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4.1 INTRODUCTION 

Estimation of PM10 surface concentration using Geographic Weighted Regression (GWR) 

model by integrative assimilation of surface PM10, MODIS AOD 550 nm and ERA-

interim AT reanalysis data, and investigation in the heterogeneity of PM10-PBLH-AOD 

550 nm relationship over BV forms the core of this chapter.  

Geographic Weighted Regression (GWR) is globally applied to estimate PM10 surface 

concentration. GWR is a spatial regression technique that evaluates a local model of the 

variable, predicted by fitting a regression equation to every feature in the dataset. GWR 

builds local R2 values for each observation in the dataset, generates parameter estimates, 

and calculates standard errors. GWR is also effective in modelling spatially varying 

relationships [1] and investigates heterogeneity in data relationships across space by 

creating multiple equations [2, 3]. The spatially varying relationships among variables 

(dependent and explanatory) are captured by generating local regression coefficients (β) 

[4]. 

PM10, one of the major contributors to air pollution, is related to meteorological variables 

and PBLH over a region. An increase in AT enhances photochemical reactions of 

precursors gases in the atmosphere leading to an increase in PM10 concentration. While 

PBLH plays a critical role in dictating dispersion of pollutants by turbulence mixing 

(mechanical and thermal), vertical diffusion, convective transport, and entrainment of 

aerosols within the mixing height [5, 6]. PM10 varies spatially owing to proximity to 

sources, short atmospheric lifetime, and surface topography juxtaposed with 

meteorological parameters [7-9]. AOD 500 nm, quantifies the number of columnar aerosol 

particles (size ranging from 0.1 to 2 mm) based on optical sensitivity to visible channels 

[10], which is an important aerosol parameter that is related to PM10 surface 

concentration.  

BV, as mentioned in the preceding chapters, has an inhomogeneous surface that often 

develops local circulations and modifies ambient synoptic weather to create unique local 

meteorological conditions [11, 12]. Micro-meteorology and boundary layer dynamism 

over such complex terrain play a significant role in the spatial distribution of PM10 surface 

concentration. 

Most of the studies in the BV are conducted to study the properties and characteristics of 

PM10 over the valley (please refer to Table 2.2 Chapter 2). There is a dearth of studies on 
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the estimation of PM10 surface concentration, heterogeneity of PM10-meteorology-AOD 

550 nm relation, and spatial distribution pattern of PM10 over BV. GWR, known for its 

efficiency in capturing spatial heterogeneity in relationship and estimation of surface 

concentration of particulate matter, and widely applied for varieties of terrains and climatic 

zones, has not yet been applied for the complex terrain of BV. PM10 surface concentration 

is found to be high by researchers [8, 12] for some select sites over BV. One of the limiting 

factors for this dearth of study is the non-availability of ground-based data for PM10 and 

the other independent variables.  

Ground-based stations are the most reliable source for PM10 surface concentration 

measurements over a large geographical area. For estimation of PM10 surface 

concentration, the inadequate number, unavailability at a high temporal scale, and 

disproportionate distribution of ground-based stations over BV have been major limiting 

factors. Although the Pollution Control Board of Assam monitors the PM10 surface 

concentration, the number of stations measuring PM10 is far from sufficient to adequately 

represent the PM10 surface concentration for the entire valley. The limitations in ground-

based data can be addressed by the effective utilization of satellite-derived and reanalysis 

data. The satellite retrieved aerosol products, and ERA-interim ECMWF reanalysis 

meteorological data are known for accuracy, spatial, and temporal coverage.  They have 

been extensively used as predictive variables in regression models to estimate PM10 

surface concentration over a large geographic area [13-18].  

This study (a) estimates PM10 surface concentration using GWR model based on MODIS 

AOD 550 nm and reanalysis derived AT, PBLH explanatory variables over the BV for the 

period 2016-2018; (b) explores the relationship between PM10 and the explanatory 

variables of AOD 550 nm, AT and PBLH height across the valley (c) analyse the spatial 

distribution of PM10 surface concentration, AOD 550 nm, AT and PBLH. The scope 

includes evaluation of GWR model performance, model validation and efficacy to 

represent PM10 surface concentration for BV. To the best knowledge of the authors, the 

current study is the first attempt to apply the GWR model for estimating PM10 

concentration over BV.  

4.2 DATA, SOURCES AND PRE-PROCESSING 

The technical details of the datasets used are provided in the Table 4.1. The salient features 

of the data and sources are discussed in the following sub-sections. 



