Dedicated to...

My parents and teachers...

Declaration of Academic Integrity

"I declare that this written submission represents my ideas in my own words and where other's ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be cause for disciplinary action as per the rules and regulations of the Institute."

Sincerely,

Rakhim Abha Saikia

Date: 13-03-2023 Place: Tezpur University 13/03/23

Raktim Abha Saikia (TZ200316 of 2019)

तेजपुरविश्वविद्यालय / TEZPUR UNIVERSITY

(संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament)

Dr. Ashim Jyoti Thakur Professor Department of Chemical Sciences

Tezpur University Tezpur 784028, Assam, INDIA डॉ. असीम ज्योति ठाकुर, प्रोफेसर रसायन विज्ञान विभाग, तेजपुर विश्वविद्यालय

CERTIFICATE FROM SUPERVISOR

This is to certify that the thesis entitled "*Exploration of Diaryliodonium Salts for Nand S-Arylations of Biologically Significant Heterocyclic Scaffolds*" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Chemical Sciences is a record of research work carried out by **Mr. Raktim Abha Saikia** under my supervision and guidance. He has been duly registered (Registration No. TZ200316 of 2019), and the thesis presented is worthy of being considered for Ph.D. Degree.

All help received by him from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

(Dr. Ashim Jyoti Thakur)

Supervisor

Date: 13-03-2023

Place: Tezpur University

E-mail:<u>ashim@tezu.ernet.in,ajtthax@yahoo.com;</u>Web: www.tezu.ernet.in Ph : +91 (3712) 275059 (O), +91 9435181464 (Mob) Fax: +91 (3712) 267005/6

FORM-XV

TEZPUR UNIVERSITY

REPORT OF EXAMINERS OF ORAL DEFENCE EVALUATION COMMITTEE

The examiners of Oral Defense Evaluation Committee (ODEC) certify that the thesis entitled, "Exploration of Diaryliodonium Salts for N- and S- Arylations of Biologically Significant Heterocyclic Scaffolds" submitted by Mr. Raktim Abha Saikia to the Tezpur University in partial fulfillment of requirement of the Ph.D. degree in the discipline of Chemistry under the school of Sciences has been examined on 24-03-2023 and recommend that:

a. that the degree be awarded $\sqrt{}$

- c. in our opinion the candidate has not performed to our satisfaction and does not deserve the degree of Ph.D. (in case the Board does not recommend the award of the degree)

Signature of

Allhalins

Supervisor Name: Dr. A. J. Thakur

Co-supervisor Name:

- Sandip Murrarka

External Examiner Name: Dr. S. Murarka

Dr. Ashim Jyoti Thakur Professor Dept. of Chemical Sciences Tezpur University- 784028

Date: 24-03-2023

ODE was conducted through G-meet where DRC members, other faculty members, research scholars of the department were present, besides the supervisor and the external examiner.

Memo No.:

Forwarded to Controller of Examination

Signature of Head of the Department

Acknowledgement

The journey of PhD is always a difficult one, I am very thankful to all for their help and love during the research work and during the making of this thesis. I would like to express my sincere gratitude to the following people, without their contribution this difficult journey wouldn't be possible:

At first, I sincerely acknowledge to my Supervisor; Dr. Ashim Jyoti Thakur for his constant supervision, guidance, and support throughout this research work. His suggestions and inputs during the scientific discussion always help me to improve the quality of my work. I would like to thank him for accepting me as a PhD student in his group.

I would like to thank the Department of Chemical Sciences and Head of the Department of Chemical Sciences, Prof. Ruli Borah (previous) and Prof. Panchanan Puzari (current) for providing us with easy access to departmental facilities.

I would like to deeply acknowledge to Council for Scientific and Industrial Research (CSIR) for the fellowship and Tezpur University (Research & Innovation Grant) for the financial support.

I am very thankful to my Doctoral Committee member and sincerely acknowledged; Dr. Utpal Bora, Associated Professor and Dr. Bipul Sarma, Assistant Professor, Department of Chemical Sciences, Tezpur University for their support and valuable suggestions.

I would like to acknowledge Dr. Krishna P. Kaliappan, Professor, Department of Chemistry, Indian Institute of Technology, Bombay (IIT-Bombay) and his research group for all support during the early period of my PhD. I am also thankful to Department of Chemistry, IIT-Bombay for allowing me to complete the PhD coursework.

