying
1
(AEhWh, Vh) = a(wh, Vh) + g(v * Wy, V- Vh), VW}L, Vi € Hh. (433)

Let us now define two linear inverse operators A-! : L? — H} and 4! : H;, — H), as

follows: For g € L2,
(A8, 0) = (VA '8, V) + ~(V- A6,V 6) = (8,6), Vo < H},
aE(As_hlphga ép) = (VAs_hlphg’ Vo) + é(v : As_hlphg7 V-¢,) = (Pug, ¢1), Vo, € H.
Now, arguing in similar lines of [79, Corollary 4.3], one can obtain the followings:
Proposition 4.1. The map A, 'P,A : HY N H? — Hy, satisfying
IV = A PAV| + RV (v — A P AV) || < Ch?J|Av]],
and the map A;}PhAE : Hy N °H? — H,, satisfying
Iv = AGLPAV] + BV (v — A7 PLA)| < OB Ay
We now present the discrete version of the Lemma 4.1 and 4.2.
Lemma 4.6. For e > 0 sufficiently small, the following estimates hold:

1
Vil < collAZvrll, ¥V vi € Hy,
|ARVL|| < col|Achvrll, ¥ v € Hp,

1A Vil < collvall—+, ¥ va € Hu, 7€ {1,2}.
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Proof. Let v, € H, and A.,vy, = g. With ¢, = —%V - Vp, (4.33) can be written as

(VV]H v¢h) - (qh7 A ¢h) = (ga ¢h)7 v¢h € Hha
(V- v, bn) + (qn. ¥n) =0, Vb, € Ly,

From regularity estimate, one can find that (see, [18, (1.20)])
[Anvall + [Vanll < collgll + ecoll Vanl-

Now choose ¢ sufficiently small such that cye < 1, then we conclude the second result.

For the first result, we choose ¢, = v}, in (4.33) and arrive at
3|2 g, 1 2 2
HAVRll™ = IVVall™ + 21V - vall™ = [[Vva]”.

For the third one, let w;, be the solution of Afhwh = A;hgvh.

1A vall* = (AZwn, AgPva) = (Wa, vi) < [[wal|, [ vall -

r _r
< coll A2 wallllvall - < coll Ay vall[Vall -

Cancelling one ||A£_h%vh|| from both sides concludes the remaining of the proof. O

4.3.1 A Prior: Estimates

The a priori estimates in the semidiscrete case is similar to those of the continuous
case (see Lemma 4.4 and 4.5) and in fact, the proofs are also similar to the continuous

case.

Lemma 4.7. Let us assume the hypothesis of Lemma 4.4 be satisfied. In addition,
we assume that (B1) and (B2) hold. Then, with u.,(0) = Pyu., the following result
holds for any t > 0:

t 1 1
e ()] + 6_2‘“/ || AZuen(s)|Pds + [ AZuan ()] < C,
0
where C' > 0 is a constant may depends on the given data but not on € and h.

Proof. We take v;, = u,, in (4.6) and follow the exact sequence of arguments as in the

proof of Lemma 4.4 to find

t 1 2
JFen ()| +616‘2“t/ e | AZyuan(s)|Pds < e | Prueo||* + 5= = [IF[1%, (4.34)
0 QAL
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where (5, = . This concludes the first part of the proof.

Now, we obtain two intermediate estimates which will be used in the last part of the

proof. A simple modification of the above estimate (4.34) gives

(1 — e2o%)

by N
a1 + et [ A ()]s < 2 Pyl + R

I£112
t

+2ae_2at/ (|t (5)||2ds.
0

Take limit supremum as t — oo, then a use of L’Hospital rule yields

1
5, imsup JAL @I < 502 (4.35)

t—00 - 2au)\
Again, in the process of obtaining the estimate (4.34), if we avoid multiplying e*** and

simply integrate, we find that
2 bl 2 2 Cot 2
[[ucn (t)]] +/~b/0 [AZuen(s)][ds < || Phuco||” + Ellf\lw (4.36)

Armed with these estimates, we now proceed for the second part. Choose v, = A pugy

and use the similar set of analysis of (4.17) to find
d 43 2 2 2 4
g 1A en]” + pllAchua|” < —HfH +2( )HuahH JAZunl
2
/ 6(t—s)||Ahu5h(s)||ds) (3
0
We rewrite the integral term as
3/ /[ 2 3ycie
—(/ Bt = )l Anuai(s)]|ds) < SrGe ™ e —a) / | Achtion (s) |2 ds.
K Jo 2
Use this in (4.37), then multiply by €?*** and take time integration to obtain
2 2 2 UL 3 [ a2
42, fcn(8) 2 + 1 / [ Acnti s < A5 0n O + 20 [ [Ad o lPds+ 5 [ s
0 [ wanlPlad Pl abaltas + 5 0 [ [ agaaaras. w9
0 eh ch Yeh ch Yeh 2#((5—0&) o Jo ehYeh . .
We set
9 1 3722
o(0) = o {2 P Pl P 50,
and now from (4.38), we obtain

1 t ) 1 b1 3 [t .2
A% I +p [ IAaialPds < [ 45ua )17 + 20 [ 1abdalfas+ = [ 18)as
0 0 0

t 1 s
[ (MahaalPds v [ JAasalFdr)(s) ds.
0 0
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We use the “Gronwall’s lemma” to deduce

t 1
A5 O + e [ s < e (4O + 20 [ 45000

/||f|| ds exp{/ s)ds}.  (4.39)

Note that, for a fixed and finite Ty with 0 < ¢ < Tp, we use (4.34) and (4.36) to find
To
/ g(s)ds < CTy. (4.40)
0
We now use (4.34) and (4.40) in (4.39) to obtain
) t
| A2 uan ()] + ,ue_%‘t/ | Achticn||?ds < C(a, 1, M, ci, Mo, 7, 8, Tp). (4.41)
0

Therefore, the inequality (4.41) is valid for all finite, but fixed time T > 0. Also from
1
(4.35), we can say that limsup, , . ||A2,u.(?)|| is bounded, which together leads that
1
| A2 uz(t)|| is bounded for all ¢ > 0, which concludes the remaining of the proof. [

Lemma 4.8. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, for any
t > 0, the following results hold,

_1 t
IS wa (] + e 2 / &2 (5|
0

QL
@

IA
Q

t 1
() | une (1) |” + ezat/o o (s)||AZ,uns(s) | *ds

IN
Q

where o(t) = e2*'7*(t) and 7*(t) = min{1,t}.
Proof. First, we differentiate (4.6) with respect to time to deduce

(Went, Vi) + pac(Uepns, vi) + B(0)a(ucn, vi) + / Bi(t — s)a(uen(s), vy) ds
0

= —b(Uepy, Uep, Vi) — D(Uep, Uy, Vi) + (F, Vi), Vvi € Hy.  (4.42)

Now set v, = A ugy, in (4.42) with B,(t — s) = —63(t — s) and 3(0) = v to obtain

1d

3 A ua?) + il <5 [ 500 = Satuas), A7 nan)ds = ra, A7t

_b(uaht> Ugp, Ag_h uaht) - b(uaha Uehi, A;h uaht) + (fta Ag_hluaht)- (443)
A use of Lemma 4.3 with Lemma 4.6 and the “Young’s inequality” yield

~ _ ~ _ _1 1 1
| - b(uahty Uep, Aghluaht) - b(uaha ushtyAEhlueht)l S C||u5ht||3/2||A5h2 ueh” 2 ”A;hueh”
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_1 1
< CllAg v PS4 Sl (4.44)

We bound the followings using the “Cauchy-Schwarz inequality” and the “Young’s

inequality” with Lemma 4.6:
t
/ B(t - S)G(ueh(3>a Ag_hluaht)ds - 7(1(116;1, Ag_hlusht) + (fta As_hlusht>
0
t
2\ | M
SC@%N“WW”%Kﬁ@—ﬁWM$W$)+ZWWW

t
<C(luall+ 1617+ [ lualPds) + flunl?. @43
0

We use (4.44) and (4.45) in (4.43) to find

d

_1 t
GG ?) sl < © (Il + 1617 + [ ua(o)]ds)
0

_1 1
+C|| A v P AZ e ®. (4.46)

4

Now, we drop the second term from the left of inequality (4.46) and use the “uniform

1
Gronwall’s lemma” with Lemma 4.7 to conclude that [|A_2u.u(t + Tp)||* is uniformly
I

_1
bounded with respect to time, which simply says, || A_,2u.p:(t)]]” is uniformly bounded

1
on [Ty, 00). Also, a use of the “classical Gronwall’s lemma” implies that || A_;2 ucp(t)|?

is bounded on (0,75). Hence, both of these lead to
A wen(®)* < C, t>0. (4.47)

We now multiply (4.46) by e and take time integration on the both sides. Then, we
use (4.47) and Lemma 4.7 and multiply by e ?* to conclude the first result.
For the second proof, we set v;, = o(t)u.p; in (4.42) to obtain

