I dedicate this thesis in the memory of my beloved late. Grandfather (Dadu) I hereby declare that the thesis "*Investigation on electroactive materials for rechargeable aqueous aluminum-metal/ion battery*" being submitted to the **Department of Physics, Tezpur University** under the School of Sciences in partial fulfillment for the award of the degree of Doctor of Philosophy in Physics. This is an original work carried out by me and it has not been previously considered for the award of any degree, diploma, associateship, fellowship or and other similar title or recognition from any University, Institute or other organization.

(Sunny Nandi) Regd no.: TZ201055 of 2019 Department of Physics School of Sciences, TU

तेजपुरविश्वविद्यालय / TEZPUR UNIVERSITY (संसदकेअवधवनयम द्वारा स्थावपत कें विश्वविद्यालयद्रीय) (A Central University established by an Act of Parliament) तेजपुर–784028 :: असम / TEZPUR – 784028 :: ASSAM

Dr. Shyamal Kumar Das Assistant Professor Department of Physics Phone: 03712-275586 Email: skdas@tezu.ernet.in

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "Investigation on electroactive materials for rechargeable aqueous aluminum-metal/ion battery" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in **Department of Physics** is a record of original research work carried out by **Sunny Nandi** under my personal supervision and guidance.

All helps received by him from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for award of any other degree.

Date:..... Place: Tezpur, Assam

(Shyamal Kumar Das) Principal Supervisor

तेजपुरविश्वविद्यालय / TEZPUR UNIVERSITY (संसदकेअवधवनयम द्वारा स्थावपत कें विश्वविद्यालयद्रीय) (A Central University established by an Act of Parliament) तेजपुर–784028 :: असम / TEZPUR – 784028 :: ASSAM

CERTIFICATE OF THE EXTERNAL EXAMINER AND ODEC

This is to certify that the thesis entitled "Investigation on electroactive materials for rechargeable aqueous aluminum-metal/ion battery" submitted by Sunny Nandi to Tezpur University in the Department of Physics under the School of Sciences in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy in Physics has been examined by us _____ and found to be satisfactory. on_

The Committee recommends for the award of the degree of Doctor of Philosophy.

Signature:

Principal Supervisor Date: External Examiner Date:

ACKNOWLEDGEMENTS

First to begin with, I would like to express my sincere gratitude to my supervisor Dr. Shyamal Kumar Das, who was the driving force behind my decision to pursue my PhD at Tezpur University. His advice, leadership, and support helped me to learn a lot. I appreciate the opportunities he has given to me, his unwavering patience, pleasant demeanour, and most importantly the fact that despite his busy schedule, he is always available whenever I need him, whether it be via email or in person. I am excited about my future as a scientist, and I will always be grateful to him for that.

I want to convey my sincere gratitude to Professor Gazi Ameen Ahmed and Dr. Rajib Biswas of the doctorate committee for their support and encouragement during my PhD tenure.

I want to express my gratitude to Prof. Vinod Kumar Jain, former Vice Chancellor of Tezpur University, for providing all the facilities I needed on the university campus to conduct my research.

I am really grateful to Prof. Mrinal Kumar Das, Head of the Physics Department, Nilakshi Das former Head of the Physics Department, for all the kind assistance and support throughout my PhD course in the Department. I am also thankful to the entire faculty of the Department of Physics for their helpful assistance and supports during my PhD study.

I would also like to thank to the Dean, School of Sciences, Tezpur University for the academic support and generosity.

I am always thankful to the technical and non-technical staff members of Department of Physics and SAIC, Tezpur University: Mr. Palash Dutta, Mr. Biju Boro, Mr. Prakash Kurmi, Mr. Tridib Ranjan Nath, Mr. Nava Kr. Gogoi, Mr. Mohendra Das, Mr. Narayan Sharma, Mr. Dhruba Deka, and Mr. Umesh Patir.

I am thankful to my funding agency Science & Engineering Research Board (SERB), Department of Science and Technology, Govt. of India for proving me the fellowship during my PhD course.

I want to sincerely thank Dr. Yuzhang Li, Department of Chemical and Biomolecular Engineering and Prof. Ximin He, Department of Materials Science and Engineering at University of California, Los Angeles, United States, for all their help with my research objectives during my Fulbright Stay.

I also acknowledge United States-India Educational Education (USIEF) and Institute of International Education (IIE) for enabling me to stay at University of California, Los Angeles (UCLA), United States under the Fulbright Nehru Doctoral Research Fellowship (2021-2022). Many thanks to my lab mates- Homen Lahan, Devalina Sarmah, Ritupurna Baishya, Atowar Rahman and Konica Roy who gave me a lot of help in my primary research studies.

To all my colleagues at Tezpur University, thanks to Panchali and Bikash Thapa for being with me all during all the important millstones of my PhD course. Thanks to Kashmiri, Sritam and Ankush for guiding me throughout my PhD. Thanks, Kakoli and Sita for your help during my pre-thesis completion. Thanks, Honey di, Gayatri di, Adity, Saswati, Trinakshee and Rahul Sarma for all the care and guidance during my stay at Tezpur University. Thank you all for making my PhD journey unforgettable.

