
Chapter 1

Introduction

The genome of a bacterium consists of the bacterium’s complete genetic information.

Essentially, it determines the phenotypes and genotypes of the bacterium. This

genetic information is organized into a collection of genes, which are subsequences

inscribed in the two strands of a Deoxyribonucleic acid (DNA). The two strands

run in opposite directions with respect to each other (antiparallel). They are held

together by hydrogen bonds between complementary bases of W (A and T with

two hydrogen bonds) and S (G and C with three hydrogen bonds) nucleotides.

In both the DNA strands, information is stored as a code made up of these four

nucleotides.

Since whole genome sequencing of the first bacterium Haemophilus

influenza in 1995, there has been a considerable development in genomic and other

molecular research technologies, particularly in the field of genome sequencing

projects. Further rapid information technology developments helped produce a

huge volume of genomic information in online public databases such as DDBJ,

EMBL, and NCBI. As per a recent study in 2020, more than 2,00,000 genomes from

different phyla have been sequenced along with a variety of micro-organisms [250].

These genomic data sequenced across diverse micro-organisms have invited experts

from computer science, mathematics and biological domains to work together

for new insights into genome content, adaptation, and evolution. Cross-platform
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research has resulted in additional information on RNA and protein structures

available in public databases such as GtRNAdb, RNA STRAND, PDB, etc. In

this genomic era, our understandings of evolutionary aspects of microbial genomes

have increased significantly owing to recent developments in data science and

machine learning algorithms that facilitate large-scale analysis of genome sequences

to understand evolution at the molecular level.

Different segments of a DNA sequence are associated with different

biological functions by virtue of the primary base sequences of the segment or the

secondary structure produced out of the base sequence. Nucleotide sequence of a

protein-coding genes is read in the form of base triplets called codons, mapped to

the genetic code table to produce the amino acid sequence. The base sequence of

a tRNA gene facilitates amino acid transportation to the site of protein synthesis

because of its typical clover leaf-like secondary structure. Therefore, different

segments of the DNA sequence are under influence of different evolutionary forces

[136][27][68][69][73][170].

Non uniform usage of synonymous codons in protein coding genes of

organisms is known since Clarke (1970) for about five decades. Progress in genome

sequencing technologies in 1980s facilitated accumulation of genome sequences

in public databases that helped scientists to put forward theories that guides

us to understand codon usage [58][59][60][82][83][84][191][190][192][63][57][13][136].

Grantham and co-researchers proposed the genome hypothesis in 1980 that states

all genes in a genome, or more loosely genome type, tend to have the same

coding strategy. The genome hypothesis mainly indicates the presence of some

selection mechanism in a genome operating for the differential usage of synonymous

codons and the selection mechanism is variable across organisms. In support of

selection on codon usage in 1982 [57] reported codon usage difference between high

and low expression genes in Escherichia coli. Ikemura [82][83][84] demonstrated

the positive correlation between codon abundance and the cytosolic abundance

of cognate tRNA in three organisms Escherichia coli, Salmonella typhimurium,
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and Saccharomyces cerevisiae, suggesting selection for efficient translation. Muto

and Osawa (1987) [136] demonstrated that genome G+C% in bacteria strongly

influences codon usage bias such that in G+C% high genomes, synonymous codons

ending with G/C are preferred to synonymous codons ending with A/T whereas

the reverse is true in case of G+C% low genomes. Using population genetics

based methodology, Sharp et al. in 2005 reported that the selection strength is

variable among bacteria [193] and finding from Rocha in 2004 [168] pointed out

that the growth rate in organisms imposes selection on codon usage in organisms.

Further lifestyle of the organisms is also reported to be a selection factor on

codon usage in bacteria [18]. The machine learning based study [210] reported

that that the translational selection on codon is ubiquitous in bacteria. Our

understanding on mechanism of selection on codon usage was further increased

by the work of Ran and Higgs [160]. These scientists showed that the selection

rules for two-fold degenerate codons and four-fold degenerate codons are different.