1d

1 1
m@'(t)!lusm\\?) + po ()| A2, v = §Ut(t)HushtH2 — o (t)a(en, Uent)

+ (50(15)/0 B(t — s)a(ucp(s), ucpt)ds — o (t)b(Uept, Uep, Uept) + () (£, Ucpr). (4.48)

A use of Lemma 4.3 with the “Young’s inequality” yields

1, .4 1, .1 1
|b(Ueht, Ueh, Uepe)| < Cffucn|2 ||As2hu€ht||3/2||u6h||2||A52hu5h||2

1
< C()lluarell” + 5 1A% ucn (4.49)

After using the fact o(t) < e oy(t) < e** and (4.49) in (4.48), we take time inte-

gration and apply the “Cauchy-Schwarz inequality” to find

t 1 t 1
o (t) [ ucpe® + M/O o (5)]| A2, uchs(s)[|*ds < C[/O 2 (lucns||? + [| A2 vy ||+ I£]*)ds
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w [ ([ ot - mlabua ar) as). a0

The double integral term in (4.50) can be written in a single integral similar to Lemma
4.4. We use the first estimate of this lemma and use Lemma 4.7. Finally, multiply by

2 to establish the second result. O

Lemma 4.9. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, for any
t > 0, the following results hold:

t
eQat/ O’r(s)HAg;m/zushsstdS < C, TE{O,LZ}.
0

Proof. The proof is quite similar for the cases r = 0,1 and r = 2. Therefore we sketch
a proof for the » = 0 case. For r = 1, we simply point out the extra term and its
estimate. And for r = 2 case, it follows r = 1, and hence is avoided completely.

For r = O’ choose vy = 62atA€_hQu5htt n (442) to obtain

A e+ (AL e < 2 (i AL

- B(O)a<u5h7 Ag_}?ushtt) - B(“shta Uep, Ag_hzushtt) - 6<u5h7 Ucht, Ag—}?ushtt)
t
+ (ft7 Ag—}?ué‘htt) - / Bt(t - S)a(ueh(s)a A;h2ushtt)d3>-
0

Use (4.12) and Lemma 4.3 with Lemma 4.6 to bound the followings as

| - B(uahta Uep, As_h2u€htt) - l;(uaha Ucht, Ag_hQUEhtt)|
S |B(u5hta Uehp, A;}?uehtt” + |B(u6ha Ag_h2u€htt7 usht>|

1 1
< COlluene P AZuenll” + 1AL wenul .
Now using above result, we finally obtain

_ d 1 _1 1
A AG e [P+ (AL w2 < O (1A aen P+ [ 2 A5,

t
1612+ Bl = o)l ds)?)

Integrate both the sides and use Lemmas 4.7 and 4.8 to conclude the proof in the
case r = 0. For r = 1, we choose v, = o(t)A Uy in (4.42) and proceed as above.
Due to the presence of o(t), we see a variational crime, an extra term in the form of
fot 0¢(t)||ucne||*ds, which can be estimated using Lemma 4.8. This completes the case

r = 1 and the overall proof. o
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Lemma 4.10. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, the fol-

lowing result holds for 0 <t < Ty,
t
() || Acpuacn||* + ezat/ e || Acpugy||Pds < C
0
where T*(t) = min{1,t}.

Proof. From (4.41), we obtain the second part. To estimate ||A.pucn|[, we choose

vy, = Aapugy, in (4.6) and use Lemmas 4.3 and 4.6 and the “Young’s inequality” to find

1 ¢ 2
lAcntin 2 < © (Jucnel® + uca [ AZ, uan + / Bt = 5)l| Atin(s)l1ds)” + IIF]12).

Now multiply both sides by o(t) and use (4.50) to concludes the remaining of the
proof. O

Remark 4.2. Since the estimate (4.41) is valid for 0 < t < Ty. Hence, the result
i Lemma 4.10 is only local and not uniform with respect to time. This is either
a technical problem which we have not been able to resolve or a shortcoming of the

penalised scheme for our model.

4.3.2 Error Analysis for the Velocity

In this subsection, we analyze the semidiscrete penalized velocity. Let us denote e, =
U, — U, then from (4.4) and (4.6), we find

t ~ ~
(ect, Vp) + pac(ez, vi) +/O B(t — 1)ale:(1),vy) dr = b(ugp, uep, vi) — b(ue, ug, vy). (4.51)

We first introduce an intermediate solution w,, satisfy the following linearized penal-

ized Oldroyd model, that is, w,, is a solution of
(wsht,vh)—l-uag(wgh,vh)—k/otB(t—s)a(wgh(s),vh) ds = (f,vy)—b(u., u., vy), (4.52)
for all v, € Hy, with w,;,(0) = P,u.. Now split the semi discrete penalized error as
e 1= U, — Uy = (U — Wep,) + (Wep, — uep) =&+ 1.

Note that the error & occurs due to the linearized part and 1 due to the presence of
nonlinear part. Below, we obtain a few results for £. Subtracting (4.52) from (4.4),

the equation in £ is written as

(&, vn) + pa-(€,vy) + /0 B(t — s)a(&(s),vp) ds =0, v, € Hy. (4.53)
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Lemma 4.11. Suppose the hypothesis of the Lemma 4.7 be satisfied and w.p,(t) € Hy,
be a solution of (4.52) with w.,(0) = Pyue and u. be a weak solution of (4.2) with

u.o € HY. Then, for any time t > 0, € satisfies

t t
/ eQasHE(s)H2 ds < Ch4/ ezO‘SHAguE(s)Hst.
0 0

Proof. We rewrite the equation (4.2) and (4.52) as

A, + . — A1 /Otﬁ(t _ $)Aul(s) ds = A~ME — Blu.,w)),
and
t
A;hlwght + Uwep, — A;h1 /o Bt — s)Apwep(s) ds = As_hlPh(f — B(u67 u.)).
From the above two equations, we find that
Alug, — A;hlwsht +ué — AZ? /Ot B(t — s)Au.(s) ds + Aé__hl /Ot Bt — s)Apwep(s) ds
= (A2 = AZP)(f = B(u., ),

Using (4.2) and rearranging the terms, we arrive at
AZN(Pyugy — Wepe) + p€ — A /Ot B(t — 8)(PaApue — Apgwep)(s)ds = p(us — A7) P A-u.).
Now use the fact Pyu. — wep = PR&, we obtain

A;hl (Pouey — Wepg) + 1€ — A;hl /Ot Bt — s)ALPLE(s) ds = p(ue — A;hlPhAEuE)

—azt [0 - 98P~ A7 BAw)(S) ds
0

Now we multiply the above equation by P,& and take integration over €2 to obtain

Ld

At PR+ €+ A5 [ 80— s)alPig(s). P ds

= M(éa u. — Phue) + M((ue — A;hIPhAaue)7 Ph&)
+ A} / Bt — s)a(Py(u. — A, PyAL)(5), Pr€) ds.
0

t

Multiplying by 2% and using the “Cauchy-Schwarz inequality” with Lemma 4.6 we

find
d =55 212 3 22 212 o/ p p
%IIAE;Z Pré|l” = 2al| A, Pugll” + pll€ll +2A€h/0 B(t — s)a(Pr&(s), Pu€) ds

t
A~ N N — A~ A — A~ 2
< C(ullae = Prtee|? + pfl (8 — AZ PrActac) | + (/0 B(t = s)ll(a: — Ay PuAD)(s)lds)”),



133

~ _1 ~ ~ 2 A
where & = e*'€. Using the fact ||A_2 P.&||* < Gl P.E|% < /C\—(i||£||2, (1.15) and Propo-

sition 4.1, we finally arrive at
d =3 p 22 26500\ 121 [ ; p;
Gl A PP + (= =07 I&IP +245 [ 5(t = s)a(Pié(s), Pig) ds
0
t
< ont (o + Al + ([ Bt - o)l ds)?).
0

1
Now, we take time integration on the both sides and use the fact ||A_,>P,&(0)|| = 0

with Lemma 4.6 to obtain

2c3a
A1

<Cp /OtHAEﬁE(s)]PdS—l—Ch‘*/Ot(/085(3—7')||Af15(7')|| dr ds)z. (4.54)

|AEEDI + (-

)/ ||£||2ds+2/ Ag! /SB(S—T)a(Phé(T),Phé(S)) drds
0 0 0

We drop the double integration term on the left of inequality, it being positive and
the double integration term on the right of inequality is converted to a single integral

(see, (2.17)) thereby completing the remaining of the proof. O

In order to find optimal estimate of € in L>°(L?)-norm, we consider a projection which
we call as penalized Stokes-Volterra projection, which is motivated form the original

Stokes-Volterra projection, see [63, 116]. Let V¢ : [0, To] — Hy, for some Ty > 0 satisfy
t

pa.(u. — Vyiue, vy) + / Bt —s)a((ue — Viu)(s),vy) ds =0, Vv, €Hy, (4.55)
0

for some fixed € > 0. We note that the above system, similar to the Stokes-Volterra,
has a positive definite operator, which in this case is A.j. Therefore, we can establish
the well-posedness of the system (4.55) as in the case of the Stokes-Volterra projection.
For details, we refer to [24] and [97].