To my other colleagues and friends at University of California, Los Angeles- Thanks, Jinhui, Yichen, Freya, Srinath, Diplav, Gaurav, Hamid and Rahul Bhaiya for making my stay more comfortable and memorable ones. Thanks, Anirban for guiding me and treating me like your own brother.

Last but not the least, I couldn't have done it without the love and support of my family members- Dida, Babu, Maa and Borda, they all have provided me with unending support, prayers, love and advice.

Sunny Nandi

LIST OF TABLES

Table No.	Table Caption	Page No.
	CHAPTER 1	
Table 1.1	Comparison of the characteristics of various metal ions	2
	<u>CHAPTER 2 (Part I)</u>	
Table 2.1.1	Charge transfer resistance (R_{ct}) values estimated from fitting the data using the equivalent electrical circuit.	30
Table 2.1.2	Summary of possible electrochemical reactions.	36
	<u>CHAPTER 2 (Part II)</u>	
Table 2.2.3	The electrochemical performance of other cathode materials.	46

LIST OF FIGURES

Figure No.	Figure caption Page					
CHAPTER 1:	Introduction					
Figure 1.1	Spider chart representation of various ions. 2					
Figure 1.2	Schematic representation of an (a) Aluminum-ion	5				
	battery, and (b) Aluminum-metal battery					
	respectively.					
CHAPTER 2 I	Part (I): Rechargeable aqueous aluminum-metal battery	with				
(exfoliated garphite					
Figure 2.1.1	(a) Digital photograph of Al foil used in the present	19				
	work, (b) Experimental set up for performing the					
	electrochemical exfoliation of graphite foil, and (c)					
	enlarged view of the cell.					
Figure 2.1.2	SEM images of (a) pristine graphite foil, (b)	20				
	exfoliated graphite foil (or foam) with Al and (c)					
	exfoliated graphite foil (or foam) with Cu. (d-f)					
	TEM images of exfoliated graphite foil (or foam)					
	with Cu. Inset of Figure 2.2f shows the SAED					
	pattern.					
Figure 2.1.3	(a) XRD patterns of all graphite foils and (b)	21				
	Raman spectra of 1 M aqueous solution of					
	AlCl ₃ .6H ₂ O and solid sample of Al(OH) ₃ . Digital					
	photographs and thickness measurement of (c-f)					
	pristine graphite, (d-g) exfoliated graphite with Al					
	and (e-h) exfoliated graphite with Cu.					
Figure 2.1.4	Digital photographs of (a) 300 mg of $Al(OH)_3$ in	22				
	water solution and (b) 1 M aqueous solution of					
	AlCl ₃ .6H ₂ O. The dotted line indicates that $Al(OH)_3$					
	is not soluble in water.					
Figure 2.1.5	(a) Galvanostatic discharge/charge curves of	22				
	pristine Al-graphite cell, (b) Variation of					
	discharge/charge capacities with cycle number at a					

specific current density of 0.5 Ag⁻¹ in 1 M AlCl₃ aqueous electrolyte. **Figure 2.1.6** (a) Galvanostatic discharge/charge curves of 23 pretreated Al-graphite foam cell (with bias of 4 V), (b) Variation of discharge/charge capacities with cycle number. The current density is 0.5 Ag^{-1} . (c) CV curves of Al-graphite foam cell (with bias of 4 V) at scan rate of 1 mVs⁻¹. (d) Electrochemical impedance spectra for symmetric pristine Al and pretreated Al cells. **Figure 2.1.7** Digital photograph of an Al-graphite cell where 24 gas bubble formation (marked by the dotted line) could be observed during charge/discharge experiment. **Figure 2.1.8** Galvanostatic discharge/charge curves of Al-25 graphite cells which are biased with a potential of (a) 1 V and (c) 2.5 V. Variation of discharge/charge capacities with cycle number with a bias potential of (b) 1 V and (d) 2.5 V. The current density is 0.5 Ag⁻¹. 25 **Figure 2.1.9** Variation of discharge capacities with cycle number for Al-graphite cells pretraeted at different time durations but with constant bias of 4 V. The specific current density is 0.5 Ag⁻¹. **Figure 2.1.10** XRD patterns of pristine Al foil and pretreated Al 27 foil. **Figure 2.1.11** SEM images of (a) pristine Al foil and pretreated 27 Al foils in (b)1 M AlCl₃, (c) 0.5 M Al₂(SO₄)₃ and (d) 1 M Al(NO₃)₃ aqueous electrolytes. Insets show

(d) I M Al(NO₃)₃ aqueous electrolytes. Insets show the digital photographs of the Al foils used in the experiments. The dotted region indicates the bleaching portion of pretreated Al foil in AlCl₃ electrolyte.