Chapter 4 

 

69 | P a g e  

Table 4.1 Technical specifications and the sources of the dataset used. 

Parameters Spatial 

resolution 

Temporal 

resolution 

Data Source Available at 

PM10  point 8-hourly (6:00 h 

LST to 14:00 h 

LST) 

SPCB https://www.pcbassam.org/ 

AT, BLH 0.5⁰ x 0.5⁰  hourly ERA-interim  https://www.ecmwf.int/en/f

orecasts/datasets/browse-

reanalysis-datasets 

AOD 550 

nm 

10 x 10 km 10:30 h LST and 

13:30 h LST 

MODIS 

onboard 

Terra and 

Aqua 

https://ladsweb.modaps.eos

dis.nasa.gov/search/ 

AT= Air temperature, BLH= boundary layer height, SPCB= State Pollution Control 

Board of Assam 

 

4.2.1 PM10 ground-based data 

PM10 data were collected from the State Pollution Control Broad of Assam (SPCB), for 

the period 2016-2018. SPCB has generated data using Respirable Dust Sampler 

(Envirotech APM 460 NL) based on the gravimetric method. The instrument is reportedly 

operated for 8-hourly sampling (6:00 h to 14:00 h LST) on alternate days in a week. The 

monthly mean of PM10 data of 10 stations across different districts of Assam for the period 

2016 to 2018 was used for this study. As the measurements are recorded 8-hourly twice or 

thrice a week, overestimation of the daytime PM10 concentrations was a distinct 

possibility, as the 8-hourly sampling period does not capture the variability of the pollutant 

on the finer temporal scale [19]. 

The PM10 ground-based stations in the western part include Bongaigaon (BNG; 90.58°E, 

26.41°N), Nalbari (NBL; 91.43°E, 26.47°N), and Guwahati (GHY; 91.75°E, 26.17°N); in 

the central part include Nagaon (NGN; 92.5°E, 26.22°N) and Tezpur (TZU; 92.83°E, 

26.7°N); and in the eastern part include Golaghat (GLGT; 93.85°E, 26.5°N), Lakhimpur 

(LMP; 94.05°E, 27.16°N), Sivasagar (SVG; 94.63°E, 26.98°N), Dibrugarh (DBR; 94°.84 

E, 27.36°N), and Tinsukia (TSK; 95.36° E, 27.5°N) (Figure 4.1). 
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Figure 4.1 Ground-based stations of PM10 over Brahmaputra valley. 

4.2.2 ERA-interim meteorological data 

ERA-Interim ECMWF is one of the best sources of global data for many climatological 

parameters [20]. Reanalysis systems assimilate measurements of in-situ and space-based 

into weather prediction models. ERA-Interim fields of AT and BLH are available at 1, 6 

and 12 hourly forecast times. AT data used for the study were at 0.5º x 0.5⁰ spatial 

resolution and hourly average of 0:00 h to 12:00 h UTC or 5:30 h to 17:30 h LST, 2016-

2018 (Table 4.1).  

Within the scientific community ECMWF spectral model is highly regarded for its surface 

and climatological data, as it contains a sophisticated cloud scheme [21]. ECMWF 

reanalysis models can resolve many of the topographically induced circulations and effects 

of complex terrain. It may, therefore, explicitly capture the effects of surface features [22], 

thereby reducing the uncertainty of ERA-Interim surface and climatological data over 

complex terrain. 

4.2.3 MODIS AOD 550 nm 

MODIS AOD 550 nm onboard Terra and Aqua is extracted for the corresponding10 

sampling stations at the native spatial resolution of 10 x 10 km. The other technical details 

of MODIS AOD 550 nm are already discussed in Section 2.2.1 Chapter 2. 



Chapter 4 

 

71 | P a g e  

 

4.2.4 Data pre-processing 

Collocation of PM10 and MODIS AOD 

Surface measurement provides 8-hourly data of PM10, while MODIS AOD 550 nm is 10 

x10 km spatial resolution data. To understand the relationship between columnar AOD 

and surface concentration of PM10, both the measurements must be collocated in space 

and time. For collocating the PM10 data with MODIS AOD retrievals in space and time, 

the MODIS AOD data at the spatial resolution of 10 x 10 km was averaged to a window 

of 50 x 50 km (5 x 5 pixel box at 10 km resolution) centered at the location of PM10 

ground location [16, 23]. Furthermore, MODIS Aqua and Terra AOD 550 nm data was 

averaged for the aforementioned PM10 concentration days, and finally monthly mean was 

calculated.  