Sincere acknowledgment to our Collaborators; Prof. Ramesh Chandra Deka, Professor, Department of Chemical Sciences, Tezpur University and Dr. Bipul Sarma, Assistant Professor, Department of Chemical Sciences, Tezpur University for their valuable contributions in my research work.

I am thankful to the non-teaching staff of the Department of Chemical Sciences and staff of SAIC, Tezpur University for their held during these years: Mrs. Babita Das, Mr. Khagen Das, Mrs. Pranati Boro, Dr. Dhrubajyoti Talukdar, Dr. Raju Kr. Borah, Mr. Biplob Ozah, Mr. Sankur Phukan, Dr. Biraj Jyoti Borah, Dr. Nipu Dutta, Mr. Tridip Ranjan Nath and Mr. Manoranjan Sarma. All the cleaning staff of the department is deeply acknowledged for their needful service. My special gratitude to past and present lab-members: Dr. Abhijit Mahanta, Dr. Shivanee Borpatra Gohain, Anurag Dutta, Rakhee Saikia and Sudhamoyee Kataky for their help in research work. I am so lucky to have them as labmates and for their love, friendship, and kindness. I am also grateful to the past project students who worked with me: Dhiraj Barman, Snata Deka, Rounak Basu, Nitumoni Hazarika and Khanindra Talukar for their contribution in my research work.

I am thankful to my senior research scholars in the department: Dr. Dhrubajyoti Talukdar, Dr. Kaushik Talukdar, Dr. Rajiv Khatioada, Dr. Basanta Saikia, Dr. Manoj Mondal, Dr. Porag Bora, Dr. Khairujjaman Laskar, Dr. Sudarsan Gogoi, Dr. Rajarshi Bayan, Dr. Rituraj Das, Dr. Prasurya Pratim Mudoi, Dr. Kasturi Sarmah, Dr. Manali Dutta, Dr. Aditi Saikia, Dr. Mukesh Sharma, Dr. Plaban Jyoti Sarma, Dr. Chiranjita Goswami, Julie Borah and Bhugendra Chutia for their advice and supervision.

Gratitude to my friends and juniors: Dr. Anup Choudhury, Priyankamoni Saikia, Arup Jyoti Das, Sangita Kalita, Debabrat Pathak, Dipika Konwar, Nishant Biswakarma, Debanga Bhusan Bora, Prantika Bhattacharjee, Bijoy Ghosh, Sudakhina Saikia, Asfi Ahmed, Himangshu Sharma, Debasish Sarmah, Manash Jyoti Baruah, Raju Chouhan, Bikash Kumar Kalita, Sameeran Morang, Ashok Bora, Mahendra Tahu, Nobomi Borah, Annesha Kar, Rashmi Chetry, Arzu Almin and Dibyashree Dolakasharia for their help, respect, and love.

Special acknowledgement to some people outside the university: Dr. Suresh Rajamanickam, Dr. Hemen Gogoi, Krishna Puri, Nikita Chakraborty, Diraj Barman, Dhrubajyoti Talukdar and Nitumoni Hazarika for their scientific inputs in my research work.

Special thanks to Rashmi Ma'am for her motivation and caring during these years.

Last but not the least, to my parents and family members for love and caring. Their support is always with me, and I am grateful to them as they allow me to follow my own path.

Thank You All

Raktim Abha Saikia

Abbreviations and Symbols

%	norcontago
	percentage
δ	Chemical shift
J	Coupling constant
μw	microwave
Å	Angstrom
Ar	Aryl
Ac	Acetyl
ACN	Acetonitrile
An	Anisyl
atm.	Atmosphere (pressure unit)
Aux	Auxiliary
ВНТ	Butylated hydroxytoluene
BINAP	(2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
bmim	1-Butyl-3-methylimidazolium
br	broad
bs	broad singlet
°C	degree Centigrade
CAN	Ceric Ammonium Nitrate
CCDC	Cambridge Crystallographic Data Centre
calcd	calculated
DPE	1,1-diphenylethylene
DIS	Diaryliodonium salt
DABCO	1,4-Diazbicyclo[2.2.2]octane
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DMAc	N,N'-dimethylacetamide
DIPEA	N,N-diisopropylethylamine
DMAP	N,N'-dimethylpyridin-4-amine
DMSO	Dimethylsulfoxide
DMF	N,N–dimethylformamide
DCE	Dichloroethane
DCM	Dichloromethane
dtbpy	2,6-di- <i>tert</i> -butylpyridine
E	Electrophile
	*