- Figure 2.1.12 Electrochemical impedance spectra (EIS) for symmetric (a) pristine Al cell and (b) pretreated Al cell. (c) circuit diagram of the equivalent electrical circuit used to fit the experimental data. Here R2 corresponds to the charge transfer resistance value.
- **Figure 2.1.13** Galvanostatic discharge/charge curves of pretreated Al-graphite foam cell (exfoliation done with Cu), (b) Variation of discharge/charge capacities with cycle number. The current density is 0.5 Ag⁻¹. (c) Electrochemical impedance spectra for Al (pristine)-graphite (pristine) cell, Al (treated)-graphite foam (treated with Al) cell, and Al (treated)-graphite foam (treated with Cu) cell. (d) Variation of charge/discharge capacities with cycle number for Al-graphite foam cell by replacing Al anode after corrosion. Cell-1, Cell-2 and Cell-3 utilized same exfoliated graphite foam electrode but Al was replaced after corrosion. The current density in this case is 1 Ag⁻¹.
- **Figure 2.1.14** CV curves of Al-graphite foam cell (biased with Cu) at a scan rate of 1 mVs^{-1} .
- **Figure 2.1.15** Electrochemical impedance spectra for (a) Al (pristine)-graphite (pristine) cell, (b) Al (treated)graphite (treated with Al) cell and (c) Al (treated)graphite (treated with Cu) cell. (d) circuit diagram of the equivalent electrical circuit used to fit the experimental data. Here R2 corresponds to the charge transfer resistance (R_{ct}) value.
- Figure 2.1.16 CV curves with Al as working electrode, Pt electrode and aqueous Ag/AgCl electrode as counter and reference electrodes respectively in 3-electrode system at a scan rate of 2.5 mVs⁻¹ in 1 M AlCl₃ aqueous electrolyte. (b) CV curves of a

29

30

28

symmetric Al-Al cell in 1 M AlCl₃ aqueous electrolyte at a scan rate of 2.5 mVs⁻¹. Digital photographs of (c) exfoliated graphite foam electrode and (d) Al electrode after several cycles. SEM images of (e) Al electrode and (f) exfoliated graphite foam electrode after 50th discharge cycle, and (g) Digital photograph of used electrolyte after 50th discharge cycle.

- **Figure 2.1.17** (a) Digital photographs of discharged state exfoliated graphite foam electrode i-before and ii-after annealing at 800 °C in air, (b) XRD pattern of the discharged state exfoliated graphite foam electrode after annealing, (c) Ex-situ XPS spectrum of Al 2p obtained from discharged state exfoliated graphite foam electrode, (d) Ex-situ XRD patterns of discharged and charged state exfoliated graphite foam electrodes. The XRD patterns are normalized for better visibility.
- Figure 2.1.18 SEM image of scanned area for elemental mapping of 1st discharge state graphite foam electrode. Elemental mapping images of (b) C, (c) Al and (d) Cl of the 1st discharge state electrode. (e) SEM image of scanned area for elemental mapping of 1st charge state graphite foam electrode. Elemental mapping images of (f) C, (g) Al and (h) Cl of the 1st charge state electrode.
- Figure 2.1.19 Ex-situ XRD patterns of Al electrode after discharge and charge.
- Figure 2.1.20 (a) UV-visible spectra of the pristine electrolyte and harvested electrolyte after few cycles, digital photographs of (b) pristine electrolyte and (c) harvested electrolyte after few cycles.

35

36

CHAPTER 2	(Part II): A simple strategy to improve the electrochemical
	performance of rechargeable aqueous aluminum-metal battery
Figure 2.2.1	Digital photographs and thickness measurement of 42
	(a) pristine graphite, (b) exfoliated graphite and (c)
	thermally exfoliated graphite films.
Figure 2.2.2	FESEM images of (a) EG and (b) TEG. (c) TEM 43
	image of nanoflakes. (d) BET isotherms of all
	graphitic films.
Figure 2.2.3	XRD patterns of (a) pristine graphite, (b) 44
	exfoliated graphite and, (c) thermally exfoliated
	graphite.
Figure 2.2.4	Galvanostatic discharge/charge profiles of (a) Al-
	EG and (b) Al-TEG at a current density of 0.5 Ag ⁻¹
	current. CV profiles of (c) Al-EG (from previous
	chapter) and (d) Al-TEG at a scan rate of 1 mVs ⁻¹
	scan rate in 1 M AlCl ₃ aqueous electrolyte.
Figure 2.2.5	(a) EIS spectra for Al-EG and Al-TEG cells. (b) 47
	galvanostatic charge/discharge profile of Al-TEG
	in WiS electrolyte at a current density of 0.5 Ag ⁻¹
	current. Variation of discharge capacities with
	cycle number for Al-EG and Al-TEG in 1 M AlCl ₃
	and WiS aqueous electrolytes at a current density
	of (c) 2 Ag ⁻¹ , and (d) 5 Ag ⁻¹ .
Figure 2.2.6	(a) Digital photographs of aluminum-graphite 48
	battery after several cycles in water-in-salt
	electrolyte, showing serious corrosion in the Al
	anode. (b) Self-discharge profiles of Al-graphite
	cells. (c) CV profiles of Al-TEG in 1 M AlCl ₃
	aqueous electrolyte at different scan rates and (d)
	variation of redox peak current versus scan rate
	according to equation I= $k\gamma^{0.5}$ (k is a constant). The
	peaks (A and B) marked by the arrows are
	considered here.