We now write

E=(u.—Viu)+ (Viu. —we,) =: ¢+ 6.

We are interested in the estimates of |[u. — Viu.||, || V(u. — ViFu.)||, as this is the first

step towards obtaining the optimal estimate of £&. With the notation
C = U — V}fu&‘7

we present the following Lemma.
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Lemma 4.12. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, for any
t > 0, the following results hold:

IS +RIVE I < O (A +e [ 40s)Pas)

Moreover, the following result holds:
t
ICOIF + P10 < O (AP + [ AP+ [ 4005) )

Proof. We rewrite the equation (4.2) and the equation of V7u. as

¢
pu, — AZ! / B(t — s)Au.(s) ds = AZH(f — u — B(ug,u.)), (4.56)
0
t
wViu, — A;hl/ B(t — s)ApViue(s) ds = AP (f — gy — Blug, u.)). (4.57)
0

Hence, similar to Lemma 4.11 one can take inner product with FP,{ and use the

“Cauchy-Schwarz inequality” to find that
t
ulgl? + 245, / B(t = $)a(Pi¢(s), Pag) ds = C (puljue — Pruc | + pllue — A} Py Ao |
0
t
+ (/ B(t = s)||(ue — A Py AuL) ()] ds)2>. (4.58)
0

We now multiply both sides by €2** and integrate. Then we drop the double integration
term from the left of inequality due to positivity and use (1.15) and Proposition 4.1
with Lemma 4.6. Then we write the double integration term on the right of inequality

as single integration term and finally we deduce that

M/Ot 1E(s)|2ds < Ch? /Ot | At (s) | 2ds. (4.59)

From (4.58), one can obtain

M@WSCW@&m®W+€MAH&m®W%)

A use of triangular inequality concludes the first proof. For estimate involving ¢,, we
differentiate (4.56) and (4.57) with respect to t. Then similar to above one can find

the required result. This concludes the proof. O

Armed with the estimates of ¢ and (,, we now pursue the estimates of € to find the
optimal L>°(L?) and L>®(H')-error for £&. From (4.53) and (4.55), the equation in @

turns out to be

(0, vp) + pas(0,vy) + /Otﬁ(t —5)a(0(s),vy) ds = —({;, vh), Vvi € Hyo o (4.60)
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Now, we choose v, = ¢()0 in (4.60) to find

S (o01617) + 200 AL6I =~ 20(1)(¢.,0) + (D)

t
— 20(75)/ Bt —1)a(6(7),0) dr. (4.61)
0
An application of the “Young’s inequality” and the “Cauchy-Schwarz inequality” with
oy(t) < Ce?t and YW < Oy (t) (where oy (t) = (7*())%€2) yields

(1))
20(0)(¢,, ) < 7 2

Incorporate this in (4.61) and integrate from to deduce

OO +2u [ (A48 < ([ mIC s+ / = 6(s)|ds)

/ / B(s — 1)a(0(r), 8(s))drds.

The double integration term no longer positive. Similar to (3.62), we rewrite this as

/ / B(s — 7)a(6(7), 6(s))drds < c/ €205 |V 8 (s)| ds+/ $)[Ve(s)|?

t
gc/kmwﬁﬁ@Ww+QAo@w%wﬁﬁ<um

(t)

1617 + o (D10]* < Cor()IG,[I* + Ce*]|8].

t

where 0 = ) ds. Combining above two equations and using ||@] < ||&]| + ||<]I,
0

we reach at
t

o(0)]16(1) + 1 / o(s)A%,60(s) [2ds < C / o1 (5)]1 o (5) .
=0 [ eI+ @B+ C [ ahae) s (463)

In order to find the bound for the term involving ‘tilde’ operator, we take integration

on the both sides of (4.60) and write the double integral term as in (3.64) to obtain
~ ~ t ~
(0., V1) + pas(0,vy) +/ Bt —1)a(O(T),vy) dr ds = —(C,vp), vi € Hy. (4.64)
0

Choose vy, = 2019 in (4.64) and integrate the resulting equation. Drop the double

integral term, as it is non-negative. Using (4.59), we deduce that

2
20

_ t I t
RO + (0= 55 0) [ AR ds < ont [ A Pds (169
1 0 0

Incorporate (4.65) in (4.63) and use the Lemmas 4.11 and 4.12 and (4.65) to conclude

T*(t)HO(t)H“reM/O o()[A50()[*ds < Ch". (4.66)

Now withthe triangle inequality, the inverse hypothesis, (4.66) and Lemma 4.12, we

conclude the following results:
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Lemma 4.13. Suppose the hypothesis of the Lemma 4.7 be satisfied. Then, the fol-

lowing results hold for any t > 0,
€@ + RlIVEs) < CRt .

With the desired estimate of &, we aim to achieve the estimates of e. by means of 7.

Note that e, = £ + 7.

Lemma 4.14. Suppose the hypothesis of the Lemma 4.7 be satisfied and u.,(t) be a
solution of (4.6) with u.,(0) = Pyu.y. Then, the following

¢
6—2at/ 2as||e ( )||2 ds < K(t)h4,
0
holds for 0 < t < Ty, where K(t) = Ce®*.

Proof. As mentioned above, it suffices to find estimates for n. From (4.6) and (4.52),
we find that

t
(0, vi) + pas(m, vy) +/ Bt — s)a(n(s),vy)ds = Ap(vy), v € Hy, (4.67)
0
where
Ah(Vh) == B(uslm Uep, Vh) - B(ua Ue, Vh) = _l;(ez-:a Uep, Vh) — 6(“57 €., Vh)~ (468)

Choose v, = €*(A_!m) and use Lemma 4.2 and the “Poincaré inequality” to obtain

l\.’)\»—A

Szt (= Y jale+ [ ot - e vzt At ds

< ™AL (AZ'R). (4.69)

2dt

By writing e. = & + 1 and using Lemma 4.3, we estimate Ay, as

o —1z B 1 ;! A
e Azt < LAl + OG0 (lualllAZ el + 4%l ) 1€)°
1 1 1
CONAZE AP (uaenl PlAZ 012 + [ 2 A%, 2.

We now integrate (4.69) with respect to time. Remove the resulting double integration

term due to positivity property and obtain

200

1
jastal+ (u=282) [Cjaas < ou [ 18ras+ o [ 14t

After using the “Gronwall’s Lemma” we use Lemma 4.11 to conclude the remaining

of the proof. O
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The main result of this section, that is, the finite element Galerkin approximation

error estimate for the penalized system is presented now.

Theorem 4.3. Suppose the conditions (A1),(A3), (B1) and (B2) be satisfied. Also,
assume that the u.,(0) € Hy, with ug,(0) = Pyuy, where ug € HY(Q). Then, for
0 <t <Ty, the following holds:

(we = uap) ()] + AV (ue — u) (@) < K(t)h2 2,

where K (t) = Ce®and C > 0 is a constant not depend on & and h.

Proof. Since e, = u. — u., = (U — W) + (Wep, — ugy,) = € + 1 and the bounds for €
are already obtained above, it is now enough to estimate 1. Choosing v, = o(t)n in

(4.67), we arrive at

3o Oll?) + o451 =3l = ot0) [ 506~ atn(s).m) ds + o)

Use Lemma 1.4 to bound the nonlinear terms as

Ah(n) = _B(eaawahan) - B(ug,eg,’l’])
< C([[Vuc(s)[[[[Auc(s)[| + [[VWen(s)[[[[ Anwen(s)[]) [[ec][[[ Vall.

A use of the inverse hypothesis and the approximation property yield

AW || < 1AW, — ApPoug|| + |AnPou|| < Ch2||woy, — Poue|| + C||Au.||

< Ch2(lEl + [[ue = Pouc]]) + Ol Au|| < Cf|Au|. (4.70)

Combining above three equations and integrating the resulting equation, we find that

O)llnll? + 4 / o(s)[AL ()2 < 201 + @) / li(s)|%ds + C / 20| AL 7(s)||ds
e / (AR () A D)% (@47D)

Note that the resulting double integration term is estimated similar to (4.62) with
fo ) ds. In order to bound the second term of (4.71), we integrate (4.67)

and similar to (4.64), we deduce

(n,vp) + pas(n, vy) —i—/o Bt —s)a(n(s),vy) ds = /0 Ap(vy) ds. (4.72)

Put v, = €2*7) in (4.72) and take time integration. Then, drop the double integral
term from the left side due to positivity to find

o

t 1 t s
il + 200~ D) [ e bl s <2 [ e [Cas) drl ds. @13
1 0 0 0
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We bound the nonlinear terms using Lemma 4.3 as

t s ¢ 1
2/ 620‘5/ |AL(M(s))|drds < Ch'tzelt —I—,u/ e?*%|| A2, 1(s) || ds. (4.74)
0 0

0

Incorporate (4.74) in (4.73) with (u — %) > ( to obtain

t 1 B )
IFOIP + e / P ALT(s)|? ds < K (t)h'th. (4.75)

0
Now, insert (4.75) in (4.71) and apply the Lemmas 4.4, 4.5 and 4.14. Then, multiplying

by e72¢t we deduce

t

@)@ + 6‘2“#/ o(s)[AZml|* ds < K(t)h".

