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1.1 Introduction: Importance of energy storage  

There is a growing need for energy due to rapid increase in global population and 

escalating change in climate. It is estimated that the world’s energy requirements will 

become triple of the current values in the year 2030 [1-2]. The fossil fuel reserves are 

also depleting slowly. Therefore, renewable energy sources are getting priority for 

delivering clean energy. To reduce dependency on fossil fuels and to facilitate zero 

carbon emission in the environment, a lot of efforts are being made on the utilization 

of renewable clean energy sources such as solar energy, wind energy, tidal energy, 

etc.  However, the erratic nature of renewable energy sources and efficient storage of 

the generated energy from the renewables are two imminent challenges [3-4]. Among 

various number of existing energy storage technologies, electrochemical energy 

storage technology such as rechargeable batteries are viewed as one of the promising 

and efficient technologies because of their high energy and power density, long cycle 

life, compact size, and ease in assembling [3-5].    

 Two eminent examples of electrochemical energy storage devices are 

rechargeable lead-acid and Li-ion batteries (LIBs) [3-7]. Although lead-acid batteries 

are in the market for over a long period of time, it was the innovation of rechargeable 

Li-ion battery which radically changed the modern way of living of humanity since its 

inception in the year 1991. Li-ion batteries power almost all the portable electronic 

gadgets such as mobile phones and laptops. It is worth to mention here that since the 

contributions of Li-ion batteries in humankind are magnificent, this invention is 

recognized with a Nobel Prize in Chemistry in the year 2019. However, in recent 

times, there are growing concerns over the sustainability of Li-based batteries due to 

paucity and escalating cost of Li-resources [8-12]. Hence, it is imperative to devise 

strategies for developing sustainable and affordable electrochemical energy storage 

technologies based on resources which are largely earth-abundant and, if possible, 

locally available across diverse geography. Thus, it gives a significant impetus in the 

research areas of beyond Li-ion batteries such as Na+, K+, Zn2+, Mg2+, Ca2+, and Al3+ 

ions [13-48]. Table 1.1 and Figure 1.1 compare the abundance, ionic radius, 

volumetric/gravimetric capacities of the selective ions [50].  
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Table 1.1 Comparison of the characteristics of various metal-ions [50].  

 

 

 

 

Figure 1.1 Spider chart representation of various ions. 
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(Å) 

Volumetric 
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(mAhcm-3) 

Abundance 

(Rank) 

 

E Vs SHE 

 

 

Lithium (Li+) 

 

6.9 

 

0.76 

 

2042 

 

33 

 

-3.04 

Sodium (Na+) 23 1.02 1050 6 -2.71 

Potassium (K+)       39 1.38 609 7 -2.93 

Zinc (Zn2+) 65.4 0.74 5857 25 -0.76 

Magnesium (Mg2+) 24.3 0.72 3868 8 -2.37 

Calcium (Ca2+) 40 1 2061 5 -2.87 

Aluminum (Al3+) 27 0.54 8046 3 -1.66 
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The development of sodium-ion batteries (SIBs) appears to be a viable option 

for large scale production because of high abundance and low cost of the raw sodium 

materials [13-17]. It is estimated that the cost of lithium carbonate is 20−30 times 

higher than that of sodium carbonate [17]. Besides, sodium possesses similar physical 

and chemical properties to lithium. Research on SIBs started during 1970-1980s. But 

the immense progress in the research of Li-ion battery overshadows the research 

activities on SIBs. However, in recent times, intensified endeavors have been made 

for the development of SIBs [13-24]. In 2000, Dahn and his co-workers showed that 

hard carbon can act as an anode in SIB that can store Na+ ion, delivering a reversible 

capacity of 300 mAhg-1 [22]. Similarly, the first cathode properties of α-NaFeO2 for 

