Dedicated to my parents and brother

Declaration

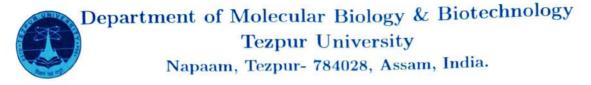
I certify that

- The work contained in the dissertation is original and has been done by myself under the general supervision of my supervisors.
- The work has not been submitted to any other institute for any degree or diploma.
- I have followed the guidelines provided by Tezpur University in writing the thesis.
- I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the university.
- Whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the dissertation and giving their details in the references.

Piyaei Sen 25/02/2023

Piyali Sen

Dr. Siddhartha Sankar Satapathy Associate Professor Phone: +91-3712-275117 Fax: +91-3712-267005/6 E-Mail: ssankar@tezu.ernet.in


Certificate of Supervisor

This is to certify that the thesis entitled "Computational Analysis of Codon Usage Bias, Single Nucleotide Polymorphism and RNA Secondary Structures in Microbial Genome Sequences" submitted to Tezpur University in the Department of Computer Science and Engineering under the School of Engineering in partial fulfillment of the award of the degree of Doctor of Philosophy in Computer Science and Engineering is a record of research work carried out by Piyali Sen under my supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been submitted else where for award of any other degree.

5.5.5 July 29/3/223 Signature of Supervisor

(Siddhartha Sankar Satapathy) Associate Professor Department of Computer Science and Engineering Tezpur University Assam, India-784028

Dr. Suvendra Kr. Ray Professor Phone: +91-3712-275406 E-Mail: suven@tezu.ernet.in

Certificate of Co-Supervisor

This is to certify that the thesis entitled "Computational Analysis of Codon Usage Bias, Single Nucleotide Polymorphism and RNA Secondary Structures in Microbial Genome Sequences" submitted to Tezpur University in the Department of Computer Science and Engineering under the School of Engineering in partial fulfillment of the award of the degree of Doctor of Philosophy in Computer Science and Engineering is a record of research work carried out by Piyali Sen under my personal co-supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been submitted else where for award of any other degree.

Sweenly Kr 02-29/03/2013 Signature of Co-Supervisor

(Suvendra Kr. Ray) Professor Department of Molecular Biology and Biotechnology Tezpur University Assam, India-784028

Certificate

This is to certify that the thesis entitled "Computational Analysis of Codon Usage Bias, Single Nucleotide Polymorphism and RNA Secondary Structures in Microbial Genome Sequences" submitted by Piyali Sen to Tezpur University in the Department of Computer Science and Engineering under the School of Engineering in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Computer Science and Engineering

The Committee recommends for award of the degree of Doctor of Philosophy.

5.5.5 depali

Signature of Supervisor

Signature of Co-Supervisor Signature of External Examiner

Acknowledgment

First and foremost, I offer my deepest gratitude to my supervisor, Dr. Siddhartha Sankar Satapathy, and my co-supervisor, Prof. Suvendra Kumar Ray of the Molecular Biology and Bio-technology Department, who introduced me to the research. They taught me the basics of molecular biology, the RNA structure, and also to develop applications and computational tools based on these concepts. Without their constant guidance, support, monitoring, inspiring advise, suggestions, thoughtful discussion, and sensible review, this research could not have been completed.

I would also like to express my appreciation to the members of my doctoral committee, Prof. Utpal Sarma, Dr. Rosy Sarmah, Prof. Suvendra Kumar Ray, the head of the department, the doctoral research committee, Prof. N. Sarma, Dr. Arindam Karmakar and all the faculty members of the department of Computer Science and Engineering, Tezpur University, for their constructive comments on my thesis.

I am also deeply indebted to Prof. Edward J. Feil, University of Bath, whose wisdom, advises and critical review smoothened the path of my Ph.D. I would also like to acknowledge Dr. Harry Thorpe for providing the sequence data of bacterial species. I sincerely thank Prof. Ramesh Deka, Dr. Nima Dondu Namsa and Dr. Aditya Kumar for their constant support and valuable comments on my research papers. I am also thankful to UGC, Government of India, for providing me the financial support of UGC NET-JRF fellowship. I would also like to thank all the anonymous reviewers of the published works and the thesis for their constructive comments.

