
Chapter 2

Codon usage bias in bacterial

genomes

2.1 Introduction

The universal genetic code table defines the translational mapping of sixty-one

codons into twenty amino acids. Except for Met and Trp, all other eighteen amino

acids are assigned with two or more synonymous codons for which the genetic code

table is called degenerate. These synonymous codons are not used randomly in

genes within a genome, a phenomenon known as codon usage bias (CUB), which

is common in all organisms [32].

Several mutational factors such as genome G+C%, strand asym-

metric nucleotide composition [27][47][114][131][136][152] are known to influence

CUB. In addition to these mutational factors, selective forces also influence CUB

though in variable strength [179]. During the process of translation certain codons

are used more frequently in comparison to other synonyms for faster and/or ac-

curate translation in high expression genes than rest of the genes in a genome

[5][203][160][194][227]. This is considered as the primary selection factor influencing

CUB [68] which is a common phenomenon in genomes of bacteria. Based on CUB

property, several mathematical formulas have been proposed for measuring codon
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2.1. Introduction

usage bias [174]. These mathematical equations have been developed for measuring

CUB from different point of view. Effective number of codons [237] measures over-

all degree of codon usage bias in a gene, whose value varies between 61.0 and 20.0

representing synonymous codons are being used with equal frequencies, and highly

biased synonymous codon usages respectively. Measuring CUB as a departure from

uniform usage of alternative synonymous codons is not always desirable. When

background nucleotide composition of a gene is considered, the null distribution of

codon usage is non-uniform. Novembre (2002) [137] reported a modification over

effective number of codons (Nc), taking background GC content of the genome

into consideration. Keeping genomic GC composition in view, improvements in

these two methods have been proposed in research literate [181][208][49]. Codon

adaptation index (CAI) proposed by Sharp and Li estimates the extent to which

codons of a gene are adapted towards the optimal codons favored by the set

of organism specific highly expressed genes [192]. CAI is a measure for finding

predicted gene expression from codon usage bias. CAI value of the genes varies

between 1.0 to 0.0. Higher the CAI value of the genes, higher is the adaptation

of codon usage of the gene towards optimally used codons in the high expression

genes and therefore considered as highly expressed genes.

CUB is distinctly different between the high expression genes (HEG)

and the low expression genes (LEG) in an organism [57]. There is stronger selection

for both accurate and fast codon translation in the HEG than LEG in a genome

[5][203][160][194][227]. For example, among the Leucine codons, CUG is the most

frequent codon in both HEG and LEG, but the frequency is higher in HEG than

in LEG. This higher frequency of CUG in HEG is attributed to higher cognate

tRNA gene abundance for CUG codon in Escherichia coli genome, facilitating

faster translation [82][84][195]. Other similar notable codons most frequently used

in HEG are Glycine codon GGU and Arginine codon CGU [178]. These codons

used more frequently in HEG than LEG are considered the optimal codons (OCs)

[68][192][195][180]. The anticodons used for decoding GGN codons are not different
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Chapter 2. Codon usage bias in bacterial genomes

among archaea, bacteria and eukarya: generally, UCC and GCC anticodons are

used [138]. According to the four-column theory for the origin of the genetic

code [72], GGN is one of the oldest codon families in genetic code evolution. The

conservation of anticodons of Gly family indicates the universal preference of GGU

among bacteria. In contrast to Gly, anticodons used for decoding Arg family

codons are different among the three kingdoms: UCG and GCG anticodons are

used by archaea; ICG and CCG are used by bacteria; and ICG and UCG are

used by eukarya (in yeast CCG). In spite of these differences in anticodons used,

selection of the U-ending codons has been reported in both archaea and bacteria

organisms [227].

Transfer RNA genes can influence translational selection on CUB

in different ways [160]. The cytosolic abundance values of isoacceptor tRNAs

differ and the synonymous codon with high cognate tRNA abundance might be

preferred to the other synonymous codons with low cognate tRNA abundance.