SIBs was reported in the year 2006 by Nishida and his groups [23]. A lot of cathode 

materials have been explored for SIBs, in particular, layered systems of the P2 and O3 

types, organic compounds, etc., [20]. Lithium metal is not suitable for direct use as 

anode since it is highly reactive [9]. The direct utilization of metallic anodes can 

further boost the energy densities of such batteries, owing to their high theoretical 

gravimetric and volumetric capacities as shown in Table 1.1 and Figure 1.1. For 

example, metallic Zn is regarded as one of the promising anode materials for zinc-ion 

batteries (ZIBs) due to its low reduction potential (-0.76 V vs. standard hydrogen 

electrode), high anode capacity of Zn metal (~ 820 mAhg-1), environment friendly and 

cost effective [30-31]. Although ZIBs have attracted a lot of attention over the past 

few years but the advancements achieved so far are still not satisfactory in 

comparison to the state-of-the-art LIBs. This is due to the difficulties in finding a 

suitable cathode material for Zn2+ ion insertion, and poor reversibility of Zn metal 

anode [32]. As an analogue to LIBs, magnesium-ion and calcium-ion batteries are 

also proposed as alternative options. Magnesium and calcium have the ability to 

transfer two electrons in contrast to one in case of Li+ ion [37-47]. Aurbach et al. 

demonstrated the first rechargeable magnesium battery in 2000 using magnesium as 

anode and Mo3S4 as cathode in magnesium organohaloaluminate salts as electrolyte. 

Since then, a lot of works have been reported using this type of electrolytes [37]. 

However, it seems that the progress of magnesium electrochemistry is largely 

dependent on the composition of the electrolyte. It is worth to mention that reversible 

magnesium platting/stripping in common electrolyte is one of the detrimental factors 

for practical magnesium battery application.  
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Apart from magnesium and calcium batteries, rechargeable battery based on 

aluminum (Al) could also be a proper fit as a sustainable and affordable system 

considering Al as the most abundant and low-cost metal. Other two electrochemical 

traits of Al are also worth mentioning: (i) ability to transfer three electrons per cation 

and (ii) possession of high volumetric and gravimetric capacities (8046 mAhcm-

3/2981 mAhg-1) [48-50]. This feature makes the energy density of aluminum-ion 

batteries closer to or higher than Na+, K+, Mg2+, Ca2+ ions batteries. There are few 

notable examples of research works in the area of AIBs in the literature that are 

discussed briefly in the following section. 

1.2 A brief history and its current status on cathode material for aluminum 

batteries 

Aluminum metal was first employed in a galvanic cell by M. Hulot in 1855 

[51]. There are other systems where aluminum was used. Examples are Al-MnO2, Al-

H2O2, Al-Ni, Al-KMnO4 and Al-air batteries [52-61]. These batteries are basically 

primary batteries. In 2011, Archer and coworkers first investigated the 

electrochemistry of a non-aqueous aluminum-ion battery using V2O5 as cathode and 

1-ethyl-3-methylimidazolium chloride ([EMIm]Cl)/AlCl3 as an electrolyte [62]. This 

work shows the functioning of a rechargeable aluminum-metal battery at room 

temperature. In 2015, Dai and co-workers demonstrated an ultrafast aluminum-metal 

battery with 3D graphitic-foam as cathode, which showed a high discharge capacity 

of 60 mAhg-1 over 7500 cycles at a high current rate of 4 Ag-1 [63]. Lu et al. reported 

a free-standing graphene nanoribbon on highly porous 3D graphene foam (GNHPG) 

as cathode for aluminum-ion battery. This special type of graphene nanoribbons was 

prepared by chemical vapor deposition (CVD) method and Ar+-plasma etching 

technique [64]. The freestanding cathode could deliver a high discharge capacity of 

123 mAhg-1 with almost no capacity decay over 10000 cycles at a current rate of 5 

Ag-1. To further improve the cycling stability and electrochemical performance, Gao 

and his co-workers reported a novel trihigh tricontinuous graphene film (GF-HC) 

cathode which showed an ultrahigh discharge capacity of ∼ 120 mAhg-1 over 250000 

cycles at a very high current rate of 400 Ag-1 with a Coulombic efficiency of around 

91.7% [65]. In addition to carbonaceous material, there are other cathode materials 

which show promising electrochemical activities in non-aqueous aluminum batteries. 