I got a lot of support and input from my fellow research scholars and friends in the Departments of Computer Sc. and Engineering as well as Molecular Biology and Biotechnology. I would like to thank Annushree Kurmi, Ruksana Aziz, Pratyush Kumar Beura, and Kristi Kabyashree. I would also like to thank Debapriya, Abdul, Saumita, Arundhati, Carynthia, Deena, Kaushal da, Nirmal da, Mampi di, Jyoti, Vijay, Priyanjana, Tapas, Tamal, Kunal, Muzakkir, Santanu and others who have directly or indirectly helped and encouraged me throughout the Ph.D journey and with whom I have spent many unforgettable times together.

I would like to pay my regards to my parents, my younger brother for their love, constant support, encouragement and belief in me. I would like to thank the almighty lord for outpouring positive energy in my life.

Piyaei Sen 25/02/2023

Piyali Sen

List of Figures

1-1	Different substitution mutations in the genome	8
1-2	Different faces in a RNA secondary structure	10
2-1	Distribution of CAI values in <i>Bradyrhizobium japonicum</i>	21
2-2	Distribution of CAI values in <i>Staphylococcus aureus</i>	22
2-3	Codon importance estimation using Boruta Algorithm with the help of a hypothetical set of genes and RSCU values of a few codons \therefore .	24
2-4	Workflow of Boruta Algorithm	24
2-5	Confusion Matrix along with Precision, TPR or Recall, FPR, and Accuracy	25
2-6	Importance of the codons in <i>E. coli</i> genome	27
2-7	ROC curve of confirmed and rejected features using RF classifier	28
2-8	ROC curve of FFS and TFS features using RF and XGB \hdots	31
2-9	Correlation of CAI and gene expression based on the composition of FFS and TFS in <i>E. coli</i>	32
2-10 Importance of the codons in $Wiggles worthing gloss inidia$ genome \therefore 33		

2-11	Importance of the codons in Anaeromyxobacter dehalogenans genome	34
2-12	Frequency distribution of importance value in 683 organisms $\ . \ . \ .$	35
3-1	A schematic view of the distribution of IRs, CDS, tRNA and rRNA	45
	in the leading and lagging strands in double stranded DNA	45
3-2	Inter-species phylogeny of 12 different bacteria species constructed using $rpoB$ gene sequences	47
3-3	Inter-species phylogeny of 12 different bacteria species constructed	
	using $rpoC$ gene sequences	47
3-4	Inter-species phylogeny of 12 different bacteria species constructed	
	using rpoB gene sequences	48
3-5	Intra-species phylogeny of 12 strains of $E.coli$ bacteria using $rpoB$	
	gene sequences	48
3-6	Intra-species phylogeny of 12 strains of $E.coli$ bacteria using $rpoC$	10
	gene sequences	49
3-7	Intra-species phylogeny of 12 strains of $E.coli$ bacteria using $dnaK$	40
	gene sequences	
3-8	Interspecies and intraspecies pairwise difference distribution	50
3-9	Difference between complementary transition polymorphisms in the	
	LeS and the LaS at IRs	55
3-10	Polymorphism frequency at FFS across five amino acids in five bacteria	58
3-11	Difference between complementary transition polymorphisms in the	
	LeS and the LaS at FFS	60
4-1	RNA Secondary Structure with Stem and Hairpin loop $\ldots \ldots \ldots$	76