xix

CHAPTER 3 (I	Part I): Bismuth oxide (Bi ₂ O ₃): A promising electrode material for	
l	Al ³⁺ ion storage	
Figure 3.1.1	SEM images of (a) pristine graphite foil, (b)	54
	exfoliated graphite foil, (c) pristine Bi ₂ O ₃ particles	
	and (d) Int. Bi ₂ O ₃ /Exf. Gr. (e, f) TEM images of	
	Bi ₂ O ₃ particles extracted from Int. Bi ₂ O ₃ /Exf. Gr	
	electrode.	
Figure 3.1.2	XRD patterns for (a) pristine graphite/exfoliated	55
	graphite foil and (b) pristine Bi ₂ O ₃ particles. The	
	vertical bars are from δ -Bi ₂ O ₃ phase with JCPDS	
	27-0052.	
Figure 3.1.3	N ₂ adsorption/desorption isotherms of pristine	56
	graphite foil and exfoliated graphite foil.	
Figure 3.1.4	(a) Experimental set up for performing the	56
	electrochemical exfoliation of graphite, (b) The	
	enlarged view of the exfoliated graphite region for	
	better clarity and (c) photograph of graphite foils	
	after exfoliation.	
Figure 3.1.5	XRD pattern of (a) Int. Bi ₂ O ₃ /Exf. Gr electrode	57
	and (b) enlarged view of the dotted blue region for	
	better clarity. (c) SEM image of Int. Bi ₂ O ₃ /Exf. Gr.	
Figure 3.1.6	CV curves of (a) Bi ₂ O ₃ /Gr, (b) Bi ₂ O ₃ /Exf. Gr, (c)	58
	Int. Bi ₂ O ₃ /Exf.Gr at a scan rate of 2.5 mVs ⁻¹ ;	
	Galvanostatic discharge/charge curves of (d)	
	Bi_2O_3/Gr , (e) $Bi_2O_3/$ Exf.Gr and (f) Int.	
	$Bi_2O_3/Exf.Gr$ at a current density of 1.5 Ag ⁻¹ .	
Figure 3.1.7	CV profiles of (a) pristine graphite and (b)	59
	exfoliated graphite in 1 M AlCl ₃ aqueous	
	electrolyte at a scan rate of 2.5 mVs ⁻¹ .	
Figure 3.1.8	Variation of discharge capacities with cycle	60
	number at a specific current of 1.5 Ag ⁻¹ .	

Figure 3.1.9	SEM images of (a) Bi ₂ O ₃ /Exf. Gr and (b) Int.	61
	Bi ₂ O ₃ /Exf.Gr. The dotted region shows the	
	exposed area of the current collector, (c)	
	Electrochemical impedance spectra for Bi2O3/Gr,	
	Bi ₂ O ₃ /Exf. Gr and Int. Bi ₂ O ₃ /Exf. Gr. Inset of	
	Figure 3.8c shows the equivalent circuit used for	
	fitting the impedance spectra. R2 represents the R_{ct}	
	value.	
Figure 3.1.10	Galvanostatic discharge/charge curves of full-cell	62
	(aqueous Al-ion) with (a) Bi ₂ O ₃ /Gr, (b) Bi ₂ O ₃ /Exf.	
	Gr and (c) Int. Bi ₂ O ₃ /Exf.Gr at a current density of	
	0.5 Ag^{-1} and (d) Variation of charge/discharge	
	capacities with cycle number at a specific current	
	of 1.5 Ag ⁻¹ .	
Figure 3.1.11	(a) Comparison of galvanostatic discharge-charge	64
	profiles of pristine exfoliated graphite and Int.	
	$Bi_2O_3/Exf.$ Gr at a current density of 1mA cm ⁻² .(b)	
	Enlarged view of the green dotted box to show the	
	charge/discharge profiles of pristine exfoliated	
	graphite.	
Figure 3.1.12	CV profiles of (a) Bi_2O_3/Gr , (b) Bi_2O_3/Exf . Gr and	64
	(c) Int. Bi ₂ O ₃ /Exf.Gr at various scan rates in three	
	electrode set-up.	
Figure 3.1.13	CV profile of Al-Int. Bi ₂ O ₃ /Exf.Gr cell at a scan	65
	rate of 5 mVs ⁻¹ , (b) Ex-situ XRD patterns of Bi_2O_3	
	electrode before discharge, after discharge (1 st /5 th)	
	and charge (1 st /5 th), (c) Ex-situ SEM image of Int.	
	Bi ₂ O ₃ /Exf.Gr after 1 st discharge.	
Figure 3.1.14	Ex-situ XRD patterns of Bi2O3 electrode after	67
	discharge (1^{st}) and charge (1^{st}) . (a) JCPDS files are	
	overlapped together and (b) JCPDS files are	
	plotted separately. The relevant JCPDS numbers	
	are given in Figure 3.15b.	

