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NaCl, and (c) 1 M MgCl2 aqueous electrolytes at a 

scan rate of 2.5 mVs-1. 

98 

Figure 4.7 Ex-situ XRD patterns of bf-VEG/CC electrode 

before and after 1st discharge. (b-c) Ex-situ SEM 

and TEM images of bf-VEG/CC after 1st 

discharge. 

99 

Figure 4.8 (a) Ex-situ XPS spectrum of V 2p before discharge 

and after 1st discharge/1st charge state, (b) Ex-situ 

XPS spectrum of Al 2p before discharge and after 

1st discharge/1st charge state, and (c) Ex-situ 

Raman spectra of bf-VEG/CC electrode before, 

after 1st discharge/1st charge state. (d-f) enlarged 

view of the dotted marked regions. 

 102 

Figure 4.9 (a) SEM image of scanned area for elemental 

mapping of 1st discharge state binder free VEG/CC 

electrode. Elemental mapping images of (b) V, (c) 

O, (d) C and (e) Al of the 1st discharge state 

electrode. (f) SEM image of scanned area for 

elemental mapping of 1stcharge state bf-VEG/CC 

electrode Elemental mapping images of (g) V, (h) 

O, (i) C and (j) Al of the 1st charge state electrode. 

  103 

Figure 4.10 CV curves of bf-VEG/CC electrode at different 

scan rates, (b) corresponding log(i) vs log(v) plots, 

(c) CV curve with the diffusion-controlled 

contribution at a scan rate of 2.5 mVs−1, and (d) 

contribution ratios of diffusion and capacitive-

controlled at various scan rates in 1 M AlCl3 

aqueous electrolyte. 
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Figure 4.11 UV-visible spectra of the electrolyte before and 

after cycling. Inset Figure shows the digital image 
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of the (a) pristine electrolyte, (b) harvested 

electrolyte after 10th cycle and (c) harvested 

electrolyte after 200th cycle. 

CHAPTER 5:   Molydenium ditelluride (MoTe2) for reversible metal ion Vanadyl  

                            ion (Li+, Na+, Mg2+, Al3+) insertion 

Figure 5.1 (a) XRD pattern, (b) FESEM and (c) TEM images 

of MoTe2. (d) Crystal structure of MoTe2. 

Reproduced with permission from ref [10], 

copyright 2018 Wiley Journal. 
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Figure 5.2 CV curves of MoTe2 at a scan rate of 2.5 mVs-1 in 

(a) 1 M AlCl3, (b) 1 M LiCl, (c) 1 M NaCl, and (d) 

1 M MgCl2 aqueous electrolytes respectively. 
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Figure 5.3 (a) Galvanostatic charge/discharge curves of 

MoTe2 in (a) 1 M AlCl3, (b) 1 M LiCl, (c) 1 M 

NaCl, and (d) 1 M MgCl2 aqueous electrolytes, (e) 

Variation of discharge capacities with cycle 

number. The current density is 1 Ag-1. (f) 

Electrochemical impedance in different 

electrolytes. 
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Figure 5.4 Variation of discharge capacities with cycle in 1 M 

AlCl3 aqueous electrolyte at a current density of 5 

Ag-1. 
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Figure 5.5 Ex-situ-FESEM images of MoTe2 (a) before and 

(b) after 1st discharge, (c) Ex-situ TEM image after 

1st discharge state, (d) Ex-situ XRD patterns of 

MoTe2 before and after 1st discharge and 1st charge 

state, and Ex-situ XPS spectra of (e) Mo 3d, and (f) 

Al 2p before and after 1st discharge and 1st charge 

state respectively. 
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Figure 5.6 Ex-situ FESEM image of MoTe2 after the 1st 

charge state. 
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Figure 5.7 Ex-situ FESEM image of MoTe2 after the 1st 

charge state. 

115 



Figures 

 

Investigation on electroactive materials for rechargeable aqueous aluminum-metal/ion battery. xxvii 
 

Figure 5.8 Ex-situ XPS spectra of Te 3d before and after 1st 

discharge/ 1st charge state respectively 
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Figure 5.9 CV curves of MoTe2 at different scan rates in 1 M 

AlCl3 aqueous electrolyte.        
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CHAPTER 6 (Part I): An electrochemical study on LiMn2O4 for Al3+ ion  

                         storage in aqueous electrolyte 

Figure 6.1.1 (a) XRD pattern, (b) FESEM image and (c)TEM 

image of LiMn2O4. 

121 

Figure 6.1.2 CV curves of LiMn2O4 in (a) 1 M LiCl, (b) 1 M 

AlCl3, (c) 0.5 M Al2(SO4)3 aqueous electrolytes at 

scan rate of 2.5 mVs-1 and (d) variation of redox 

peak current versus scan rate according to equation 

I=kγ0.5 (k is a constant). 
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Figure 6.1.3 CV curves of LiMn2O4 in (a) 1 M AlCl3, (b) 1 M 

Al(NO3)3, and (c) 0.5 M H2SO4 aqueous electrolyte 

at a scan rate of 2.5 mVs-1. 
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Figure 6.1.4 CV curves of LiMn2O4 in 1 M AlCl3 aqueous 

electrolyte at different scan rates. 