4-2	Steps followed to detect RNA Secondary Structure
4-3	Box-plot of Accuracy, Precision and F1 Score for pseudoknotted structures
5-1	Different substitution mutations in the genome
5-2	Effect of substitutions on secondary structure in a hypothetical RNA sequence
5-3	Compensatory or non-compensatory polymorphisms in secondary structure of a hypothetical RNA sequence
5-4	Ratio of ti to tv in loop and non-compensatory stem regions in tRNA of five bacteria
5-5	Polymorphism frequencies in stem region of tRNA genes among Amino(A/C) \rightarrow Keto (G/T), Keto (G/T) \rightarrow Amino (A/C) 111
5-6	$Amino(A/C) \rightarrow Keto (G/T), Keto (G/T) \rightarrow Amino (A/C) poly-morphism frequencies in loop region of tRNA genes$
A-1	Importance of the codons estimated in randomized gene sets of <i>E.</i> <i>coli</i> genome
A-2	Determining single nucleotide polymorphism from the sequence alignments
A-3	Substitutions in predicted tRNA Secondary structure of <i>Ec</i> Gln tRNA with UUG anti-codon
A-4	Base substitution frequency in non-compensatory and compensatory stem
A-5	G:T mispairing and A:C mispairing energy calculation study 131

List of Tables

1.1	Genetic code table	5
2.1	RSCU values in high and low expression genes in $E. \ coli$	29
2.2	Confusion matrix matrices of Random Forest (RF) and XGBoost (XGB) Classifier	31
2.3	Details of bacteria whose reference set of high expression genes available in the web portal	38
3.1	Compositional features of IRs in LeS and LaS in five bacteria $\ . \ .$	53
3.2	Polymorphism spectra at IRs	54
3.3	Comparison between transition-transversion polymorphism at FFS of five bacteria	59
3.4	Nucleotide frequency at FFS	62
3.5	Polymorphism spectra at FFS of five amino acids in the leading and the lagging strands of five bacteria	63

4.1	Stacking Energy:- The table presents stacking energy, where the	
	leftmost column represents the current base pair and the topmost	
	row represents the next base pair in the stack. For example, value	
	in row 2, column 1 represent the energy when C/G is followed by	
	A/U [221]	80
4.2	Tinoco's Stability Number	81
4.3	Comarative Result. L: Sequence Length (number of bases), SS:	
	Sensitivity, SP: Specificity and CC: Correlation coefficient	84
4.4	Deep learning architectures that predict pseudoknotted RNA Sec-	
	ondary Structure	89
4.5	Confusion Matrix	95
4.6	Anomalous Representation	96
5.1	ti/tv ratio in tRNA genes and Intergenic Regions (IRs) $\ . \ . \ . \ . \ .$.05