4.3 METHODOLOGY 

The schema of the methodology followed is illustrated in Figure 4.2. The method followed 

for model fitting, data preparation, data integration and model performance assessment are 

discussed in the following subsection. 
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Figure 4.2 Schema of methodology. 

 

4.3.1 GWR model 

This study utilized GWR model to generate local regression coefficients for the 

dependent variable PM10 and the select set of independent variables- AOD 550 nm, AT 

and PBLH- over the 10 sampling stations. 

The GWR model structure is 

PM10ij = β0,ij + β1,ij x AODij + β2,ij x PBLHij  + β3,ij x AT,ij + ε                                           (1) 

 

where PM10ij (μg/m3) is the monthly mean of surface PM10 concentration at a location i1-

10 on month j, while β0,ij denotes the location-specific intercept on month j. β1,ij−β3,ij are the 

location specific slopes on month j.  AODij (unitless) is the AOD 550 nm averaged from 



Chapter 4 

 

73 | P a g e  

Terra and Aqua MODIS AOD products at a location i1-10 on month j. PBLHij (unit: m), 

ATij (unit: °C) are meteorological parameters at location i on month j. 

Meteorological factors AT, WS, RH, Ps, and PBLH coupled with AOD 550 nm were first 

fitted as predictive variables in the model. Due to the existence of strong multi-collinearity 

(VIF>7.5) among the explanatory variables, the model showed poor performance, 

simulating highly spatially clustered values of predicted PM10. After training the model 

with different predictive variables, finally AT, PBLH, and AOD 550 nm stand out as the 

key predictive variables for PM10 estimation over the valley. Since vertical mixing within 

the boundary layer can substantially change particle extinction properties [14], and high 

air temperature can intensify photochemical reactions producing more particulate matter 

[6, 24], they are the key predictive variables for the model fitting [Eq. (1)]. MODIS AOD 

550 nm as the sole predictive variable did not represent well in estimating the PM10 near-

surface concentration in the model fitting. It is probably due to AOD measures the 

columnar aerosol concentration while PM10 represents the near-surface mass 

concentration of particulate matter. 

4.3.2 VIF multicollinearity test and Local R2  

Variance inflation factors (VIF) are calculated to detect the collinearity or redundancy 

among the predictor variables used in a GWR model [1]. If two (or more) explanatory 

variables are found with high multicollinearity (VIF> 7.5) in the models, it indicates that 

those variables are possibly telling the same relationship. VIF helps to find the redundant 

variable that can explain the unique aspect of the dependent variable. 

The local R2 value indicates the model performance and the spatial heterogeneity of the 

GWR model [14, 16].   

4.3.3 Moran I spatial autocorrelation test 

Moran I spatial autocorrelation test is an appropriate statistical test that measures the level 

of spatial autocorrelation in the regression residuals. If the residuals exhibit a random 

spatial pattern, it follows normal distribution indicating spatial heterogeneity or random 

spatial pattern. Based on residual, the over/under prediction of a model can be examined. 
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4.3.4 10-fold cross-validation 

The 10-fold cross-validation (CV) method [25] was applied for evaluating the GWR model 

performance. This method is widely used for the validation of model fitting [14, 16-17]. 

The original dataset was randomly divided into 10 folds with approximately 10% of the 

total data points in each fold. In each step of CV, the model was fitted with nine folds 

(90% of the total data set) to predict one-fold of the dataset. This step was repeated 10 

times until every single fold was tested. Furthermore, R2 and RMSE were calculated for 

model fitting and cross-validation. 

To validate the GWR model performances, the predicted PM10 (µg/m3) concentrations 

were fitted against the observed values. Statistical indicators coefficient of determination 

(R2) and root mean square error (RMSE) were calculated to assess the goodness of fit 

between the predicted and observed PM10 concentration and prediction accuracy of the 

GWR model respectively. Furthermore, R2 and RMSE were calculated for model fitting 

and cross-validation. 

4.4 RESULTS AND DISCUSSION 

4.4.1 GWR model performance in estimating PM10 surface concentration 

The scatter plots of the model fitting and cross-validation of the GWR model are shown 

in Figure 4.3. For R2 and RMSE values of the model fitting between the estimated and 

observed PM10 are 0.62 and 22.74 µg/m3 respectively (Figure 4.3a). Compared to the 

model fitting, cross-validation (CV) R2 values decreased by 0.09 (R2= 0.53), and RMSE 

decreased by 0.14 (RMSE= 22.60 µg/m3) (Figure 4.3b) which suggested that the model is 

slightly over fitted. The overall R2 of model fitting suggests that the GWR model can 

explain 62% of the total variability of data while estimating PM10 surface concentrations. 