123 

Figure 6.1.5 Galvanostatic discharge/charge curves and 

variation of specific capacities of LiMn2O4 in 1 M 

AlCl3 electrolyte at a current rate of (a, b) 200 

mAg-1, (c, d) 600 mAg-1 and (e, f) in a mixture of 1 

M AlCl3 and 0.25 M MnCl2 aqueous electrolyte at 

current of 800 mAg-1. DC: discharge cycle, C-

charge cycle. 
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Figure 6.1.6 Galvanostatic charge/discharge curves of LiMn2O4 

in 1 M AlCl3 at a current rate of (a) 200 mAg-1 and 

(b) 600 mAg-1. DC-discharge cycle, C-charge 

cycle.  
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Figure 6.1.7 Galvanostatic charge/discharge curves of LiMn2O4 

in (a) 0.5M Al2(SO4)3, and (b) 1M Al(NO3)3 

aqueous electrolytes. The current rate is 200 mAg-

1. 
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Figure 6.1.8 Self-discharge profile of Al-LiMn2O4 cell in 1 M 

AlCl3 aqueous electrolyte. 
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Figure 6.1.9 FESEM images of (a) pristine LiMn2O4, (b) 

after 1st discharge and (c) 1st charge LiMn2O4 

electrodes. (d) Ex-situ XRD patterns (black-

pristine LiMn2O4, blue-after 1st discharge, red-

after 1st charge, green-after 2nd discharge), Ex-

situ XPS spectra of (e) Al 2p and (f) Mn 2p of 

pristine LiMn2O4, after 1st discharge and after 

1st charge. White circles and green circles in 

figure 4c respectively represent carbon black 

and residual LiMn2O4 particles. Gr-graphite 

peaks. Ex-situ XRD was performed using 

graphite current collector.  
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Figure 6.1.10 Ex-situ FESEM images of LiMn2O4 electrode (a) 

before discharge, (b) after 1st discharge and (c) 

after 1st charge. 
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Figure 6.1.11 (a) SEM image of scanned area for elemental 

mapping of 1stdischarge state LiMn2O4 electrode. 

Elemental mapping images of (b) Al, (c) Mn and 

(d) O of the 1st discharge state electrode. (e) SEM 

image of scanned area for elemental mapping of 1st 

charge state LiMn2O4 electrode. Elemental 

mapping images of (f) Al, (g) Mn and (h) O of the 

1stcharge state electrode. 
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Figure 6.1.12 Energy dispersive X-ray (EDX) spectrum of 

LiMn2O4 (a) after 1st discharge state electrode and 

(b) after 1st charge electrode. 
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Figure 6.1.13 

 

 

 

 

 

(a) Li 1s and (b) O 1s XPS spectra of LiMn2O4 

electrode before discharge, after 1st discharge and 

after 1st charge. 
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CHAPTER 6 (Part II): Reversible Al3+ ion storage in lithium manganese   

                         Phosphate (LiMnPO4) for aqueous electrolyte  

Figure 6.2.1 (a) XRD pattern, (b) FESEM image, (c) TEM and 

(d) HRTEM images of LiMnPO4.   

136 

Figure 6.2.2 CV profiles of LiMnPO4 in (a) 1 M AlCl3 and (b) 1 

M LiCl aqueous electrolytes. Galvanostatic 

charge/discharge profiles in (a) 1 M AlCl3 and (d) 

1 M LiCl aqueous electrolytes, variation of 

discharge capacities with cycle number at current 

density of (e) 1 Ag-1 and (f) 2.5 Ag-1. 
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Figure 6.2.3 CV profiles of LiMnPO4 at different scan rates in 1 

M AlCl3 aqueous electrolyte, and (b) linear 

dependence between peak current response and 

square root of scan rate according to the equation 

I=kγ0.5 (where k is a constant). The peaks (A’ and 

B’) marked by the arrows are considered here. 
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Figure 6.2.4 (a) XRD pattern and (b) FESEM image of WO3, 

for LiMnPO4//WO3 cell (a) CV profile at a scan 

rate of 2.5 mVs-1 and (d) galvanostatic 

charge/discharge profiles in 1 M AlCl3 electrolyte 

at current of 0.5 Ag-1. 

138 

Figure 6.2.5 Variation of specific capacities with cycle number 

in 1 M AlCl3 aqueous electrolyte at a current rate 

of 0.5 Ag-1. 
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LIST OF ABBREVIATIONS AND SYMBOLS 

Abbreviation/Symbol  Name 

% : Percent 

LIB : Lithium-ion battery 

AIB : Aluminum ion battery  

Al : Aluminum 

Al3+ ion : Aluminum ion 

Ca : Calcium 

cm : Centimetre 

Cu : Copper 

Conc. : Concentration 

mg : Milligram 

Li : Lithium 

Na : Sodium 

K : Potassium 

Zn : Zinc 

Mg : Magnesium 

Ca : Calcium 

CV : Cyclic voltammetry 

ɣ : Gamma  

g/l : Gram per litre  

min : Minute  

ml : Millilitre 

mA : Milliampere 

V : Voltage 

Å : Angstrom 

h : hour 

PVDF : Polyvinylidene fluoride 

NMP : N-Methyl-2-pyrrolidone 

BET : Brunaur-Emmett-Teller 

mM : Millimolar 

TGA : Thermogravimetric analysis 
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 Mg : Magnesium 

XRD : X-ray diffraction 

TMDC  : Transition-metal dichalcogenide 

mHz : Megahertz 

kHz : Kilohertz 

w.r.t. : with respect to 

nm : Nanometre 

m : Micrometre 

Ag-1 : Ampere per gram 

oC : Degree Celsius 

Ω : Ohm 

Rct : Charge transfer resistance 

Bi2O3 : Bismuth oxide 

BiOCl : Bismuth oxychloride 

VEG : Vanadyl ethylene glycolate 

MoTe2 : Molybdenum ditelluride 

LiMn2O4 : Lithium manganese oxide 

LiMnPO4 : Lithium manganese phosphate 

SHE : Standard Hydrogen Electrode 

Wh : Watt-hour 

Al(CF3SO3)3 : Aluminum 

trifluoromethanesulfonate 
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