0

Since 7 € Hy, one can apply the inverse hypothesisto find the bounds for ||[Vn]|.
We apply the triangle inequality with Lemma 4.13 to conclude the remaining of the
proof. O]

4.3.3 Error Analysis for the Pressure

Below, we present the error estimate for the penalized pressure term, which turns out
to be straight forward, given that error estimates of u, are known. Subtract the second

equation of (4.3) from the second equation of (4.5) and obtain

(ps — Deh, Xh) = g(v * €, Xh)‘ (476)

Choose X1, = Pen — Jnpe = €p — (D= — Jupe) with e, = p. — p.p, in (4.76) to find that

. M M .
HGPH2 = (ezhpz-: - ]hp5> + g(v * €g, ep) - g(v * €, Pe — .]hps)

C 1
< OR[lpelly + SV - ecl® + 5 llesll”

If we use a direct bound like ||V - v|| < C||Vv||, then the error bound for pressure will
depend on 1/e. Alternatively, if we estimate the divergence form, say from Lemma
412, as |V - (u. — VFu.)|| < Cy/eht2, then we will find that 1|V - e.|| depends
on 1/4/e and so does e,. Therefore it is clear that the error bound for the pressure
always depends on 1/¢ or 1/4/¢ if we find it directly using velocity error. A similar
discussion for penalized NSE can be seen in [100] where the authors concluded that
higher regularity on the data allow them to derive ¢ independent result. In our case, if

we choose the finite element spaces Hy, and L;, in such a way that satisfy the discrete
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inf-sup condition (B2), then we can find the e-uniform pressure error estimate as given
below.

First we split the pressure error as

lepll = llpe = penll < lIpe = npell + [|npe — penll. (4.77)

From (B2), we observe that

Hjhpa _pshH <C sup

{|(jhpa —pah,V-Vh)l}

vieH,\{0} Vvl
. e~ PMe 7V Y%
< C(H]hpe — ||+ sup { (P — pen )l }) (4.78)
vi€H,\{0} INAZ

Using (B1), we bound the first term of (4.78). For the second term, we subtract (4.5)
from (4.3) to obtain for all v, € Hy,

t
(€p, V - V) = (€qt, Vi) + pale., vy) + / Bt — s)a(es, vi)ds — Ap(Vv). (4.79)
0
To estimate Ay, we use b(uy, vi, vi) < C||Vuy|||Vval||| V| to bound
[An(vi)| < CUIVue]| + [[Vuen] ) Vee[[[VVal. (4.80)

After inserting (4.80) in (4.79), we apply the “Cauchy-Schwarz inequality” to arrive

at
t
(ep, V- vp) < CHeetHl;ﬁCHVes!H/ ﬂ(t—s>|\Vest8] A2 (4.81)
0

where,
<ea‘t7 Vh>
Vvl

Since all the estimate on the right of inequality in (4.81) are known except ||€.¢||—1.n,

Jeztll -1 = sup { Vi € Hyvi £ 0} (4.82)

and since ||ec||—1.n < |lect||-1 := sup { <|‘|35vt\’,‘|'|> cveH) v# O}, it is sufficient to derive

the following estimate.

Lemma 4.15. Suppose the hypothesis of Theorem 4.3 be satisfied. Then, the following

negative error estimate holds for 0 <t < T':

t
le<tll -1 < € (A(luall + | Ve + / B(t — s)|[Vec|ds).
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Proof. For any 1 € H}, we use the orthogonal projection P, : L? — Hj, and (4.51)
with v, = P, to obtain

(ect,¥) = (ect, Y — Ppp) + (ecr, Pup) (4.83)
= (€ct, Y — Putp) — pac(e., Pryp) — / B(t — s)ale., Putpy,)ds — Ap(Prp).
0

We use the approximation property of P, to bound the following as

(€ct, ¥ — Pup) = (0 — Pouier, ¥ — Puyp) < Chflus ||| VY. (4.84)

Also, using Lemma 4.3 with boundedness of u. and u.; to bound
Ap(Putp) < C([[Vue|| + [[Vuan|)) | Ve |[[Vap]| < C[Vee|[[[ V|- (4.85)

Now substitute (4.84)-(4.85) in (4.83) to obtain

t
(eat) < Ol + CIVecl + [ At = 9)Veds) [V,

and therefore,

< €, V>

v e H, O}
fov VeV

Jextll -1 < sup {
t
< C(h(luall + €IVl + [ 5t - 9 Te.ds).
0
This completes the proof. O

A use of (4.77)-(4.81) and Lemma 4.15 with Lemma 4.5 and Theorem 4.4 will now

result in the following:

Lemma 4.16. Let us assume the hypothesis of the Lemma 4.11 be satisfied. Then, for
0<t<Ty, it holds:
1
1(pe = pen) ()] < K (t)ht™2,

where K (t) = Ce“t.

4.3.4 Uniform in Time Bounds

The estimates derived in Theorem 4.3 are not uniform in time due to the exponential
in time behaviour of the error bounds. But under the uniqueness condition (4.32), we

find the following uniform (in time) estimates.
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Theorem 4.4. Suppose the assumptions of Theorem 4.3 and the uniqueness condition

(4.32) hold. Then, for any t > 0 following holds :

(e = wa) (Ol + |V (u = wa) (@) + Bl (p- = pn) )| < CR2E 2.

Proof. Recall e. = £+ mn and the bounds of £ are uniformly in time (see, Lemma 4.13),
but the estimates of 1 are not uniform (see, Lemma 4.14) due to use of the ‘wall’s
lemma. Hence, it is enough to make the estimates of  are uniform in time. The idea

is to estimate nonlinear term in a different manner using uniqueness condition (4.32)

such that we can avoid the use of “Gronwall’s lemma”. For this, we choose v;, = ¢2*'n

n (4.67) to obtain

1d

t
5l e G Pt | e s)atn(s),m) ds = ' (alnl*+An(m). (1.56)
0

From (4.68) and (4.12), we rewrite the nonlinear terms as

Ah(n) = _b(es7 Uch, T’) - i)(ua €, 77) = l~)<£7 Weh, T’) - l~7<77> Uch, 77) - B(u& £7 T’)
A use of (4.32) help us to bound the second nonlinear term as
[b(17, wen, )| < N[ Vues|[|[Va*.

We apply Lemma 1.4 with (4.70) and the “Cauchy-Schwarz inequality” to find

(&, Wen,m) = b(ue, & m)| < O Ve[ Aw||Z + Vw2 Anwenl|2) €]V
1
< OVl + |Au *) [€]° + S [1Vall*

Substitute the above two in (4.86) and integrate to find

t 1 2/,6 t
o) +2 [ (5 - NITual)|OnlPds + 2 [ v gl
0 0
t s t
w2 [ e [ 3= ryatn(r).n(s) dr ds < [n)]" +2a [ n)ds
0 0 0
t

0 [ Tl + |Au ) PIEI ds. (45

We rewrite the last term as

| e U9l + [au Pl s
<IEOw [ IV + [Au) s @89
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Use (4.88) with Lemma 4.4 in (4.87) and multiply both sides by e~2* to find

2

—M/ / B(s — Ta(n(r), n(s)) dr ds

e [n(0)]* + 2ae” 2‘”/0 e***|n(s)|*ds + ClIE®) oo (w2

— 2z oS M 2 Oé t as
In()IP + 2672 / (4 N )| ds + e / 2|V - |[2ds
0

Now, take limit supremum as ¢ — oo and L’Hospital rule with the followings from [63]

t s
lim sup 6_2at/ 62“/ B(s —1)a(n(r),n(s)) dr ds = —— hm sup ||Vnl?,
t—o0 0 0 2a 5

lim sup ||Vug,|| < u_leooH_l,
t—o0
to conclude
o _
5 = Ny oy + 2] Jim sup [l < C Jmn sup €(2) 3 i

With 1 — Nv=2||f||=1 > 0, we have [& — Nv=H|f||-1 + 3] = L[1 — Nv2||f]|-1] > 0

and we obtain the following
lim sup [[n]] < lim sup [Vl < € lim sup €)oo wo).

Combine with the estimates of &, we conclude the first two parts of the proof. For the

pressure estimate, we use these uniform results in (4.77)-(4.81) and Lemma 4.15. [

4.4 Fully Discrete Formulation

We begin this section with short discussion about a priori bounds of the fully discrete
solution. And then we move on to the error estimates due to time discretization.

We prove a priori bounds for the discrete solutions {U"™}<p<n.