ED	Electron-donating
EW	Electron-withdrawing
EDG	Electron donating group
EWG	Electron withdrawing group
Equiv.	Equivalent(s)
ESI-MS	Electron Spray Ionization-Mass Sectrometry
ESI-TOF	Electron Spray Ionization-Time of Flight
FT-IR	Fourier Transformed Infra-Red
FA	Fenamic acid
g	gram
HRMS	High Resolution Mass Spectrometry
h	hour(s)
hv	Energy input from light
Hg	Atomic symbol of Mercury
НОМО	Highest Occupied Molecular Orbital
HFIP	Hexafluoro-2-isopropanol
IR	Infra-Red
IM	Intermediate(s)
IA	Isatoic anhydride(s)
К	Kelvin (temperature unit)
LUMO	Lowest Unoccupied Molecular Orbital
Mes	Mesityl
M ⁿ	Metal centre with oxidation state of "n"
М	Molarilty
mmol	milli mole(s)
MHz	Mega-Hertz
Ме	methyl
m	multiplet
mg	milli gram(s)
MS	molecular sieves
mL	milli litre(s)
m/z	Atomic mass units per unit charge
2-MP	2-mercaptopyridine
MeCN	Acetonitrile
Nu or Nu-H	Nucleophile(s)
NMR	Nuclear Magnetic Resonance

OTf	Triflate (trifluoromethanesulfonate) anion
OTs	<i>p</i> -Toluenesulfonate anion
ppm	parts per million
rt	Room temperature
THF	Tetrahydrofuran
ТСТ	2,4,6-trichloro-1,3,5-triazine
Tz	Tetrazole
TS	Transition-state(s)
TEA	triethylamine
TFE	2,2,2-trifluoroethanol
TMG	Tetramethylguanidine
ТМВ-Н	1,3,5-trimethoxybenzene
TMP	2,4,6-trimethoxyphenyl
TBME	Tert-butyl methyl ether
TLC	Thin Layer Chromatography
TFA	Trifluoroacetate anion
TFA-H	Trifluoroacetic acid
ТЕМРО	(2,2,6,6-tetramethylpiperidin-1-yl)oxyl
TMEDA	Tetramethylethylenediammine
UV-Vis	Ultra violet-visible
w.r.t	with respect to

List of Schemes

Scheme No.	Scheme Caption	Page No.
Chapter 1		
1.1	Oxidative pathway for the formation of hypervalent	4
	iodine compounds	
1.2	General application of diaryliodonium salt as aryl	8
	source	
1.3	Arylation products with symmetrical and	9
	unsymmetrical types	
1.4	General chemoselective arylation with	10
	aryl(auxiliary)iodonium salt	
1.5	Demonstrating different auxiliaries for chemoselective	10
	arylation	
1.6	General arylation mechanism under metal-free route	12
1.7	Influence of electronic factors on selective arylation	12
1.8	Ortho-effect of sterically hindered unsymmetrical	13
	iodonium salt	
1.9	Olofsson's chemoselective arylation study	14
1.10	Selective arylation under metal-catalyzed conditions	15
1.11	Sanford's fluorination method using $Ar(Mes)IBF_4$	16
1.12	General pathways for the synthesis of diaryliodonium	18
	salts	
1.13	Beringer's method for symmetrical diaryliodonium	18
	iodide	
1.14	Sandin's method for cyclic iodonium salts	18
1.15	Kitamura's one-pot methods	19
1.16	Olofsson's first report on diaryliodonium salts	19
1.17	Regiospecific method with aryl iodides and arylboronic	20
	acids	
1.18	Urea-hydrogen peroxide as oxidizing agent	20
1.19	Utilizing oxone as oxidizing agent for diaryliodonium	21
	bromide	
1.20	Stuart's one-pot methods for TMP-iodonium salts	21
1.21	Olofsson's method for TMP-iodonium salts from $I_{2}\mathchar`-$	22
	arenes	