Wald et al. in 2012 also observed the same difference between two-fold degenerate

codons and four-fold degenerate codons with respect to selection [227]. Bulmer

in 1990 proposed the Selection-Mutation-Drift (SMD) theory according to which

selection predominates in determining codon usage bias in high expression genes

whereas nucleotide substitution predominates in determining codon usage bias in

low expression genes [20].More recently, codon usage bias has been demonstrated

to influence co-translational protein folding [10]. Ribosome profile has distinctly

demonstrated the difference among synonymous codons regarding the translation

speed [162]. Genome composition (G+C%) that varies approximately from 13.0

to 75.0 in bacteria is the other major factor influencing codon usage [143][170].

Single nucleotide base substitution is one of the leading factor influencing genome

composition in bacteria and therefore, the codon usage in organisms is influenced

by combined effect of nucleotide substitution and selection forces.

The stem-loop hypothesis or the Nussinov-Forsdyke hypothesis pro-

posed genome wide selection for formation of DNA secondary structure (DNA
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stem-loop regions) which is advantageous to the cell [113]. A sequence containing

an inverted repeat (e.g. NNNATGCNNNGCATNNN) has palindrome-like charac-

teristics with the potential to fold back on itself forming a hairpin like stem-loop

structures having significant functions, for example tRNA clover leaf structure

and rho-independent transcription termination site in prokaryotes. Organisms

those have accepted point mutations which increased the probability of stem-loop

formation reported to have evolutionary advantage [45].

In this thesis, considering large-scale bacterial genome sequences

available from public databases, we have addressed some of the important aspects

of molecular evolution, such as codon usage bias, nucleotide polymorphism, strand

asymmetry, RNA secondary structure in bacterial genomes.

1.1 Codon usage bias in bacterial genomes

In the universal genetic code table (Table 1.1), 64 base triplets called codons are

assigned to 20 amino acids and translation stop signals. The number of codons

are more than the number of amino acids and therefore, codon to amino acid

mapping is many to one. But the number of codons assigned to the amino acids

are not uniform: two amino acids Met and Trp are encoded by one codon each;

nine amino acids Phe, Tyr, His, Gln, Asn, Lys, Asp, Glu, Tyr are encoded by two

codons each, Ile is encoded by three codons; five amino acids Val, Pro, Thr, Ala

and Gly are encoded by four codons each; and the three amino acids Leu, Ser and

Arg are encoded by six codons each. The three remaining codons represents the

translational stop signals. Codons that encode the same amino acid are called as

synonymous codons, which are known to be used non-randomly in organisms, a

phenomenon known as codon usage bias. The pattern and magnitude of codon

usage bias is different from organisms to organisms and even among the genes within

a genome. Base composition and replication strand asymmetry are considered

some of the mutational factors [47][168] influencing codon usage bias in genomes
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1.1. Codon usage bias in bacterial genomes

AA Codon AA Codon AA Codon AA Codon

Phe
UUU

Ser

UCU
Tyr

UAU
Cys

UGU
UUC UCC UAC UGC

Leu

UUA UCA
TER

UAA TER UGA
UUG UCG UAG Trp UGG
CUU

Pro

CCU
His

CAU

Arg

CGU
CUC CCC CAC CGC
CUA CCA

Gln
CAA CGA

CUG CCG CAG CGG

Ile
AUU

Thr

ACU
Asn

AAU
Ser

AGU
AUC ACC AAC AGC
AUA ACA

Lys
AAA

Arg
AGA

Met AUG ACG AAG AGG

Val

GUU

Ala

GCU
Asp

GAU

Gly

GGU
GUC GCC GAC GGC
GUA GCA

Glu
GAA GGA

GUG GCG GAG GGG

Table 1.1: Genetic code table

of bacteria. Optimum translational selection for either accurate or fast codon

recognition is a selection factor influencing CUB among the genes in a genome

[160][194]. Codons used more frequently in high expression genes than the low

expression genes are considered the optimal codons (OCs) [68][192][195].