xxi

Figure 3.1.15	Ex-situ SEM image of Bi ₂ O ₃ /Exf. Gr after 1 st	67
	discharge.	
CHAPTER 3 (Part II): Bismuth oxychloride (BiOCl): Another promising	
	electrode material for Al ³⁺ ion storage	
Figure 3.2.1	SEM and digital images of (a, d) pristine graphite,	74
	(b, e) exfoliated graphite, (c, f) thermally	
	exfoliated graphite films.	
Figure 3.2.2	XRD patterns of (a) pristine graphite, (b)	75
	exfoliated graphite, and (c) thermally exfoliated	
	graphite films.	
Figure 3.2.3	(a) XRD pattern of BiOCl and BiOCl/TEG (binder	75
	free) electrode, (b-c) SEM images of BiOCl/G and	
	BiOCl/TEG (binder free).	
Figure 3.2.4	CV profiles of (a) BiOCl/G and (b) BiOCl/TEG	76
	(binder free) at a scan rate of 2.5 mVs ⁻¹ .	
	Galvanostatic discharge/charge profiles of (c)	
	BiOCl/G and (d) BiOCl/TEG (binder free) at a	
	specific current rate of 2.5 A g^{-1} in 1 M AlCl ₃	
	aqueous electrolyte.	
Figure 3.2.5	Variation of discharge capacities with cycle	78
	number at a current rate of 2.5 A g^{-1} in 1 M AlCl ₃	
	aqueous electrolyte.	
Figure 3.2.6	CV profiles of (a) pristine graphite, and (b)	78
	thermally exfoliated graphite at a scan rate of 2.5	
	mVs ⁻¹ in 1 M AlCl ₃ aqueous electrolyte.	
Figure 3.2.7	(a) CV profiles of BiOCl/TEG (binder free) in (a)	78
	0.5 M Al ₂ (SO ₄) ₃ , and (b) 1 M Al(NO ₃) ₃ at a scan	
	rate of 2.5 mVs^{-1} .	
Figure 3.2.8	Galvanostatic discharge/charge profile of	79
	BiOCl/TEG (binder free) in 0.5 M $Al_2(SO_4)_3$	
	aqueous electrolyte at a current rate of 2.5 A g^{-1} .	
Figure 3.2.9	CV profiles of BiOCl/TEG (binder free) in (a)1 M	80
	LiCl, (b) 1 M NaCl, and (c) 1 M MgCl ₂ aqueous	

electrolytes at a scan rate of 2.5 mVs⁻¹.

- Figure 3.2.10 Comparison of CV profiles of BiOCl/TEG (binder free) obtained in 1 M AlCl₃, 1 M LiCl, 1 M NaCl, 1 M MgCl₂ aqueous electrolytes at a scan rate of 2.5 mVs⁻¹, (a) 1st cycle, and (b) 2nd cycle.
- Figure 3.2.11 Galvanostatic discharge/charge profiles of (a) BiOCl/G, (b) BiOCl/EG, (c) BiOCl/TEG, (d) BiOCl/TEG (binder free) at a specific current rate of 1 A g⁻¹. (e) Variation of discharge capacities with cycle number at a current rate of 2.5 A g⁻¹. (f) CV profile of Al- BiOCl/TEG (binder free) at a scan rate of 2.5 mVs⁻¹ in 1 M AlCl₃ aqueous electrolyte. The potential is measured with respect to Al electrode.
- **Figure 3.2.12** Comparison of galvanostatic discharge/charge profiles of (a) pristine graphite/ BiOCl/G, and (c) thermally exfoliated graphite/ BiOCl/TEG (binder free) at a current rate of 2 mA cm⁻². (b-d) Enlarged view of dotted blue and red box to show the charge/discharge profiles of pristine graphite and thermally exfoliated graphite.
- Figure 3.2.13 (a) Electrochemical Impedance Spectroscopy (EIS) for BiOCl/G, BiOCl/EG, BiOCl/TEG and BiOCl/TEG (binder free). (b) Ex-situ XRD patterns before discharge, after 5th discharge and after 5th charge, (c) SEM image of BiOCl/TEG (binder free) after discharge, and Ex-situ XPS spectra for (d) Bi 4*f*, (e) O 1*s*, (f) Al 2*p* of BiOCl/TEG (binder free) before discharge, after 5th discharge and after 5th charge and after 5th charge and after 5th charge free) before discharge, after 5th discharge and after 5th charge respectively.
- **Figure 3.2.14** Ex-situ XRD patterns of BiOCl/TEG (binder free) after 5th discharge and 5th charge. The JCPDS numbers were plotted separately with (a) Bi₂O₃, (b)