These materials are graphite, metal oxides/sulfides, layered double hydroxides 
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(LDHs), chalcogenide-based materials, MXene, Prussian blue analogous, etc., [50, 62, 

66-77].  

Here, it is worth to specify two different possible configurations of 

rechargeable aluminum-batteries: (i) Aluminum-ion battery and (ii) Aluminum-metal 

battery. The first kind is a “rocking-chair” type electrochemical cell where Al3+ ions 

shuttle in between two Al3+ ion storing cathode and anode in an electrolyte (Figure 

1.2a) [84-86]. The second configuration directly uses Al metal as anode in 

conjugation with an Al3+ ion storing cathode in an electrolyte (Figure 1.2b) [91-92]. 

The electrolyte may be aqueous or non-aqueous. Since the present thesis work deals 

with aqueous electrolyte, the following sections discuss about the aqueous batteries 

only.    

 

Figure 1.2: Schematic representation of an (a) Aluminum-ion battery, and (b) 

Aluminum-metal battery respectively. 

1.3 The main objectives of the thesis 

The primary objectives of the thesis are as follows:  

1. Identification and processing of electrode materials for Al3+ ion storage in 

aqueous electrolytes. 

2. Structural and electrochemical studies on electrode materials such as graphite, 

bismuth oxide (Bi2O3), bismuth oxychloride (BiOCl), vanadyl ethylene glycolate 

(VO(CH2O)2), molybdenum ditelluride (MoTe2), lithium manganese oxide 

(LiMn2O4), lithium manganese phosphate (LiMnPO4) for Al3+ ion storage. 

3. Develop methods for improving the electrochemical performance of the electrode 

materials. 

4. Understanding the electrochemical mechanisms of Al3+ ion storage processes.    
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1.4.  A short note on aqueous rechargeable batteries 

Research activities on aqueous rechargeable batteries have gained immense 

importance over the past few years [78]. This is because of the advantages associated 

with the utilization of aqueous electrolytes. Some of the merits of aqueous electrolytes 

are as follows: (i) high ionic conductivity, of the order of 2, then other ionic/organic 

electrolytes, which ensures a good rate capability and high-power density, (ii) low 

cost due to its abundance, (iii) non-flammability, and (iv) easy to assemble in an open 

environment. The first prototype of rechargeable aqueous lithium-ion battery was 

demonstrated by Dahn and coworkers in 1994. The system used LiMn2O4 as cathode 

and VO2 as anode. The electrolyte was 5 M LiNO3/1 mM LiOH aqueous solution. 

This cell exhibits a discharge voltage of 1.5 V and an energy density of 175 Whkg-1 

[79]. Thereafter, a variety of cathode materials were investigated for aqueous 

rechargeable lithium-ion batteries such as LiFePO4, LiMnPO4, LiNiPO4, and other 

doped polyanionic compounds [80-85]. Generally, the electrochemical stability 

window of water is very narrow (~ 1.23 V). Very recently, the new concept of “water-

in-salt (WiS)” aqueous electrolytes have shown a new path for the next generation 

aqueous rechargeable batteries [86]. This concept has enabled to achieve a wide 

operating voltage window of aqueous electrolyte. Su et al. proposed this concept for 

the first time in aqueous LIB where they demonstrated that a high concentration of 

lithium bis(tri-fluoromethane sulfonyl)imide (LiTFSI) dissolved in a water solution 

forms an interphase that protects the electrodes and suppresses the water activity 

around the electrodes, resulting in the expansion of electrochemical stability window 

up to 3 V [86]. Although the use of such high super concentrated electrolyte turns 

attractive, but the cost of lithium-based salts is a limiting factor for large scale 

production. Aqueous sodium-ion batteries using Na+ ion as charge carriers is also an 

attractive option for low-cost energy storage systems [87-90]. A lot of progress has 

been made in the development of electrode materials for Na+ ion. Some examples are 

layered transition metal oxides, polyanionic compounds and Prussian blue analogues 

etc. [90]. 