In last four decades, different computational methods have been pro-

posed to measure codon usage bias in a gene sequence. Relative synonymous codon

usage (RSCU) estimates biasness in synonymous codon usage for individual amino

acids in a gene sequence. Effective number of codons [237] estimate overall biasness

in codon usage in a gene. These metrics used in RSCU and Nc assumes equal base

frequencies. The null expectation for the usage of each codon depends upon the GC

content, meaning that in a GC-rich genome, codons with G and C will tend to be

used more than those with A and T without being preferred. Effective number of

codons prime (Nc′) and its variants [137][181] estimate biasness in codon usage in

a gene taking GC content into account. Codon Adaptation Index (CAI) [192] esti-

mates the extent of biasness in codon usage in a gene towards codons that are known

to be used favorably in highly expressed genes. Software implementations of these

measures are available for public used in the form of various packages, stand-alone
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programs and also in the form of websites [145][209][131][181]. Implementations

also exist in libraries of common programming languages, such as, BioPerl [201],

seqinR [25], and EMBOSS [167]. Here we briefly present mathematical equations

of the methods RSCU and CAI considered in this thesis.

1. Relative Synonymous Codon Usage (RSCU)

Relative Synonymous Codon Usage (RSCUi) value for ith Codon is calculated

as the observed number of occurrences divided by the number expected if

all synonymous codons for an amino acid were used equally frequently. For

synonymous Codon i of an n-fold degenerate amino acid, RSCU is as shown

in equation 1.1

RSCUi = Xi/(1/n
n∑

i=1

Xi) (1.1)

Xi is the number of occurrences of Codon i and n is degeneracy (1, 2, 3, 4 or

6).

Minimum and maximum possible RSCU values varies between 0.0 and degen-

eracy of the amino acid codons respectively. For equal usage of synonymous

codons, RSCU values are 1.0 each for the synonymous codons. Sum of

RSCU values of all synonymous codons for an amino is always equal to the

degeneracy of the amino acid codons.

2. Codon Adaptation Index (CAI)

The index uses a set of highly expressed genes which is used as a reference to

categorize any unknown gene of same species to be highly or lowly expressed.

It is also used for assessing the adaptation of viral genes to their hosts, and

for making comparisons of codon usage in different organisms [192][145].

CAI = (πL
i=1wi)

1/L (1.2)

Here relative adaptedness values (wi) are calculated for each of the 61 amino
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acid encoding codons considering a reference set of organism-specific high

expression genes. L is codon count in the gene sequence excluding Met and

Trp codons. For codon i, wi is defined in equation 1.3.

where wi = RSCUi/(max(RSCU)) (1.3)

Here RSCUi and max(RSCU) are the relative synonymous codon usage

values for a codon i and the maximum RSCU value among all the synonymous

codons of the codon i, respectively.

CAI values of the genes vary between 0.0 to 1.0 denoting high and low

expression genes, respectively.

1.2 Single nucleotide polymorphism in bacterial

genomes

Biological information is stored in DNA by the linear order of the bases in it.

During DNA replication, repair or recombination, in a very low frequency, one base

can be replaced by any other three bases, which causes change in the information

in the DNA. These changes in DNA sequence due to base replacement are known

as substitution. Base replacement between A and G or between C and T is called

as a transition (ti). Base replacement between R (A, G) and Y (C, T) bases is

called transversion (tv) Figure 1-1.

Each of the four bases can change to three other bases resulting in

total of twelve directional base substitutions. Out of these twelve substitutions,

four are transitions, and eight are transversions. Though the theoretically possible

number of transversions is two times the number of transitions, the observed transi-

tion frequency is two times the transversion frequency [187][39][105][204][123][184].