Also, the observed t-values of the dataset are statistically significant (t>2, p<0.05), which 

explains the tightness of fit of each explanatory variable with the dependent variable.  

PM10 µg/m3 surface concentration (Figure 4.4b) estimated by the GWR model was slightly 

underestimated as compared to the observed PM10 µg/m3 surface concentration (Figure 

4.4a) across the sampling stations.  
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Figure 4.3 Scatter plot of model fitting cross-validation (a) model fitting results of the 

GWR model; (b) 10-fold cross-validation results of the GWR model. The red line is the 

linear regression of the scatter plot. R2, RMSE shows the prediction accuracy of the model 

fitting and cross-validate results.  
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Figure 4.4 shows the variation of (a) observed PM10 surface concentration (µg/m3) and (b) 

estimated PM10 surface concentration (µg/m3) by the GWR model for the ground-based 

sampling stations, Brahmaputra valley, 2016-2018.  
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Spatial autocorrelation  

The Moran's I index results (z= -1.21, p<0.5) showed no significant spatial autocorrelation 

for the residual of the GWR model for the present set of data indicating the spatial 

randomness of distribution (Figure 4.5). The local R2 values of the GWR model range 

from 0.164 to 0.547. Low R2 values were computed for the semi-urban areas whereas high 

for the urban areas of the western and central parts of the valley (Figure 4.6). The local R2 

values indicate the moderate performance of the model due to the sparsity and non-uniform 

spatial distribution of the ground-based monitoring network (Figure 4.1).  

 

 

Figure 4.5 Summary of the Moran’s I Spatial Autocorrelation used on the GWR residuals. 

The Moran's I index results (z= -1.21, p<0.5) showed no significant spatial autocorrelation 

for the residual of the GWR model for the present set of data indicating the spatial 

randomness of distribution.  
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Figure 4.6 Spatial variation of local R2 value generated from GWR model for the ground-

based sampling stations, Brahmaputra valley.  

Multicollinearity 

Variance inflation factors (VIF) are calculated to detect the collinearity among the 

predictor variables based on MODIS derived AOD 550 nm, PBLH and AT [1]. The VIF 

values were below 3, denoting the weak collinearity among the variables in the current 

model. Hence, variable collinearity does not affect model efficiency.  

4.4.2 PM10-AT, PM10-PBLH and PM10-AOD 550 nm relationship  

The wide range of spatial variation in regression coefficient (β) values over BV indicated 

the heterogeneity in the relationship among the variables (Figure 4.7 and Table 4.2). 

PM10-AOD 550 nm showed a strong positive relationship (β1= 7.78 to 23.91) over the 

western part, a weak negative relationship (β1= -2.91 to -15.68) over the central part, and 

a strong negative relationship (β1= -15.47 to -27.27) over the eastern part of the valley. 

Strong west-east spatial heterogeneity over BV was observed in PM10-PBLH (β2= -0.01 

to 0.005), and PM10-AT relationship (β3= -2.15 to -9.84) respectively. The observed 

variation in coefficient values can be attributed to differences in local micrometeorological 

conditions (atmospheric stability, wind, and turbulence) formed across the valley. Spatial 

variations in local meteorology are quite usual over a complex terrain [26]. 
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Table 4.2 Regression Coefficient (β) values of predictive variables generated by the 

Geographic Weighted Regression (GWR) model for the respective PM10 ground-based 

sampling stations, Brahmaputra valley. 

 

Division Location Coefficient AOD 

550 nm β1 

Coefficient 

PBL β2 

Coefficient AT 

β3 

Eastern BNG 23.91 -0.01 -2.15 

 NBL 7.78 -0.03 -6.86 

 GHY 5.94 -0.04 -7.96 

Central NGN -2.92 -0.05 -9.06 

 TZU -17.68 -0.04 -9.83 

 GLGT -8.08 -0.01 -6.83 

Western LMP -4.19 0.002 -5.86 

 SVG -8.80 0.0007 -5.20 

 DBR -15.47 0.003 -5.34 

 TSK -27.27 0.004 -5.78 

 