1.22	Synthesis of TMP-iodonium acetate				
1.23	Early reports on <i>N</i> -arylation of anilines				
1.24	Stuart's metal-free <i>N</i> -arylation of cyclic amines				
1.25	Olofsson's method for N-arylation of primary and	24			
	secondary amines				
1.26	Olofsson's method for <i>N</i> -arylation of amides	24			
1.27	Diaryliodonium salts as benzyne precursor for N-	25			
	arylations of amides				
1.28	Synthesis of sterically hindered <i>N</i> -arylated substituted	25			
	phthalimide				
1.29	Utilizing TMP-iodonium salt for <i>N</i> -arylation	25			
	phthalimide				
1.30	N-arylation symmetrical pyrazoles with various	26			
	diaryliodonium salts				
1.31	<i>N</i> ² -arylation of 1,2,3-triazoles	26			
1.32	N- and O-arylation of pyridin-2-ones	27			
1.33	O-arylation of phenol by Olofsson's method	27			
1.34	Other methods for <i>O</i> -arylation of phenols				
1.35	O-arylation of various alcohols with diaryliodonium	29			
	salts				
1.36	Stuart's method with aryl(mesityl)iodonium bromide	29			
1.37	O-arylation of N-hyroxysuccinimide and N-	30			
	hydroxyphthalimide				
1.38	Symmetrical iodonium salt-based O-arylation of				
	carboxylic acid				
1.39	Unsymmetrical iodonium salt-based O-arylation of	30			
	carboxylic acid				
1.40	Ding's method for S-arylation of aryl thiourea	31			
1.41	S-arylation of sulfenates	31			
1.42	Chemoselective S-arylation of thioamides	32			
1.43	a) C-H arylations of indoles, and b) <i>m</i> -arylation of	33			
	aniline derivatives				
1.44	Enantioselective synthesis of C(3)-aryl pyrroloindoline	33			
	scaffolds				
1.45	Copper-catalyzed desymmetric arylation of bipyrroles	34			
1.46	Kang's Cu-catalyzed methods for N-arylations	34			

1.47	Copper-catalysed <i>P</i> -arylation with symmetrical	34				
	iodonium salts					
1.48	N-arylation of 2-pyridones under copper-catalysis					
1.49	Copper-catalyzed <i>N</i> -arylations of nitroenamines					
1.50	Utilizing diaryliodonium salts to access Bromoiesol-A	36				
	sulfate					
1.51	Reisman's approach for synthesis of Naseseazine B	36				
Chapter 2						
2.1	Traditional 1,3-dipolar cycloaddition method	53				
2.2	Earlier methodologies for direct N ² -arylation	53				
2.3	Transition-metal based arylation with diaryliodonium	54				
	salts					
2.4	Copper-catalyzed methods with arylboronic acids	55				
2.5	Patel's metal-free method with aryl diacyl peroxides	55				
2.6	Selection of auxiliary for EWGs by 4-cyanophenylation	61				
2.7	Scalability for the N^2 -arylation of tetrazoles 430 and	65				
	45b					
2.8	N^2 -arylation of pharmaceutically relevant 1 <i>H</i> -Tz	66				
2.9	Control experiments and plausible reaction mechanism	67				
	of N ² -arylation					
Chapter 3						
3.1	S-arylation of thiols with various arylating partners	102				
3.2	Kirkwood's early method with diphenyliodonium	103				
	chloride					
3.3	S-arylation reaction with sodium thiolates	103				
3.4	Acid-mediated S-arylation with thiols and thioethers					
3.5	Base-mediated S-arylation with symmetrical iodonium	104				
	salts					
3.6	S-arylation with heterocylic thiols	104				
3.7	Recent report on S-arylation of thiols with	105				
	diaryliodonium salts					
3.8	One-pot synthesis of <i>S</i> -aryl-dithiocarbamates	105				
3.9	Chemoselectivity Pattern of unsymmetrical iodonium	113				
	salts. All yields are isolated yields					
3.10	Optimization for S-phenylation of 2-mercaptopyridine	114				