This four times higher transition frequency compared to transversion is attributed

to mechanistic reasons such as unequal stability among different base pairs, dif-
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Figure 1-1: Different substitution mutations in the genome
Figure presents twelve possible directional base substitutions in a sequence. In

theory, out of the four bases A, C, G, and U any one base can be replaced by the
other three bases resulting into twelve base substitutions. Out of these twelve

substitutions, the four are called transitions (ti) in which a purine (R: A/G) (or a
pyrimidine (Y:C/U)) is replaced by another purine (R) (or a pyrimidine (Y));

eight different substitutions called transversion (tv) in which a purine (R) (or a
pyrimidine (Y)) is replaced by a pyrimidine (Y) (or a purine (R))

ferential propensity of bases to damages such as deamination, oxidation, and

radiation, as well as selective reasons such as differential impact on the structure

and function of DNA, RNA, and proteins [211][114][47][26]. The polymorphism

analysis in different genomic regions such as the Intergenic Regions (IRs), Four-fold

Degenerate sites (FFS), stem-loop regions in RNA secondary structures etc. helps

to understand different aspects of molecular evolution.

1.3 RNA secondary structure estimation

Primary base sequences of single stranded RNAs tend to form pairs with their

alternate bases (A:U, G:C and G:U) to form secondary structures consisting of

typical stem and loop motifs. Bonds which are formed by base pairing are called

internal bonds or edges. Some bases will form pairs while others may not and they

form loops. Any bounded region by external or internal edges is called a face.

A hypothetical example containing faces of a secondary structure is

shown in Figure 1-2. The figure in left depicts the typical motifs or faces such as
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hair-pin loop (H: region bounded by the bases in positions 21, 22, 23, 24, and 25),

stacking region (S: region bounded by the bases in positions 2, 3, 31, and 32. A

stem is constituted by two or more stacking regions as in positions 5, 6, 7, 12, 13,

14), bulge loop (BL: region bounded by the bases in positions 4, 5, 14, 15, and 16),

interior loop (I: region bounded by the bases in positions 18, 19, 20, 26, 27, 28,

and 29), bifurcation loop (BF: region bounded by the bases in positions 3, 4, 16,

17, 18, 29, 30, and 31). Pseudoknots (PK) are RNA tertiary structures which are

formed between unpaired bases of RNA secondary structure. Here in this figure,

pseudo-knotted structure is formed when the 10th and 1th bases of the H loop

pair with bases at 23rd and 22nd positions, respectively. They are non-nested or

overlapping in nature as can be illustrated in the form of an arc diagram given

as depicted in the right hand side figure. Pseudo-knot is represented as a dotted

stacking region. The corresponding arc diagram in the right panel shows that the

motifs are nested/non-nested in nature with respect to the absence / presence of

pseudo-knots.

Owing to this secondary structure, RNA performs several important

cellular functions for example, the clover leaf structure of the tRNA. In order to

supplement resource-intensive scientific experiments, interdisciplinary approaches

based on computational algorithms have been developed for estimating RNA

secondary structure. Various estimation algorithms based on machine learning

principles [103][37][77][23] emphasizing on recent advancements in deep learning

methods[225][248][126][23] have been incorporated to estimate secondary structure

of RNA.

A huge volume of available DNA sequences in public databases

provides scope for the opened direction of structure prediction and genomic analysis.