Glossary of Terms

ADJAdjacency GraphAUCArea Under CurveBFBifurcation loopBLBulge LoopBLSTMBi-directional Long Short Term MemoryBPBase PairBPMBase Pair MatrixCCytosineCAICodon Adaptation IndexCCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPRFalse Positive RateGGuanine	А	Adenine
BFBifurcation loopBLBulge LoopBLSTMBi-directional Long Short Term MemoryBPBase PairBPMBase Pair MatrixCCytosineCAICodon Adaptation IndexCCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCTCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic Acid <i>EcEscherichia coli</i> EMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFPFalse NegativeFPFalse NegativeFPRFalse Positive Rate	ADJ	Adjacency Graph
BLBulge LoopBLSTMBi-directional Long Short Term MemoryBPBase PairBPMBase Pair MatrixCCytosineCAICodon Adaptation IndexCCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNContoxt stacking regionCSCount consecutive Stacking regionCSCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic Acid <i>EcEscherichia coli</i> EMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFPFalse NegativeFPRFalse Positive Rate	AUC	Area Under Curve
BLSTMBi-directional Long Short Term MemoryBPBase PairBPMBase Pair MatrixCCytosineCAICodon Adaptation IndexCCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse PositiveFPRFalse Positive Rate	BF	Bifurcation loop
BPBase PairBPMBase Pair MatrixCCytosineCAICodon Adaptation IndexCCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPRFalse Positive Rate	BL	Bulge Loop
BPMBase Pair MatrixCCytosineCAICodon Adaptation IndexCCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFNFalse NegativeFPFalse Positive Rate	BLSTM	Bi-directional Long Short Term Memory
CCytosineCAICodon Adaptation IndexCCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPRFalse Positive Rate	BP	Base Pair
CAICodon Adaptation IndexCCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount Stacking regionCTConcectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse Positive Rate	BPM	Base Pair Matrix
CCCorrelation CoefficientCDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse Positive Rate	С	Cytosine
CDSCoding sequenceCFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPRFalse Positive Rate	CAI	Codon Adaptation Index
CFGContext Free GrammarCGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse Positive Rate	$\mathbf{C}\mathbf{C}$	Correlation Coefficient
CGCircle GraphCHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFour-Fold degenerate SitesFNFalse NegativeFPFalse Positive Rate	CDS	Coding sequence
CHGCircle Graph with Hairpin LoopCNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse Positive Rate	CFG	Context Free Grammar
CNNConvolutional Neural NetworkCQSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse Positive Rate	CG	Circle Graph
CQSCount consecutive Stacking regionCSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse Positive Rate	CHG	Circle Graph with Hairpin Loop
CSCount Stacking regionCTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	CNN	Convolutional Neural Network
CTConnectivity TableCUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	CQS	Count consecutive Stacking region
CUBCodon Usage BiasDDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	\mathbf{CS}	Count Stacking region
DDBJDNA Data Bank of JapanDNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	CT	Connectivity Table
DNADeoxy-ribonucleic AcidEcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	CUB	Codon Usage Bias
EcEscherichia coliEMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	DDBJ	DNA Data Bank of Japan
EMBLEuropean Molecular Biology LaboratoryFCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	DNA	Deoxy-ribonucleic Acid
FCLFully Connected LayerFFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	Ec	Escherichia coli
FFSFour-Fold degenerate SitesFNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	EMBL	European Molecular Biology Laboratory
FNFalse NegativeFPFalse PositiveFPRFalse Positive Rate	FCL	Fully Connected Layer
FPFalse PositiveFPRFalse Positive Rate	\mathbf{FFS}	Four-Fold degenerate Sites
FPR False Positive Rate	FN	False Negative
	FP	False Positive
G Guanine	FPR	False Positive Rate
	G	Guanine

GRU	Gated Recurrent Unit
Н	Hairpin loop
HEG	High Expression Gene
Ι	Internal Loop
IBPMP	Improved Base Pair Maximization Principle
IQR	Inter-quartile Range
IRs	Intergenic Regions
Κ	Keto
Kp	Klebsiella pneumoniae
L	Length of RNA Sequence
LaS	Lagging Strand
LEG	Low Expression Gene
LeS	Leading Strand
М	Amino
MIS	Maximum Independent Set
MPSA	Maximum Probability Sum Algorithm
NCBI	National Center for Biotechnology Information
NMR	Nuclear Magnetic Resonance
OC	Optimal Codon
ORF	Open Reading Frame
PACO	Parallel Ant Colony Optimization
PCA	Principal Component Analysis
PDB	Protein Data Bank
PK	PseudoKnot
R	Purine
ResNets	Residual Networks
RF	Random Forest
RNA	Ribonucleic Acid
RNN	Recurrent Neural Network
ROC	Receivers Operating Curve
RSCU	Relative Synonymous Codon Usage
S	Strong base
Sa	Staphylococcus aureus
SCFG	Stochastic Context Free Grammar
Se	Salmonella enterica
SE	Stacking Energy
SMD	Selection Mutation Drift
SNP	Single Nucleotide Polymorphism
Sp	Streptococcus pneumoniae
-	

SP	Specificity
SRP	Signal Recognition Particle
\mathbf{SS}	Sensitivity
SVM	Support Vector Machine
Т	Thymine
ti	transition
TN	True Negative
ТР	True Positive
TPR	True Positive Rate
tRNA	transfer Ribonucleic Acid
TSN	Tinoco's Stability Number
tv	transversion
U	Uracil
W	Weak base
XGBoost	Extreme Gradient Boosting
Υ	Pyrimidine