Lemma 4.17. Suppose the conditions (A1) and (A3) be satisfied. Then, for 1 <n <
N, the following results hold:

" 1 1
(0212 + 20tk 37 2| A5, UL ) + A2 U2 < . (4.89)

where we choose o > 0 such that 0 < o < min{0, “’\1} and the following holds

L+ (55 )k > . (4.90)

2¢2
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Remark 4.3. We would like to note here that the assumption (4.90) above can be
rephrased as: for 0 < a < ag, (4.90) holds. And therefore both the conditions of
Lemma 4.17 can be incorporated in one: 0 < a < min{ay, 9, > 2} See Reamrk 2.1,

Chapter 2 for details.

Proof of Lemma 4.17: For n = i, we substitute v;, = U’ (4.9) and use the fact

(6,UL, UL) > 19,||UL|1* and b(U?, U, U’) = 0. Then we use the “Cauchy-Schwarz

inequality” and the “Poincaré inequality” with Lemma 4.6 (|[UZ[* < -[|VUL|]* <
1o

i_?iHAthQP) to deduce

DITU 12 4+ 2142 U 12 4 2a(qi (U.). UT) < 20 112 491
UL + 2” 2 U0L” + 2a(q,(U.), a)_u)\lH 1~ (4.91)

Multiply by ke?*% and take summation over 1 < i < n and then use the following fact

B UL = et |[Uz? — U2 - kZ (= e AL UL
=1
to obtain
e |UZ)* + (3—“—c2<—62ak )kz 2ats| 43 U’||2+2k2 ¢**"a(g,(U.), UY)
£ 2 0 k)\l ch p r g)y 5
< [[UY)? + C“ 11 kZ 2 (4.92)

where we denote ||f|l = [/f]|zoo(r,;12(0))- Third term of the left of inequality (4.92)

is positive due to (1.18), hence we drop it. With 0 < a < min{ay,d, %}, we have

20k _

kA1

L> ct(<5). Hence, multiply both sides by e~ to conclude

2 2ak
G

1 .
U < e ug® +

[UZIP + pe™k ) e ||fH2 My, (4.93)
1=1

which concludes the first part of the proof.
For the remaining part, first we obtain two intermediate estimates. We drop the first

term on the left of inequality (4.93) and let

n
ke
i=1
Note that here, ¥" is a monotonically increasing sequence with 1) — co as n — oo and

<¢n - qzSnfl
djn _ wn—l

1
2 UL and " = e,

lim sup
n—o0

pk R
) = T 5 lim sup || A2, U”|?,
n—,oo
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and from (4.93), it is clear that

. ¢") 2
limsup | — —||f 2ok

Then, an application of the Theorem 4.1 and the mean value theorem yield

1 Qak_l 2
limsup | A% UZ|* < CO I () < “ et (404)

n—oo

Again, we take sum in (4.91) over i = m to m + [, for m,l > 0 and drop the third
term on the left of the resulting inequality due to positivity property to obtain

m 3 K 1o m 221 2c31
U1 + kZ”AahU 1P < WO + 5N < M + MO IFI% (4.95)

=m

Now, we choose v, = A, U? in (4.9) and argue with the similar set of analysis of

(4.37) to arrive
O A2, UL|*+ul| A UL < ||fl||2+2( ) UL + —||CIi(AhUa)||2-

Using (4.7), the last term can be written as

2 342c2e2ati i » '
g} (AU < (kZﬁ DIMUI) < 58—k Y e AUl
j=1

Combine above two equations and multiply by e?*% and take sum i = 1 to n to find

eQak_l n . 1 ;
MnnA;hU"H?wkZ 2| A UL < A3 U2 + ( - )kZemnAshUgn?
+ - k‘z ||2Jr2 kZ lI? ||A§hUZ||4
poe 2u
32 - 2at; 112
0T ST RS et AL U
TS Z
We now set,
i i 3y%ct
g —maX{Q( ) [UZf? ||A§hU [ Ta)}- (4.96)
Then
2at 3 12 - i2 02 4 e**h —1 - 3172
AL UL 4+ kY e AR UL < AL U2 + (S == )k D e a2, Ul
i=1 i=1

3.« Y - atil| A3 T i atj j i
kDN kD [P AR U + kD A UL g

i=1 i=1 j=1
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Now, an application of the “discrete Gronwall’s lemma” yields

1 i A 1 R .
| AZ UL |1 + pk > e[| AL UL < (||A§hU2||2 + ;’fz et ||£7|?

i=1 =1
ek _ 1 “ Lo L
+( - oS et Az U >exp{ngZ}. (4.97)
=1 =1

For a finite but fixed N and 1 <n < N, from (4.96) and (4.95), it follows that

N
kY g <CN. (4.98)
i=1
Now, a use of (4.93) and (4.98) in (4.97) gives

Athi«||2 < C(OA,,LL, )\1,00,”)/,5, Mo,N) (499)

n
1
AU + etk 3 e

=1
Therefore, the inequality (4.99) is valid for all finite but fixed N. Also, from (4.94),

1
we can say that limsup,_, . ||A2,U?|| is bounded, which together leads the uniform in

time bound for || A2, U?|| for all n > 0. This concludes the remaining of the proof. [J

Remark 4.4. We note here that since the bounds proved above are independent of
n, 1 <n < N, these bounds are uniform in time, that s, they are still valid as the

final time ty — 400.

4.4.1 Fully Discrete Error Estimates

Define u.j(t,) = u, and e = U? —u?,. Consider (4.6) at t = t,, and subtract from

(4.9) to arrive at
(Ocel,vy) + pas(el,vy) + a(gr(e:), vi) = Ry (vi) + AL (vi) + Ef (vi) (4.100)
where,
1 tn
Ry (va) = (adyy, vin) — (Opuly, va) = E/ (t = tn—1)(Uecnss; Va) ds, (4.101)
tn—1

AZ(Vh) = B(u?iw u?h? Vh) - B(U?? U?? Vh)

= B(e?’ e?? Vh) - B(e?v u?hv Vh) - B(u?hv egv Vh)a (4'102)
tn
E}(vp) = /o Bty — s)a(uey(s), vy) ds — a(q) (Uep), Vi) (4.103)

< ci /t t (s — ti_1)<ﬁs(tn — §)a(ten, vi) + Bt — s)a(uehs,vh)) ds.

Below, we discuss the error analysis and prove optimal error estimates through a series

of lemmas.
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Lemma 4.18. Suppose the conditions of Lemma 4.17 hold true. Further, assume that
(B1) and (B2) be satisfied. Then, for 0 <n < N, the following results hold:

HAT/2 n”2+k€ 2atnze

AGTIel |2 < K kT, = 1,0,

2at

Proof. For r =0, we choose v;, = €' in (4.100) with n = i, and multiply by ke?** and

take sum from ¢ = 1 to n. Then using the fact

kZ 2at,a ||e ||2 > 62atn

er|? - k;ZcO( ) Az el (4.104)

we arrive at
et || e || + <2M—Co )kzZe

< 2k Z e2ats (R}L(ei) +AL(el) + E,i(eg)) . (4.105)

=1

SellP+ 28y e ha(gie.), el)
i=1

Third term on the left of inequality vanishes due to the positivity property (1.18). We
use (4.101) with the “Cauchy-Schwarz inequality” and ¢ —¢;_y < t,t € [t;_1,1;] to find

2%y e R (! <2kz M( / (5~ ti)l| A tens s [ 42,
=1 i

@ _1 2 1.
< Ckz G <E/t (s —tim1)[| A uehsstS> + %kze el
=1 i—1 =1
C n t; t; 1
<> ( / (s = tia)ds ) / (s = 1) [ A5 ons 25
i=1 ti—1 ti—1
:u - at; 1 7
+ g e ALl
t n
n _1 il 1 i
< (Jk;/o o ()| A7 tapes |25 + gk;e 3ol (4.106)

Using (4.103) and similar argument as (4.106), we arrive at
" o " e .
ok S B (el < Ok (32 [ (o= tym)lts = ) {FIFanl + [V} 1965
i=1 i=1 j=1"ti—1

" 1
< Chke2tn 4 %k 3 e A2 el (4.107)
=1

We use (4.12) and Lemma 4.3 with the “Cauchy-Schwarz inequality” in (4.102) to

bound the nonlinear terms as

Qkie%ti/&z < C’kJZe
i=1 i=1

1
o 1Az el 1+ A% ui el [ A%,
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ahe ||2

Mk;Ze
=1

Note that, in the last line of (4.108), we use |[€7| < [[u?| + ||UZ|| < C. Now, inserting
(4.106)-(4.108) in (4.105), we find that

<Ckz “kz
=1 =
n—1

< Cke*t 4+ Ok Z e

=1

(4.108)

n—1

he I < Cke?n + C’kzz

2

ak
20ty || om0 ||2 _ 2/(€
et et + (1 - b (S5 —) )kE:
Zak_l

With 0 < o < min{ap, 9, ‘;—;\é}, we have 1 — c%(e - ) > 0. Then, we use the “discrete

Gronwall’s lemma” to conclude the proof for the case r = 0.
For r = —1, we take v;, = A_'e” in (4.100) with n = 4. Then multiply by ke?** and
sum from ¢ = 1 to n to arrive at