Determining secondary structure of RNAs helps to determine gene expression,

regulation, stability, and function [51]. It also helps to understand the genetic

disease, create new drugs, and allows biologists understand molecules in cell
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Figure 1-2: Different faces in a RNA secondary structure

A two-panel figure presenting the motifs of secondary structures with a
pseudoknot (left panel) and corresponding arc diagram (right panel) of a

hypothetical RNA sequence. The consecutive bases in the primary sequence of
RNA are linked by external edges. Bonds which are formed by hydrogen bonds

between two distant bases (A:U, G:C and G:U) are called internal edges. Figures
in left depict the typical motifs or faces such as hair-pin loop (H), stacking region

(S).A stem is constituted by two or more stacking regions, bulge loop (BL),
interior loop (I),bifurcation loop (BF). Pseudoknots (PK) are RNA tertiary

structures which are formed between unpaired bases of RNA secondary structure.
They are non-nested or overlapping in nature as can be illustrated in the form of

an arc diagram in right. Pseudo-knot is represented as dotted stacking region.
The corresponding arc diagrams in the right panel shows that the motifs are

nested/non-nested in nature with respect to absence / presence of pseudo-knots.

[216]. There are different types of RNA(s), e.g., transfer RNA (tRNA), messenger

RNA(mRNA), ribosomal RNA (rRNA), signal recognition particle RNA (SRP

RNA) etc.

1.3.1 Thermodynamic features considered in RNA sec-

ondary structure prediction algorithms

To determine the optimal RNA secondary structure among several sub-optimal

structures, thermodynamic energies are taken into consideration. Minimum free

energy (MFE) is an energy model used to determine the thermodynamic stability of

an RNA structure. Nearby bases in RNA sequence pair to reduce thermodynamic

free energy and make the secondary structure more stable. Therefore, stability of

an RNA secondary structure can be inversely proportional to its associated free

energy. The total free energy of a secondary structure is calculated by combining
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energies associated with individual motifs in the structure. Stems are comparatively

stable and therefore free energy associated with stems is less in comparison to

loops. Bigger loops make the secondary structure unsteady. Gibbs free energy

model is used to calculate free energy of a structure. In this model, overall free

energy of a structure is estimated based on the local arrangement of the bases in

the motif, so it is termed as nearest neighbour model [139][158]. Gibbs free energy

can be described as follows:

∆G = ∆H − T∆S (1.4)

Where ∆G represents Gibbs Energy, ∆H represents enthalpy which is the

total energy to create a system, or it is also sum of total internal energies and T is

the temperature. ∆S is entropy which measures molecular disorder, or randomness

of a system [139][258]. For a Watson-Crick stacking, Gibbs Energy is calculated as:

∆G◦37 Watson-Crick = ∆G◦37 intermolecular initiation + ∆G◦37 AU

end penalty (per AU end) +∆G◦37 symmetry (self-complementary duplexes) +

P[∆G◦37 stacking]

These values and the computations are based on Turners lab [220]. For

example, for a Watson-Crick stacking:

5‘ CGCAGCU 3’

3‘ GCGUCGA 5’

∆G◦37 Watson-Crick = ∆G◦37 intermolecular initiation + ∆G◦37 AU end

penalty + ∆G◦37 (CG followed by GC) + ∆G◦37 (GC followed by CG) + ∆G◦37

(CG followed by AU) + ∆G◦377 (AU followed by GC) + ∆G◦37 (GC followed by

CG) + ∆G◦37 (CG followed by UA)

= 4.9 kcal/mol + 0.45 kcal/mol 2.36 kcal/mol 3.42 kcal/mol 2.11 kcal/mol

2.08 kcal/mol 3.42 kcal/mol 2.08 kcal/mol.
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= 10.12 kcal/mol

1.4 Challenges

Evolutionary information is accumulated over millions of years in the DNA of

organisms in the form of a sequence of four nucleotides denoted by characters A, T,

G and C. Size of the DNA sequence varies from few Kilo bases in virus to several

Giga bases in human. Different parts of the DNA are associated with different

functions of the organism. In the process of translation, the nucleotide sequence of

the protein coding gene is utilized to produce a protein which is a sequence of 20

amino acids. The standard version of the genetic code table defines non-random

translational mapping of 64 nucleotide triplets (or codons) to 20 amino acids and

three stop signals. Though more than 1084 alternative genetic code tables are

possible theoretically [97], only one standard genetic code table is used universally

across bacteria with some variations in alternative start codons and the use of the

stop codons UAG and UGA for the rare amino acid selenocysteine and pyrrolysine,

respectively. It is to be noted here that there are thirty two other genetic code tables

with slight variations reported in National Center for Biotechnology Information

(NCBI) web portal (https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi),

for example, the universal codons AUA (isoleucine) and UGA (stop) coded for

methionine and tryptophan, respectively, in human mitochondria. Evolution of the

genetic code is elegantly presented in a research article by Osawa and co-researchers

in 1992 [142]