81

83

85

86

	Bi, (c) δ -Al ₂ O ₃ and, (d) θ -Al ₂ O ₃ respectively.		
Figure 3.2.15	XPS survey spectrum of BiOCl/TEG (binder free),	86	
	(a) before discharge, (b) after 5 th discharge (5 th		
	DC), and (c) after 5^{th} charge (5^{th} C) states.		
Figure 3.2.16	Cl 2p XPS spectra of BiOCl/TEG (binder free)	87	
	before discharge, after 5 th discharge (5 th DC) and		
	5 th charge (5 th C) states.		
Figure 3.2.17	CV profiles of BiOCl/TEG (binder free) in 1 M	87	
	AlCl ₃ aqueous electrolyte at different scan rates.		
Figure 3.2.18	(a) XRD pattern of BiOI, (b) CV profile of BIOI/G	88	
	at a scan rate of 2.5 mVs ⁻¹ , and (c) galvanostatic		
	discharge/charge profile of BIOI/G in 1 M AlCl ₃		
	aqueous electrolyte at a specific current rate of 2.5		
	A g ⁻¹ .		
CHAPTER 4: Vanadyl ethylene glycolate (VO(CH2O)2): an organic-organic			
	hybrid for Al ³⁺ ion storage		
Figure 4.1	(a) XRD patterns, and SEM images of (b) VEG	94	
	nanorods, (c-d) pristine carbon cloth, and (e, f) bf-		
	VEG/CC.		
Figure 4.2	(a) FESEM image of (a) VEG/CC, (b) TEM image	95	
	of VEG nanorod, and (c) TGA curve of VEG.		
Figure 4.3	CV curves of (a) bf-VEG/CC, (b) VEG/CC at a	96	
	scan rate of 2.5 mVs ⁻¹ . Galvanostatic charge/		
	discharge curves of (c) bf-VEG/CC, (d) VEG/CC,		
	(e) Comparison of discharge capacities with cycle		
	number at a current density of 2 Ag ⁻¹ , and (f) EIS		
	spectra for VEG/CC and bf-VEG/CC respectively.		
	(Inset shows the equivalent circuit).		
Figure 4.4	Variation of discharge capacity with cycle number	97	
	at a current density of 2.5 Ag ⁻¹ .		
Figure 4.5	Comparison of (a) CV curves of pristine carbon	98	
	cloth and bf-VEG/CC at a scan rate of 2.5 mVs ⁻¹ ,		
	and (b) galvanostatic charge/discharge curves		

XXV

	pristine carbon cloth and binder free VEG/CC in 1	
	M AlCl ₃ aqueous electrolyte at 2 Ag ⁻¹ current.	
Figure 4.6	CV curves of bf-VEG/CC in (a) 1 M LiCl, (b) 1 M	98
	NaCl, and (c) 1 M MgCl ₂ aqueous electrolytes at a	
	scan rate of 2.5 mVs ⁻¹ .	
Figure 4.7	Ex-situ XRD patterns of bf-VEG/CC electrode	99
	before and after 1st discharge. (b-c) Ex-situ SEM	
	and TEM images of bf-VEG/CC after 1st	
	discharge.	
Figure 4.8	(a) Ex-situ XPS spectrum of V 2p before discharge	102
	and after 1 st discharge/1 st charge state, (b) Ex-situ	
	XPS spectrum of Al $2p$ before discharge and after	
	1 st discharge/1 st charge state, and (c) Ex-situ	
	Raman spectra of bf-VEG/CC electrode before,	
	after 1st discharge/1st charge state. (d-f) enlarged	
	view of the dotted marked regions.	
Figure 4.9	(a) SEM image of scanned area for elemental	103
	mapping of 1 st discharge state binder free VEG/CC	
	electrode. Elemental mapping images of (b) V, (c)	
	O, (d) C and (e) Al of the 1st discharge state	
	electrode. (f) SEM image of scanned area for	
	elemental mapping of 1st charge state bf-VEG/CC	
	electrode Elemental mapping images of (g) V, (h)	
	O, (i) C and (j) Al of the 1^{st} charge state electrode.	
Figure 4.10	CV curves of bf-VEG/CC electrode at different	103
	scan rates, (b) corresponding log(i) vs log(v) plots,	
	(c) CV curve with the diffusion-controlled	
	contribution at a scan rate of 2.5 $mVs^{-1},$ and (d)	
	contribution ratios of diffusion and capacitive-	
	controlled at various scan rates in 1 M AlCl ₃	
	aqueous electrolyte.	
Figure 4.11	UV-visible spectra of the electrolyte before and	104