4.4.3 Spatial distribution of PM10 surface concentration 

Higher mean value of PM10 surface concentration and AOD 550 nm was observed in the 

western and central parts of BV than in the eastern valley (Table 4.3). GHY had the highest 

PM10 concentration (105.72 ± 41.94 µg/m3) with AOD 550 nm value of 0.51± 0.22. The 

lowest mean PM10 value was noticed over BNG - 57.78 ± 9.03 µg/m3 with AOD  550 nm 

mean value of 0.52 ± 0.26. GHY, being the largest metropolitan city of the BV, displays 

high loading of carbonaceous aerosols from vehicles and open burning of solid waste 

disposal [27]. The meteorological parameters PBLH and AT showed less variation in their 

mean values over the valley. Mean values of PBLH and AT ranged between 492- 567m 

and 22.96- 24.44 °C. PBLH and AT displayed higher values over NBL and GHY, and 

lower values over TSK and NGN respectively (Table 4.3). 
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Table 4.3 Summary of descriptive statistics of the independent and dependent 

variables used in the Geographic Weighted Regression (GWR) model, 2016 to 2018. 

 

Locations Statistics PM10 

(µg/m3) 

AOD 550 

nm 

PBLH 

(m) 

AT (⁰C) 

BNG Mean 57.78 0.52 512.00 23.80 

 SD 9.03 0.26 197.64 3.82 

 Median 58.63 0.50 521.90 24.55 

DBR Mean 63.51 0.40 509.19 23.36 

 SD 24.05 0.22 172.48 3.43 

 Median 59.58 0.36 493.25 24.10 

GLGT Mean 65.10 0.46 532.99 23.09 

 SD 24.93 0.24 151.30 2.77 

 Median 60.79 0.45 527.63 24.33 

GHY Mean 105.72 0.51 537.02 24.44 

 SD 41.94 0.22 162.53 3.35 

 Median 89.46 0.51 553.30 25.35 

LMP Mean 67.37 0.43 529.67 23.55 

 SD 28.83 0.25 193.19 3.25 

 Median 65.35 0.38 497.55 24.55 

NGN Mean 99.59 0.58 554.48 22.96 

 SD 44.80 0.28 165.58 3.19 

 Median 90.26 0.55 528.93 23.38 

SVG Mean 75.13 0.46 496.06 23.57 

 SD 21.05 0.23 153.86 3.31 

 Median 71.23 0.44 498.70 24.65 

NBL Mean 99.65 0.59 567.84 23.84 

 SD 39.36 0.25 242.83 3.36 

 Median 90.13 0.60 536.70 25.15 

TZU Mean 98.68 0.52 525.40 23.41 

 SD 52.97 0.30 156.53 3.56 

 Median 95.13 0.42 516.80 24.25 

TSK Mean 73.16 0.40 492.40 23.12 

 SD 24.27 0.18 223.25 2.64 

 Median 72.59 0.38 496.40 24.35 
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4.5 CONCLUSION 

PM10 µg/m3 surface concentration estimated by the GWR model was slightly 

underestimated as compared to the observed PM10 µg/m3 surface concentration across the 

10 ground-based stations of BV. The GWR model performed well for the estimation of 

PM10 surface concentration with R2 and RMSE values of 0.62 and 22.74 µg/m3 

respectively.  

GWR performed well in capturing the spatial heterogeneity of the relationship between 

the dependent PM10, and explanatory variables AOD 550 nm, AT, and PBLH over BV. 

The β values indicated the heterogeneity in the strength of association amongst the 

variables. The strongest positive relationship in PM10-AOD 550 nm was found to be in 

the western part of BV.  

The monthly mean values of observed PM10 concentration and AOD 550 nm vary 

strongly with location over the valley depending on the proximity to sources and the 

effectiveness of dispersal mechanisms. The western part of BV, in comparison to the 

central and eastern parts, had the highest PM10 surface concentration. This can be 

attributed to aerosol loading by long-range transported aerosols and coupled with local 

meteorological conditions. A decreasing gradient of mean values for PM10 and AOD 550 

nm is noted from the west to the east of the valley.  

The explanatory variables derived from satellite and reanalysis data sources are found 

reliable and efficient for PM10 estimation using the GWR model over the terrain of BV, 

where availability and consistency of ground-based data are limited. GWR model can be 

developed further for forecasting PM2.5 and PM10 at a higher temporal scale over the 

valley. As the GWR can aid in modelling the spatial variation in relationships among the 

variables, it can be applied to analyse the role of individual meteorological parameters 

influencing PM10 surface concentration. 
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