1 2ak __
| Agtel P+ (26 — i (—py )kZ 2 e ||2+2k2 (g e.), Agtel)
<2kz ot (B (Atel) + M (Aglel) + Ej(A5lel)).  (4.109)

We use the positivity property (1.18) to drop the quadrature term from the left of
inequality. A use of the “Cauchy-Schwarz inequality” and Lemma 4.9 with (4.101),

we bound the R} term as:
n 1 t; ‘
2k 2at; RZ (A 1el < 2k 62%(—/ s — ti—1)||AS Uepss d5> e’
Z aed) S 2036 (- (o~ il Ag s e
- I Yo [ i
< %Zz( / (s tias) / Az ds) e

2 2at, , M .
< Ck*e +§kZe

i=1

(4.110)

Using (4.103) and similar argument as (4.110), we estimate F} as:

tj
2kz 2at1Eh A~ hea ) < C’kz 20t; Z/ §—tj- 1) — s){d||uenl| + ||u6h8”})||e6||
=1
< Ck2e2otn 4 %kZemlleillz- (4.111)

Next we use Lemma 4.3 and “Young’s inequality” to bound A as

2k ZezO‘“AZ (A5lel) < 2k Z e
=1

1

Nl P2 AG |+ AL T DI AS7 el

(NI
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SC’kie A2 + “kz
=1

1
< Cke* || A Zel||? + Ck:z e

=1

1

2

M n
+ gk;e (4.112)
Use (4.110)-(4.112) in (4.109) with ||A_2e"[|* < lle?]|2, < C|leZ||* < Ck to obtain

1 2ak 1 n—l 1

oty 2 n € [e% 7 oty « 2
|| A2 ||2+(u—68(k7A1 kZ 2l el|? < ChPe* i + Ck Y e A el
i=1

we apply the “discrete Gronwall’s Lemma” to conclude the proof for the case r =

—1. O

Remark 4.5. Due to use of the “discrete Gronwall’s lemma”, the generic constant
K,, > 0, which is the form of Ce®n, C > 0, depends on n, hence the above estimates

are local in time.

Note that the error estimates obtained in Lemma 4.18 are sub-optimal. But based

on these, we derive our optimal results. We first present below an optimal error in

L>(L?)-norm.

Lemma 4.19. Let the assumptions of Lemma 4.18 be satisfied. Then, for 0 <n < N,
the following holds

n
1
Tallell|® + ke 7> Y " oyl| A2 el]|* < K,k

i=1

where o; = T;e**% and 7; = min{1,¢;}.
Proof. Take n =i and v;, = o;el in (4.100) to arrive at
Gihel | + 20| A% €L | + 2a(gi(e.). miel) < 2R} (ied) + 20} (cied) + 2] (osel).

Now multiply by k& and take summation over 1 <4 < n and use the fact

kY oidilet]? = oullel]? - mkz (et )kZazHA et

=1

to obtain

2ak

oullell? + (20— b (——

)kZO’Z ]Aghe I < eQakae

—2k i a(q.(es),0:el) + 2k Z oi(Ry(el) + Aj(el) + Ej(el)).  (4.113)
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With vi! = k>0 | v}, a use of (1.21) with the “Poincaré inequality” and Lemma 4.6

gives

2k " a(gi(e.), i |—k2m25 el,el)
=1
—kZUZ<'ya e.,e.) kZ@tﬁt —t;)a(el, 9)
”kZaZHAEheaHMCkZe

A use of (4.101) with the “Cauchy-Schwarz inequality” yields

k> oiRj(el) < kZaz( /
=1
t; n
-3 H 3 i
< OkZ (/t ds) (/t o(s)|| A, ua,m”zds) + ng 01| AZ,el)”
i=1 i—1 i—1 =1

aty 2 - 3 7
< Ckreetn 4 gk;ainA;heEH?. (4.115)

eh 5”2 (4114)

7

s =t 1Az waneel] ds ) 1A% e

We use (4.103) with the “Cauchy-Schwarz inequality” and Lemma 4.6 to bound
kZaZEh ) < Ck2e2ot 1 “kZaZHA el |2 (4.116)
From Lemma 4.3 and 4.18, we bound the nonlinear terms as
S oel) < Ok Yl abatu PIell + 51 ol el
i=1
< Ol et 4 NkZUZHAEheEHQ. (4.117)

Incorporating (4.114)-(4.117) in (4.113) and assuming

" 1
ke 2y e 282 < K,k?, (4.118)
i=1
completes the remaining of the proof. n

We now prove (4.118) in the following lemma.

Lemma 4.20. Let the assumptions of Lemma 4.18 be satisfied. Then, for 0 <n < N,
the following holds

1 .
2neel® < Kk,

n
601 + ke 2t 3 e
=1
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Proof. First we multiply (4.100) by k and take summation over 1 < i < n to obtain

(02, vi) + pa(@, vi) + algl (@), vi) = k S (Ri(v) + Ay (vi) + Ej(va)).  (4.119)
=1

For n =i and choose v, = € in (4.119) then we find that
DG + 2] AZE | + 2a(di(@.). 8) = 2kZ (Ry (&) + A (&) + Ej (1))

2at

Now multiply by ke*** and take summation over 1 < ¢ < n and use the similar fact

as like (4.104). Then, we use the “Poincaré inequality” and Lemma 4.1 to arrive at

20ty || an||2 9 — G <€2ak L
e e2])” + { 2p Ze

<2kz 2‘““/@2 (RL(@) + AJ(E) + Ej(@). (4.120)

58P + 2k > a(g;(€.), )

=1

The quadrature term vanishes due to positivity property (1.18). From (4.101), we

obtain

n % o n i 1 t] .
2k Y kY Ri(E) =2k Y 2 (k > / (5 — t;-1) (Uepss, é”;)ds>
— = — sy ti1
< 2k Z e2at k Z / s—ti_1)||A,2 uEhSSHds> HAEheEH (4.121)

We use the “Cauchy-Schwarz inequality” with 7, < 7,,_1 + k < C7(t),t € [t,_1,tn] to
estimate the term in the bracket on the right of inequality (4.121) as

1
Z/ S—t] 1 HAsh uethHds < k Z/ 2 Z/ 2asHA uz—:hssH2dS)

1

<on(y . )5( [ e i uas) ' @iz

J=1

S

If 0 <t; <1, then 7; =t; = jk and hence

zjj z z = tog(i)

where r is Euler constant. And when ¢; > 1, then 7; = 1 and hence

IEED I

=1
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Now use (4.122) in (4.121) to obtain

2k " ek 3" RI(6l) < Ok + “k;ze a2, (4.123)
i=1 j=1
Using (4.103) and similar argument as (4.122), we arrive at
ok S e ST B (81) < Ok 4+ B et 47,80 |12 4.124
>3 ) ey b (1121

Also using the Lemma 4.3 to bound the nonlinear term as:
kan:emnkzi:/\%( e) = ka Q%k’z (b(el,el, &) — b(el, uah’/é’é) - B(uﬁh,eg,/evé)
i=1 Jj=1

< CRY (k i(\\ezu%uA Wl lP/2 el AZ,ud, 13| Acnd 1) ) A%,
= =1

<ory e [(k:Z Jett?) " (30 Ak o) (k3 e oot et
=1 7=1 7j=1 7j=1

+ (kiemjuez\2)5(kiéaturAehuzhu?f(kze oot | A% ) ]uAehegu
=1 =1

Ctop2 20t . M N 20t o2
< Celtng2eatn 4 Sk; e ||A2 2. (4.125)
A use of (4.121)-(4.125) in (4.120) concludes the remaining of the proof. O

Arguing with the similar way, we can derive the optimal H!-velocity error.

Lemma 4.21. Suppose the hypothesis of Lemma 4.18 be satisfied. Then, for 0 < n <
N, the following holds

n

()2 Vel || + ke Y (m)e

i=1

< K, k>

Proof. The proof is very close to the previous lemma’s proof. So we only give a sketch
of the proof. Let o7 = (7;)%€** and choose v;, = 62 A e with n = ¢ in (4.100) and

multiplying by k£ and summing over 1 < ¢ < n, we reach at

n n n—1
) . . 1
02| A%, el + 2uk Y ol Aaell® +2k ) " otalgi(e.), Amel) < k> ail| AZ,el])”

i=1 i=1

+ 2k Z Apel) + Ni(Apel) + Ei(Apel)).  (4.126)
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As in (4.117), an application of (1.21) with the “Poincaré inequality” and Lemma 4.6

gives
- ; ; H - 2 P2 - i 112
2k a(gi(e.), 07 Age)| < =k Y o?||Aagel|?P + Ck Y oAl 4.127
| ;1 (gr(e2) nel)l < 3 ;1 [ Acnel]l ;1 [ Asrec || (4.127)

We use the “Cauchy-Schwarz inequality” and the “Young’s inequality” with (4.101)

and Lemma 4.2 to bound

n A ‘ n 1 t; A
kY 02Ri(Agel) < kZaf(E/ (5 — ti1) || toes]| ds) | Apel
i=1 i=1 ti—1

n t; t; n
< Ck ds 02(3) || Upss st) + Bk: 2| Al ||?
< Z(/ )(/ ) + YAl
tn n
< czﬁ/ 725 [wanes s + 51D o Al (4.128)
0 i=1

Incorporating with the Lemmas 4.3, 4.6 and 4.18, we can bound the nonlinear terms

as

kY oiAn(Amel) < Ck Y of (I Anud, Il AZelll + llell [l A2 e]®) [ Aanel

i=1 i=1
n N n
2 i H 2 i (12
<CkY oi||AZel|? + Sk Yy of||Agell. 4.129
< OFY el + G D ofAuc (1129)

A use of (4.103) with the “Cauchy-Schwarz inequality” and Lemma 4.6 gives
kS 02E (Agel) < O + B ST 02| Ael 2. 4.130
izlo-z h( hes) — € + 8 Z-Zlo-l || hes” ( )

Inserting (4.127)-(4.130) in (4.126), then using the Lemmas 4.18 and 4.21 and the

following assumption

kY oillAgel])? < Kk, (4.131)
i=1
we conclude the rest of the proof. n

In order to proof the estimate (4.131), we choose v;, = €. in (4.119) with n = i and

exactly similar to Lemma 4.20, we prove the following result.