1.5 Rechargeable aqueous aluminum batteries  

Chloroaluminate electrolyte-based aluminum-metal or ion batteries have been broadly 

explored with a plenty of cathode materials with some of them showing stupendous  
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performance [62-77]. Similarly, aluminum-metal/ion batteries based on aqueous 

electrolyte have also gained a significant research interest in recent times [91-103]. 

However, one of the significant difficulties in aqueous rechargeable aluminum-

batteries is to figure out a steady electrode material within the electrochemical 

stability window of the electrolyte [50,78]. Despite the difficulties, there are a few 

significant examples on aqueous aluminum-metal/ion batteries [91-103]. For example, 

Liu et al. first investigated the electrochemical activity of anatase TiO2 nanotube in 1 

M AlCl3 aqueous electrolyte. It was found that Al3+ ion can reversibly 

intercalate/deintercalation into TiO2 nanotube in aqueous electrolyte [91]. Later, 

Holland et al. proposed a functional prototype for rechargeable aqueous AIB using 

copper hexacyanoferrate cathode, TiO2 nanotube arrays anode in Al2(SO4)3 aqueous 

electrolyte [92]. This cell delivered a specific capacity of 21 mAhg-1 with a discharge 

potential voltage of 1.6 V [92]. Similarly, He et al. could further improve the storage 

capacity of Al3+ ion in black mesoporous anatase TiO2 [93]. Besides TiO2, González 

et al. demonstrated the possibility of Al3+ ion storage in V2O5 xerogel in aqueous 

electrolyte [94]. Recently, Kumar et al. reported the electrochemistry of Al3+ ion 

insertion in FeVO4 [95]. A discharge capacity as high as 350 mAhg-1 could be 

achieved at a current rate of 60 mAg-1. Pang et al. demonstrated the Al3+ ion storage 

behavior in VOPO4.2H2O [96]. The Al-metal anode with VOPO4.2H2O as cathode 

exhibits a discharge voltage of ~ 0.9 V with a specific capacity of approximately 

125.4 mAhg-1 at a current density of 20 mAg-1 [96]. In addition, there are only few 

other cathode materials that has been investigated for aqueous AIBs like MoO3, 

Na3V2(PO4)3, Li3VO8, MnO2, AlxMnO2, etc. [97-102]. Archer et al. recently proposed 

a novel way of utilizing Al metal in aqueous AIBs by creating a solid electrolyte 

interphase on Al metal using chloroaluminate electrolyte and then the treated Al metal 

was later used in aqueous AIBs. The assembled Al-MnO2 with treated Al metal shows 

a discharge voltage of 1.5 V with a stable discharge capacity of 100 mAhg-1 at a 

current rate of 500 mAg-1 [100].  Based on these studies, Wu et al. demonstrated a 

rechargeable aqueous AIB using AlxMnO2·nH2O as cathode and Al as anode in 5 M 

aluminum trifluoromethanesulfonate (Al(OTF)3) [101]. Very recently, the concept of 

“water-in-salt” aqueous electrolyte is also applied in aqueous AIBs to widen the 

electrochemical stability window of water [102]. It was found that such high 

concentration of electrolyte can expand the electrochemical stability window to 4 V 
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[102]. The research on aqueous AIBs is still at a preliminary stage and, hence, 

identification of electrolyte and electrode materials are of paramount importance.  

Therefore, the present thesis focusses on certain type of electrode materials for 

Al3+ ion storage to be employed for aqueous Al- metal or ion batteries.  
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