The large volume of genome sequences available in online public

databases such as DDBJ and NCBI have invited experts from computer science,

statistics, and other fields to understand biological processes and increase our

understanding of the biological system. Computationally intensive techniques are

used to recognize patterns and visualization of biological systems. Different parts

of the DNA being associated with different biological functions, understanding the
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significance of the sequence, developing suitable computational methods, generate

result and their interpretation are challenging tasks for bioinformaticians.

Experiments such as Nuclear Magnetic Resonance (NMR) spec-

troscopy and X-ray crystallography are often used to determine accurate RNA

secondary structure. Because of the secondary structure, RNA performs several

important functions, for instance, tRNA folds to form a typical cloverleaf shape

and participate in the translation. But, laboratory experiments to determine RNA

structures are expensive and time-consuming. However, developing computational

approaches to estimate these structures with reasonable accuracy are also challenge.

1.5 Objective of the thesis

The aim of this research is to understand factors such as base substitution, strand

asymmetry, codon usage bias, RNA secondary structure influencing evolution in

bacteria by computational analysis of genome sequences. The objectives are as

follows:-

(A) To analyze codon usage bias (CUB) in bacterial genomes

(i) To find out the difference in CUB between the high expression genes

and all other genes using machine learning algorithms

(ii) To find out codons preferred/avoided in the high-expression genes

(iii) To understand the role of codon degeneracy on selected codon usage

bias

(B) To analyze single nucleotide polymorphism spectrum in bacterial genomes

(i) To develop a computational methodology for estimating base substitu-

tion patterns in bacterial genomes

(ii) To segregate bacterial genome regions such as CDS, IRs into leading

and lagging strand
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(iii) To compare single nucleotide polymorphism spectra at Four-Fold De-

generate sites (FFS) and Intergenic Regions (IRs)

(C) To estimate RNA secondary structure

(i) To understand the principle behind RNA secondary structure motifs

(ii) To develop a computational method to estimate RNA secondary struc-

ture motifs

(D) To analyze the role of secondary structure motifs on base substitution

(i) To estimate secondary structure motifs in tRNA genes sequences and

segregate stem and loops regions

(ii) To estimate base substitution pattern in stem and loop regions in tRNA

genes and do a comparative analysis

1.6 Organization of the thesis

The thesis is organized as follows:

• Chapter 1 introduces the thesis and the challenges. It describes the three

different sub-objectives that we addressed. It also describes the organization

of the thesis.

• Chapter 2 presents the machine learning-based study on codon usage differ-

ence between the high and the low expression genes in genomes of bacteria.

The chapter also describes the web-server to calculate Codon Adaptation

Index with organism-specific reference set of genes.

• Chapter 3 presents single nucleotide polymorphism (SNPs) in intergenic

regions (IRs) and four-fold degenerate sites (FFS) in genomes of three γ-

Proteobacteria and two Firmicutes to understand the mechanism of substitu-

tion mutations.
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• Chapter 4 presents a graph theory-based method to estimate RNA secondary

structure and a survey on a wide range of algorithms based on machine

learning and specifically deep learning methods available in public domain.

• Chapter 5 presents base substitutions in tRNA gene sequences in genomes

of five bacteria and discuss possible role of stem and loop motifs of the

secondary structure on the base substitutions.

• Chapter 6 concludes the thesis by summarizing the works done and also lists

the possible future research directions in this area.
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