Lemma 4.22. Suppose the hypothesis of Lemma 4.18 be satisfied. Then, for 0 < n <
N, the following holds

n
Tl VEL|” + ke > " oy Al ||” < Kk

i=1
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We now also find the error bounds for the pressure term. In fact, similar to the above
analysis, we can easily prove that 7,[|0;el’|| < K,k. Now using this and the available

estimates for e, we can easily prove the following result:

Lemma 4.23. Suppose the hypothesis of Lemma 4.18 be satisfied. Then, for 0 < n <
N, the following holds

Tull Pl — pen(tn)|| < Knk.
Proof. From (4.5) and (4.8), we find the following equation
(P —ply, V- vy) = (0rel, vi) + va(el,vy) + alq)(ez), vi) — R (vi) — E} (vi) — AL (vh),

where R}, B} and A} are defined by (4.101), 4.103 and (4.102), respectively. A use of

Lemma 1.4 gives

(P = P&y V- Vi) Z(Ilateé‘ll—l,h +v[[Vel|[ +[lgr (Ve[ + CIVug, || + [VUZ[) [ Vel

t;
+«§;/<ww1mm—$ww%w+w%mww

I
b [t ds) 9l
t

n—1

where || - ||_1, is defined in (4.82) and clearly || - |10 < || - [[-1 < C|| - ||. Finally, we
use the Lemmas 4.7, 4.17 and 4.21 to conclude the remaining of the proof. O

Finally, combining Theorem 4.2, 4.3, 4.16 and Lemma 4.19, 4.21, we conclude our

main result of this chapter.

Theorem 4.5. Suppose the conditions (A1),(A3), (B1) and (B2) be satisfied. Then,
for 0 <n < N, the followings hold:

\/a”u(tn) - Ug” < Ky(e + h? + k),
| V(u(t,) —UD)|| < Kn(e + b+ k),

Tallp(tn) = P2 < Kau(e + h + k),

where K, = Ce“ and C' > 0 is a constant may depends on the given data but not

on g,h and k. Moreover, the above results are uniform in time under the uniqueness

condition (4.32).
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Optimal Penalty Error Estimate for the Navier-Stokes Equations (NSEs)

We would like to point out that the optimal L>(L?)-error for the velocity, in case
of NSEs, is not available in the literature to the best of our knowledge. The result
of [73] is sub-optimal in nature. We have in fact studied the penalty method for
the NSEs to begin with and have analyzed the system with nonsmooth initial data.
Using the time weighted estimates, the negative norm estimates and the inverse of the
penalized Stokes operator, we have obtained optimal error estimates for higher order
finite element approximations. Our work on penalized Oldroyd model of order one is
an extension of this work. Although worked out for linear polynomial approximation,
the presence of the integral term makes things more technical.

Instead of a detailed presentation in the Navier-Stokes’ case, we simply present the

main results here. For details, see [12].

Theorem 4.6. Suppose the conditions (A1),(A3), (B1) and (B2) be satisfied. Then,
for 0 <n < N, the followings hold:

vl3

lu(t,) — Ul < Kn<(e R+

).
).

Ip(ta) = P2l < Ko((e+ k)t + hme %),

w[3

IV (u(t,) — UM)|| < Kn<(5 F R 4 R

Ctn depends exponentially on time. The estimates

where the positive constant K,, = Ce
are uniform in time under the uniqueness condition (4.32), that is, the constant K,

becomes C.

4.5 Numerical Experiments

This section is devoted for numerical verification of our theoretical findings, mainly

verify the order of convergence of the error estimates.

4.5.1 Oldroyd Model of Order One

We consider the Oldroyd model of order one subject to homogeneous Dirichlet bound-
ary conditions. We approximate the equation using (P, Fy) and (Pib, P;) elements

over a regular triangulation of . We take the domain Q = [0, 1] x [0, 1], which is
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partitioned into triangles with size h = 27%, i = 2,3,...,6. To verify the theoreti-
cal result, we first consider Example 2.1 from Chapter 2 and perform the following

numerical simulations.

Table 4.1: Errors and convergence rates (C.R.) for Example 2.1 using (P, ) element
b fu(t) - Ul CR. u(t) - Utlm  CR. [p(t) — PPl CR

1/4 0.12555664 3.00836657 0.36152403

1/8 0.03021356 2.0551 1.50243340 1.0017 0.16959213 1.0920
1/16 0.00833015 1.8588 0.78440706 0.9376 0.08582330 0.9826
1/32 0.00208880 1.9957 0.39392201 0.9937 0.04245084 1.0156
1/64 0.00052683 1.9877 0.19764538 0.9950 0.02114583 1.0054

Table 4.2: Errors and convergence rates (C.R.) for Example 2.1 using (P;b, P;) element
b fu(t) - Ul CR. u(t) - Utlm  CR. [p(t) — PPl CR

1/4 0.05078143 0.32553170 0.18223676

1/8 0.01200307 2.0809 0.07571734 2.0141 0.02962798 2.6208
1/16 0.00296632 2.0167 0.02670858 1.5033 0.01127635 1.3937
1/32 0.00073988 2.0033 0.01102859 1.2761 0.00430807 1.3882
1/64 0.00018605 1.9916 0.00498786 1.1448 0.00137334 1.6494

In Tables 4.1 and 4.2, we give the numerical errors and rates of convergence derived
on successive meshes using (P, Py) and (Pb, P;) elements for BE scheme applied to
the penalized system (4.1) with g = 0.1, = 0.01,0 = 0.1 and time ¢ = [0,1]. The
numerical results show that the rates of convergence are O(h?) and O(h) for the
velocity in L? and energy norms, respectively. And the rate of convergence for the
pressure in L?-norm is O(h). We choose the time step k = O(h?), penalty parameter
e = O(h?) and the final time 7" = 1. The optimal rates of convergence derived in
previous sections are supported by these numerical findings. The error graphs are

presented in Fig 4.1.
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Figure 4.1: Velocity and pressure errors for example 2.1.

In order to verify the rate of convergence for nonsmooth data, we consider the

following example [150].

Example 4.1. For initial data uy € HY, we consider the forcing term f(x,t) so as to

get the following exact solutions
ur(w,t) = 5e'a®?(x = 1)%y**(y — 1)(9y - 5),

ws(a, t) = —5e'a™ (@ — 1)(92 — 5y (y — 1,

p(x,t) = 2e'(z —y).

Tables 4.3 and 4.4 represent the numerical errors and rates of convergence for
nonsmooth initial data. In this case, we take u = 0.1,7 = 0.01,§ = 0.1, k = O(h?)
and € = O(h?). The error graphs are presented in Fig 4.2. The Tables 4.3 and 4.4 as
well as the Fig 4.2 show that the rates of convergence for the velocity are 2 and 1 in
L2 and H'-norms, respectively. And it is linear rate in case of pressure in L?-norm.

Table 4.3: Numerical results for Example 4.1 using (P», Py) element

b fu(t) —U2fis CR. fu(t) = Ul CR. [lp(t) — P2l CR.
1/4 0.12541167 3.00855024 0.36172525

1/8 0.03022854 2.0527 1.50246564 1.0017 0.17009449 1.0886
1/16 0.00837611 1.8516 0.78454574 0.9374 0.08690876 0.9688
1/32 0.00221660 1.9179 0.39406891 0.9934 0.04458552 0.9629
1/64 0.00057676 1.9423 0.19787680 0.9938 0.02515063 0.8260




Table 4.4: Numerical results for Example 4.1 using (P;b, P;) element
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b u(t) - Ul CR. u(t) - Ulls  CR. [p(t) — P'li» CR
1/4 0.08746297 0.86228925 0.64287436

1/8 0.01646827 2.4090 0.27053709 1.6723 0.12551514 2.3567
1/16 0.00407032 2.0165 0.13114574 1.0447 0.05406822 1.2150
1/32 0.00102293 1.9924 0.06421120 1.0303 0.02652004 1.0277
1/64 0.00026565 1.9451 0.03184465 1.0118 0.01379871 0.9425
. ) g ) / //

10
V64 132 116 18
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132 116 8
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Figure 4.2: Velocity and pressure errors for example 4.1.