3.11	Arylation with cyclic iodonium salt				
Chapter 4					
4.1	Tradition approach to access N^3 -arylated hydantoins	146			
4.2	N-arylation of 5-substituted tetrazoles	146			
4.3	N-arylation with aryl lead reagents	147			
4.4	N^3 -arylation methods with triarylbismuthanes and	147			
	arylboronic acids				
4.5	<i>N</i> -arylations of hydantoins with aryl halides as coupling				
	partners				
4.6	N^3 -arylation with unsymmetrical TMP-iodonium salts	148			
4.7	Chemoselectivity pattern of the unsymmetrical	153			
	iodonium salts				
4.8	Larger-scale synthesis of 33d and 34g	159			
4.9	Plausible mechanism for the formation of 32a	160			

Chapter 5

5.1	Diversification of isatoic anhydrides with various	190		
	reagents			
5.2	C–N coupling/ring-closing approach	191		
5.3	N-arylation of indole/ring expansion	191		
5.4	Direct <i>N</i> -arylation approach with triarylbismuth as aryl			
	source			
5.5	Recent development with symmetrical diaryliodonium	192		
	salts			
5.6	Synthesis of flufenamic acid	203		
5.7	a) Controlled experiments, and b) plausible mechanism	206		

Chapter 6

6.1	C-H functionalization of arenes	243
6.2	Future scope of synthesized <i>N</i> -arylated compounds	243

List of Figures

Figure No.	Figure Caption	Page No.				
Chapter 1						
1.1	Examples of early reported hypervalent iodine	2				
	compounds					
1.2	Structural types of polyvalent iodine species	3				
1.3	Depiction of molecular orbital diagram for 3c-4e L-I-L	4				
	bond					
1.4	Examples of different types of iodine(III) reagents					
1.5	General representation of diaryliodonium salts					
1.6	a) Representative crystal structure of Ph_2IX in dimeric	7				
	state, and b) X-ray crystal structure of dimeric 2-					
	methylphenyl(2'-methoxyphenyl)iodonium chloride					
1.7	Different types of the diaryliodonium salts	7				
1.8	General mechanism for copper-catalyzed arylation					

Chapter 2

2.1	Structural description of tetrazoles and examples of bio-		
	active 1 <i>H</i> -Tzs		
2.2	Applications of 2,5-Tzs in medicinal chemistry and	52	
	material sciences		
2.3	¹ H NMR spectrum of 43c (CDCl ₃ , 400 MHz, 298 K)	93	
2.4	¹³ C NMR spectrum of 43c (CDCl ₃ , 100 MHz, 298 K)	93	
2.5	¹ H NMR spectrum of 44c (CDCl ₃ , 400 MHz, 298 K)	94	
2.6	¹³ C NMR spectrum of 44c (CDCl ₃ , 100 MHz, 298 K)	94	
2.7	¹ H NMR spectrum of 45d (CDCl ₃ , 400 MHz, 298 K)	95	
2.8	¹³ C NMR spectrum of 45d (CDCl ₃ , 100 MHz, 298 K)	95	

Chapter 3

3.1	Pharmaceutically relevant S-arylated thioether scaffolds					101	
3.2	Di(hetero)aryl thioether moieties containing tetrazole					102	
	and py	ridine					
3.3	Free	energy	profile	(kcal/mol)	diagram	for	116
	chemoselectivity study on arylation						

3.4	¹ H NMR spectrum of 48h (CDCl ₃ , 400 MHz, 298 K)	137
3.5	¹³ C NMR spectrum of 48h (CDCl ₃ , 100 MHz, 298 K)	137
3.6	¹ H NMR spectrum of 49b (CDCl ₃ , 400 MHz, 298 K)	138
3.7	¹³ C NMR spectrum of 49b (CDCl ₃ , 100 MHz, 298 K)	138
3.8	¹ H NMR spectrum of 50c (CDCl ₃ , 400 MHz, 298 K)	139
3.9	¹³ C NMR spectrum of 50c (CDCl ₃ , 100 MHz, 298 K)	139
3.10	IRC plots of TS1 and TS2	140