after cycling. Inset Figure shows the digital image

	of the (a) pristine electrolyte, (b) harvested		
	electrolyte after 10 th cycle and (c) harvested		
	electrolyte after 200 th cycle.		
CHAPTER 5:	Molydenium ditelluride (MoTe2) for reversible metal ion Vanady	ſ	
	ion (Li ⁺ , Na ⁺ , Mg ²⁺ , Al ³⁺) insertion		
Figure 5.1	(a) XRD pattern, (b) FESEM and (c) TEM images	109	
	of $MoTe_2$. (d) Crystal structure of $MoTe_2$.		
	Reproduced with permission from ref [10],		
	copyright 2018 Wiley Journal.		
Figure 5.2	CV curves of MoTe ₂ at a scan rate of 2.5 mVs ⁻¹ in	110	
	(a) 1 M AlCl ₃ , (b) 1 M LiCl, (c) 1 M NaCl, and (d)		
	1 M MgCl ₂ aqueous electrolytes respectively.		
Figure 5.3	(a) Galvanostatic charge/discharge curves of	112	
	MoTe ₂ in (a) 1 M AlCl ₃ , (b) 1 M LiCl, (c) 1 M		
	NaCl, and (d) 1 M MgCl ₂ aqueous electrolytes, (e)		
	Variation of discharge capacities with cycle		
	number. The current density is 1 Ag^{-1} . (f)		
	Electrochemical impedance in different		
	electrolytes.		
Figure 5.4	Variation of discharge capacities with cycle in 1 M	113	
	AlCl ₃ aqueous electrolyte at a current density of 5		
	Ag^{-1} .		
Figure 5.5	Ex-situ-FESEM images of $MoTe_2$ (a) before and	113	
	(b) after 1st discharge, (c) Ex-situ TEM image after		
	1st discharge state, (d) Ex-situ XRD patterns of		
	MoTe ₂ before and after 1^{st} discharge and 1^{st} charge		
	state, and Ex-situ XPS spectra of (e) Mo 3 <i>d</i> , and (f)		
	Al $2p$ before and after 1 st discharge and 1 st charge		
	state respectively.	115	
Figure 5.6	Ex-situ FESEM image of MoTe ₂ after the 1^{st} charge state.	115	
Figure 5.7	Ex-situ FESEM image of MoTe ₂ after the 1^{st}	115	
- 1941 - 111	charge state.		

Figure 5.8	Ex-situ XPS spectra of Te 3d before and after 1^{st}	116
	discharge/ 1 st charge state respectively	
Figure 5.9	CV curves of MoTe ₂ at different scan rates in 1 M	116
	AlCl ₃ aqueous electrolyte.	
CHAPTER 6	(Part I): An electrochemical study on LiMn ₂ O ₄ for Al ³⁺ ion	
	storage in aqueous electrolyte	
Figure 6.1.1	(a) XRD pattern, (b) FESEM image and (c)TEM	121
	image of LiMn ₂ O ₄ .	
Figure 6.1.2	CV curves of LiMn ₂ O ₄ in (a) 1 M LiCl, (b) 1 M	122
	AlCl ₃ , (c) 0.5 M Al ₂ (SO ₄) ₃ aqueous electrolytes at	
	scan rate of 2.5 mVs ⁻¹ and (d) variation of redox	
	peak current versus scan rate according to equation	
	$I = k\gamma^{0.5}$ (k is a constant).	
Figure 6.1.3	CV curves of LiMn ₂ O ₄ in (a) 1 M AlCl ₃ , (b) 1 M	123
	Al(NO ₃) ₃ , and (c) $0.5 \text{ M H}_2\text{SO}_4$ aqueous electrolyte	
	at a scan rate of 2.5 mVs ⁻¹ .	
Figure 6.1.4	CV curves of LiMn ₂ O ₄ in 1 M AlCl ₃ aqueous	123
	electrolyte at different scan rates.	
Figure 6.1.5	Galvanostatic discharge/charge curves and	125
	variation of specific capacities of LiMn ₂ O ₄ in 1 M	
	AlCl ₃ electrolyte at a current rate of (a, b) 200	
	mAg^{-1} , (c, d) 600 mAg^{-1} and (e, f) in a mixture of 1	
	M AlCl ₃ and 0.25 M MnCl ₂ aqueous electrolyte at	
	current of 800 mAg ⁻¹ . DC: discharge cycle, C-	
	charge cycle.	
Figure 6.1.6	Galvanostatic charge/discharge curves of LiMn ₂ O ₄	126
	in 1 M AlCl ₃ at a current rate of (a) 200 mAg ⁻¹ and	
	(b) 600 mAg ⁻¹ . DC-discharge cycle, C-charge	
	cycle.	
Figure 6.1.7	Galvanostatic charge/discharge curves of LiMn ₂ O ₄	126
	in (a) 0.5M Al ₂ (SO ₄) ₃ , and (b) 1M Al(NO ₃) ₃	
	aqueous electrolytes. The current rate is 200 mAg ⁻	
	1	