8

4

The next example is related to “2D Lid driven Cavity Flow Benchmark problem”.

Example 4.2. “We consider a benchmark problem related to a 2D lid driven cav-

ity flow on a unit square with zero body force. Also, no slip boundary condition are

considered everywhere except the non zero velocity u = (1,0)T on upper boundary.”

For numerical simulations, we choose the lines (z,0.5) and (0.5,y). In Figure 4.3,

we present the values of the velocity and the pressure of unsteady problem (4.1) and

it’s steady version at final time T = 75, and v = 1,0.01,0.0025, 0.001 with the choice

of time step k = 0.01, h = 1/64, § = 0.1 and v = 0.1u. From the graphs, it is observed

that the unsteady velocity and pressure profiles coincide with the steady profiles very

well for a large time.
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Figure 4.3: Velocity and pressure profiles for different values of p for Example 4.2.

If v = 0, then the system reduces to the well-known Navier-Stokes equations. In
Fig 4.4, we present the velocity along vertical line and horizontal line through the
geometric center of the cavity for different values of p = 0.01,0.0025,0.001 and each
of the values of p, we vary « from 0.001 to 10 with fixed § = 0.01, £ = 0.01, h = 1/32,
e = ph? and final time 7" = 10. From the graphs, first we observe that when v = 0,
then the velocity profiles coincide with well-known Ghia’s [54] results. Secondly, as u
decreases, the difference between the velocity profiles of Navier-Stokes equations and
Oldroyd model of order one become larger as v increases. Now, we fixed v = 0.1 and
vary 0 from 0.001 to 10 for each values of 1 and the results are presented in Fig 4.5.
In Fig 4.5, we can see that as 6 changes the velocity profiles remain almost same for
any values of p that is the parameter ¢ has a little influence to the solution. It is clear

from the above graphs that the influence of v on numerical solution is larger than §.
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Figure 4.4: Velocity and pressure profiles for different values of v for Example 4.2.
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Figure 4.5: Velocity and pressure profiles for different values of ¢ for Example 4.2.

4.5.2 Navier-Stokes Equations

We approximate NSEs using (P», P,), (P3, P2) and (PN, ) elements over a triangu-
lation of 2. Here also we discretize the domain with mesh size h = 27%,i =1,2,...,6.
To verify the theoretical result, we consider Example 2.1

In Table 4.5 and 4.6, we present the numerical errors and rates of convergence
derived for the fully discrete penalized NSEs using (F,,, P,—1) elements for m = 2, 3,
respectively. The numerical analysis shows that the rates of convergence are O(h™*1)
and O(h™) for the velocity in L?-norm and H'-norm, respectively. The rate of con-
vergence for the pressure is O(h™) in L2-norm. We choose the time step and penalty
parameter as k = ¢ = O(h"™™!) and T'= 1 and v = 1 for our experiments. These find-

ings support the results found in Theorem 4.6. The error graphs are presented below
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in Fig 4.6-4.7. In Table 4.7, we give the numerical results for (PN, ) element. It is
observed in Table 4.7 as well as Fig 4.8 that the rates of convergence for the velocity
in L2-norm and H!-norm are 2 and 1, respectively. Moreover it is linear in pressure in
L2-norm.

Table 4.5: Numerical results for Example 2.1 using (P2, P;) element for NSEs
h Ju(t,) = U2 CR. |ut,)—Um CR. |pt,)— P2 CR.

1/2  3.30633896e-03 - 2.96918336e-02 - 3.29192462e-02 -

1/4  5.11077157e-04 2.6936 8.36078857e-03 1.8284 6.96272136e-03 2.2412
1/8  5.25170055e-05 3.2826  1.99271639e-03  2.0689 9.29102388e-04 2.9057
1/16  6.32080598¢-06 3.0546  5.32350596e-04 1.9042 2.78763334¢-04 1.7368
1/32  7.91350016e-07 2.9977 1.35504728e-04 1.9740 7.93302459e-05 1.8131
1/64 9.89942025e-08 2.9989 3.39036941e-05 1.9988 2.01622898e-05 1.9762

Table 4.6: Numerical results for Example 2.1 using (Pj, P») element for NSEs
b () - Ulle CR. Ju(t) - Ul CR. [p(t) — P2l CR,

1/2  8.72519439¢-04 - 9.64515599¢-03 - 2.42266708e-02 -

1/4  7.86457181e-05 3.4717 2.53372020e-03 1.9285 3.77601493e-03 2.6816
1/8  5.40305188e-06 3.8635 3.35107263e-04 2.9156 4.04997117e-04 3.2209
1/16  3.65287201e-07 3.8866 4.34389795e-05 2.9476 3.73502090e-05 3.4387
1/32  2.40020778e-08 3.9278 5.55651552e-06 2.9667 3.34112960e-06 3.4827

Table 4.7: Numerical results for Example 2.1 using (PN, Py) element for NSEs
b fu(t) - Urle  CR. Ju(t)— Utln CR. [lp(ta) — P2z CR

1/4  6.46328013e-02 - 4.53947780e-01 - 4.68679354¢e-01 -

1/8  2.01782694e-02 1.6795 2.39739250e-01 0.9211 1.74839152e-01 1.4226
1/16  5.43929542¢-03  1.8913  1.21753766e-01  0.9775 5.78140714e-02 1.5965
1/32  1.39082972¢-03 1.9675 6.12053289¢-02 0.9922 1.98791319¢-02 1.5401
1/64 3.49954196e-04 1.9907 3.06603901e-02 0.9973 7.92197390e-03 1.3273
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Figure 4.6: Velocity and pressure error for Example 2.1 using (P,, P;) element.

Velocity error in L?-norm for P-P, element

Velocity error in H'-norm for P,-P, element

10°
——Eror
——n?
10 -
e
10 —
& el
10% _ -
e > A
10 _—
T
-
-
10°f
10°
00313 00625 0125 025 05
h

Pressure error in LZnorm for P,-P,, element

E———
——nd

0.0625 0125 0.25 05

Figure 4.7: Velocity and pressure error for Example 2.1 using (Ps, P») element.
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Figure 4.8: Velocity and pressure error for Example 2.1 using (PN, Py) element.

Next we consider Example 4.2, that is,* 2D Lid driven Cavity Flow Benchmark

problem”. In Figure 4.9, we present the comparison between velocity obtained by

[54] of NSEs for final time

penalty method and velocity obtained by Ghia et. al.

t =75, for v = 1072,1072 and ¢t = 150, for v = 10~*, respectively, with the choice of

time step k£ = 0.01. From the graphs, it is observed that the velocity profiles coincide

with those of Ghia’s results very well for a large time and that for v small.
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Figure 4.9: Velocity components for Example 4.1.

Finally, in Fig. 4.10, we present contours of pressure and the velocity vector of the
NSEs and the Oldroyd model of order one with different values of u = 1/100, 1/400,
1/1000. And we observe that the swirls in the corners of the cavity in the NSEs are
larger than those in the Oldroyd model. This is happened due to the presence of the
integral term, and the integral term plays the vital role of stabling the velocity field.
All the computation for Examples 2.1 and 4.1 were done in MATLAB and the others
were done in FreeFem++ [78].

4.6 Conclusion

In this chapter, a penalized Oldroyd model of order one has been analysed for nons-
mooth initial data, that is, u,y € H}. Based on penalized Stokes operator, and ap-
propriate application of weighted time estimates with positivity of the memory term,
uniform in time regularity results are established for the penalized problem which
are valid as the penalty parameter ¢ tends to zero. This is followed by semidiscrete
analysis of the model based on conforming finite element method. With the help of
discrete penalty Stokes operator and “uniform Gronwall’s Lemma”, uniform in time
bound for the discrete velocity in the Dirichlet norm is derived. Subsequently, optimal
velocity error in L>(L?) and L>(H')-norms and pressure in L°°(L?)-norm have been
established, and these are uniform in time. Our analysis relies on the application of
the inverse penalized Stokes operator with its discrete version, the penalized Stokes-
Volterra projection, weighted time estimates and positivity of the memory term. Then,
based on BE method, a fully discrete penalized system has been analyzed with nons-

mooth initial data. We have shown the first-order rate of convergence in time direction
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for the velocity and the pressure. Finally, we have considered some numerical examples

to validate our theoretical findings. Also, several numerical experiments are conducted

on benchmark problems and for various small values of p and .

E R
e aaww W

R e e P PR

Figure 4.10: The velocity vector and contour of the pressure obtained from Navier-

Stokes equations (first column) and Oldroyd model (second column) at final time

10, 6 = 0.001 and g = 0.01,0.0025,0.001 from top to bottom.
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