Chapter 4

4.1	Important N-arylated hydantoin based drugs and clinical	145
	candidates	
4.2	¹ H NMR spectrum of 32e (CDCl ₃ , 400 MHz, 298 K)	180
4.3	¹³ C NMR spectrum of 32e (CDCl ₃ , 100 MHz, 298 K)	180
4.4	¹ H NMR spectrum of 33b (CDCl ₃ , 400 MHz, 298 K)	181
4.5	¹³ C NMR spectrum of 33b (CDCl ₃ , 100 MHz, 298 K)	181
4.6	¹ H NMR spectrum of 34b (CDCl ₃ , 400 MHz, 298 K)	182
4.7	¹³ C NMR spectrum of 34b (CDCl ₃ , 100 MHz, 298 K)	182

Chapter 5

Biologically useful scaffolds where isatoic anhydrides are	189
used	
¹ H NMR spectrum of 31a (CDCl ₃ , 400 MHz, 298 K)	233
¹³ C NMR spectrum of 31a (CDCl ₃ , 100 MHz, 298 K)	233
¹ H NMR spectrum of 33a (DMSO- <i>d</i> ₆ , 400 MHz, 298 K)	234
¹³ C NMR spectrum of 33a (DMSO- <i>d</i> ₆ , 100 MHz, 298 K)	234
¹ H NMR spectrum of 34b (CDCl ₃ , 400 MHz, 298 K)	235
¹³ C NMR spectrum of 34b (CDCl ₃ , 100 MHz, 298 K)	235
	used ¹ H NMR spectrum of 31a (CDCl ₃ , 400 MHz, 298 K) ¹³ C NMR spectrum of 31a (CDCl ₃ , 100 MHz, 298 K) ¹ H NMR spectrum of 33a (DMSO- <i>d</i> ₆ , 400 MHz, 298 K) ¹³ C NMR spectrum of 33a (DMSO- <i>d</i> ₆ , 100 MHz, 298 K) ¹ H NMR spectrum of 34b (CDCl ₃ , 400 MHz, 298 K)

Chapter 6

6.1 Summary of performed experimental works with 241 diaryliodonium salts

List of Tables

Table No.	Table Title	Page No.
Chapter 2		
2.1	Optimization with diphenyliodonium triflate	57
2.2	Counter-anion and auxiliary study	58
2.3	Scope of the 5-substituted-1 <i>H</i> -Tetrazoles	60
2.4	Scope of diaryliodonium salts	62
2.5	Optimization for one-pot system to obtain 2,5-diaryl	63
	tetrazoles by <i>in-situ</i> synthesis of 1 <i>H</i> -tetrazoles	
2.6	Multicomponent one-pot approach towards 2,5-diaryl-Tz	64
2.7	Synthesized diaryliodonium salts in this chapter	70
Chapter 3		
3.1	Optimization between 46a and diphenyliodonium salt 47a -	106
	OTf	
3.2	Investigation for unsymmetrical iodonium salt	108

Scope of *S*-arylation of the 5-mercaptotetrazole

Scope of *S*-arylation of the 5-mercaptotetrazole

Synthesized diaryliodonium salts in this chapter

Absolute and Relative Gibbs free energies

Examples of other mercaptoazoles

Scope of aryl(anisyl)iodonium salts

110

111

112

115

119

140

Chapter 4

3.3

3.4

3.5

3.6

3.7

3.8

4.1	Optimization with diphenyliodonium triflate 31a-OTf	149
4.2	Further optimization	150
4.3	Application of diverse symmetrical and aryl(Mes)iodonium	155
	salts	
4.4	Application of substituted hydantions	156
4.5	Optimization for N^1 -arylation with N^3 -phenyl-5,5-dimethyl-	157
	hydantoin (33a)	
4.6	Application of diverse symmetrical and aryl(Mes)iodonium	158
	salts	
4.7	Synthesized diaryliodonium salts in this chapter	162

Chapter 5

5.1	Optimization of the reaction conditions	194
5.2	Investigation of phenylation and 4-cyanophenylation	196
5.3	Scope of the aryl groups derived from aryl(TMP)iodonium	198
	salts	
5.4	Scope of the substituted isatoic anhydrides	200
5.5	Optimization for decarboxylation	201
5.6	Examples of fenamic acid derivatives	202
5.7	Reaction condition for <i>N</i> -phenyl-2-(phenylamino)benzamide	204
5.8	Examples of <i>N</i> , <i>N</i> '-diarylindazol-3-ones	205
5.9	Synthesized diaryliodonium salts in this work	208