Self-discharge profile of Al-LiMn₂O₄ cell in 1 M **Figure 6.1.8** 127 AlCl₃ aqueous electrolyte. Figure 6.1.9 FESEM images of (a) pristine LiMn₂O₄, (b) 129 after 1st discharge and (c) 1st charge LiMn₂O₄ electrodes. (d) Ex-situ XRD patterns (blackpristine LiMn₂O₄, blue-after 1st discharge, redafter 1st charge, green-after 2nd discharge), Exsitu XPS spectra of (e) Al 2p and (f) Mn 2p of pristine LiMn₂O₄, after 1st discharge and after 1st charge. White circles and green circles in figure 4c respectively represent carbon black and residual LiMn₂O₄ particles. Gr-graphite peaks. Ex-situ XRD was performed using graphite current collector. **Figure 6.1.10** 130 Ex-situ FESEM images of LiMn₂O₄ electrode (a) before discharge, (b) after 1st discharge and (c) after 1st charge. **Figure 6.1.11** (a) SEM image of scanned area for elemental 130 mapping of 1stdischarge state LiMn₂O₄ electrode. Elemental mapping images of (b) Al, (c) Mn and (d) O of the 1st discharge state electrode. (e) SEM image of scanned area for elemental mapping of 1st state LiMn₂O₄ electrode. charge Elemental mapping images of (f) Al, (g) Mn and (h) O of the 1stcharge state electrode. **Figure 6.1.12** Energy dispersive X-ray (EDX) spectrum of 131 LiMn₂O₄ (a) after 1st discharge state electrode and (b) after 1st charge electrode. (a) Li 1s and (b) O 1s XPS spectra of LiMn₂O₄ 131 **Figure 6.1.13** electrode before discharge, after 1st discharge and after 1st charge.

CHAPTER 6 (Part II): Reversible Al ³⁺ ion storage in lithium manganese		
	Phosphate (LiMnPO4) for aqueous electrolyte		
Figure 6.2.1	1 (a) XRD pattern, (b) FESEM image, (c) TEM and		
	(d) HRTEM images of LiMnPO ₄ .		
Figure 6.2.2	CV profiles of LiMnPO ₄ in (a) 1 M AlCl ₃ and (b) 1	137	
	M LiCl aqueous electrolytes. Galvanostatic		
	charge/discharge profiles in (a) 1 M AlCl ₃ and (d)		
	1 M LiCl aqueous electrolytes, variation of		
	discharge capacities with cycle number at current		
	density of (e) 1 Ag^{-1} and (f) 2.5 Ag^{-1} .		
Figure 6.2.3	CV profiles of LiMnPO ₄ at different scan rates in 1	138	
	M AlCl ₃ aqueous electrolyte, and (b) linear		
	dependence between peak current response and		
	square root of scan rate according to the equation		
	I= $k\gamma^{0.5}$ (where k is a constant). The peaks (A' and		
	B') marked by the arrows are considered here.		
Figure 6.2.4	(a) XRD pattern and (b) FESEM image of WO ₃ ,	138	
	for LiMnPO ₄ //WO ₃ cell (a) CV profile at a scan		
	rate of 2.5 mVs^{-1} and (d) galvanostatic		
	charge/discharge profiles in 1 M AlCl ₃ electrolyte		
	at current of 0.5 Ag ⁻¹ .		
Figure 6.2.5	Variation of specific capacities with cycle number	139	
	in 1 M AlCl ₃ aqueous electrolyte at a current rate		
	of 0.5 Ag ⁻¹ .		

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation/Symbol		Name
%	:	Percent
LIB	:	Lithium-ion battery
AIB	:	Aluminum ion battery
Al	:	Aluminum
Al ³⁺ ion	:	Aluminum ion
Ca	:	Calcium
cm	:	Centimetre
Cu	:	Copper
Conc.	:	Concentration
mg	:	Milligram
Li	:	Lithium
Na	:	Sodium
Κ	:	Potassium
Zn	:	Zinc
Mg	:	Magnesium
Ca	:	Calcium
CV	:	Cyclic voltammetry
Y	:	Gamma
g/l	:	Gram per litre
min	:	Minute
ml	:	Millilitre
mA	:	Milliampere
V	:	Voltage
Å	:	Angstrom
h	:	hour
PVDF	:	Polyvinylidene fluoride
NMP	:	N-Methyl-2-pyrrolidone
BET	:	Brunaur-Emmett-Teller
mM	:	Millimolar
TGA	:	Thermogravimetric analysis

Mg	:	Magnesium
XRD	:	X-ray diffraction
TMDC	:	Transition-metal dichalcogenide
mHz	:	Megahertz
kHz	:	Kilohertz
w.r.t.	:	with respect to
nm	:	Nanometre
μm	:	Micrometre
Ag ⁻¹	:	Ampere per gram
°C	:	Degree Celsius
Ω	:	Ohm
R _{ct}	:	Charge transfer resistance
Bi ₂ O ₃	:	Bismuth oxide
BiOCl	:	Bismuth oxychloride
VEG	:	Vanadyl ethylene glycolate
MoTe ₂	:	Molybdenum ditelluride
LiMn ₂ O ₄	:	Lithium manganese oxide
LiMnPO ₄	:	Lithium manganese phosphate
SHE	:	Standard Hydrogen Electrode
Wh	:	Watt-hour
Al(CF ₃ SO ₃) ₃	:	Aluminum
		trifluoromethanesulfonate