Secondly, efficiency of a tRNA molecule might differ in decoding two or more

synonymous codons due to difference at the wobble position in codon-anticodon

pairing. Further, the codon-anticodon pairing is also influenced by tRNA base

modifications [160]. Contribution of these tRNA specific factors on translational

selection across bacteria is difficult to quantify. In a comparative study between the

tRNA gene number and codon usage bias across genomes in 199 bacteria Satapathy

et al. (2012) [177] observed that the tRNA gene numbers may not be completely

responsible for the CUB in Asp, Ile, Phe, and Tyr in the high expression genes.

Rare codons are reported to be used as a mechanism to achieve

circadian clock conditionality [243] and also for translation elongation to regulate

co-translational protein folding because rare codons cause ribosome stalling during

translation [246][252][163].

In this regard, in a detailed study [180] observed that there is amino

acid specific influence for the selection of optimal codons. There is also influence
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of phylogeny in the choice of OCs for some amino acids such as Glu, Gln, Lys and

Leu.

Apart from the positively selected codons in HEG, specific codons

can be observed to be used in lower frequency in HEG compared to LEG, possibly

because of the presence of these codons having any retarding effect on optimum

gene expression. Open reading frame (ORF) of a gene containing certain rare

codons may be wrongly translated possibly because of ribosomal frameshifting error

during translation. For example, Proline codon CCC and Glycine codon GGG are

known to be prone to translational frameshifting errors [140][141]. Rare codons

are reported to be used as a mechanism to achieve circadian clock conditionality

[243] and also for translation elongation to regulate co-translational protein folding

because rare codons cause ribosome stalling during translation [246][252][163].

For some of the amino acids, only specific synonymous codons are

primarily selected as the optimal codons across bacteria: the C-ending codons of

Phe, Tyr, Asn, and Ile [193]; GGY and CGY codons for Gly and Arg, respectively

[178]. In contrast, none of the synonymous codons for amino acids Lysine and

Cysteine is selected as OCs in E. coli, even though the bacterium is known to have

a strong selected codon usage bias [195]. In this regard, in a detailed study [180]

observed that there is amino acid specific influence for the selection of optimal

codons. There is also influence of phylogeny in the choice of OCs for some amino

acids such as Glu, Gln, Lys and Leu.

Despite a large number of studies on codon usage bias available in the

literature, a detailed codon specific generalized study across bacteria regarding gene

expression is still having ample scope. The study by Sharp et al. (2005) mainly

focuses on two-fold degenerate AT rich codons in four amino acids. The study by

Satapathy et al. (2014) [178] has limitations regarding number of genes used for

gene expression analysis. Further, these two above studies have not emphasized

on codons negatively selected in the HEG. In this study, we have used a machine
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learning based approach to rank codons in their effectiveness in classifying genes

into the high and the low expression genes in more than 600 bacterial species, that

identifies several codons that are universally influenced by gene expression and

certain codons that are not influenced by gene expression in bacteria. Along with

that, we have tried to solve the limitations of existing implementations of CAI.

2.2 Importance of the codons towards classify-

ing high and low expression genes: a ma-

chine learning-based analysis

We have carried out a detailed codon usage analysis in Escherichia coli K-12

MG1655 genome. Gene sequences of E. coli were downloaded from the NCBI

database. To avoid any biased result due to missing amino acids, we have considered

larger genes with a size of more than 100 amino acids (aa). Out of all the E. coli

genes, we have considered 893 genes for our analysis. These genes are more than

100 aa length whose protein level expressions have been reported [85]. These genes

were further arranged in decreasing order of expression level. The top and bottom

one-third genes were considered high expression genes (HEG) and low expression

genes (LEG). In total, there were 297 genes each in HEG and LEG sets (Appendix

A.1.2). For codon usage analysis, we also considered another 683 bacteria species

(Appendix A.1.3). As gene ex- pression was not available for these organisms, we

estimated HEG and LEG gene sets for each organism, considering codon adaptation

index (CAI) values [192]. Considering organism-specific ribosomal protein-coding

genes as the reference set, we calculated CAI values of the genes in each bacterium

using a web-based tool [192][185]. As per the mathematical formula used for CAI,

maximum and minimum possible theoretical values of CAI for a gene are 1.0 and

0.0 respectively. CAI value of a gene is equal to 1.0 when all the codons present in

the genes are such that they are the optimally used in the reference set of high

expression genes. For these codons w value is 1.0 in equation 1.3. In the other
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extreme case, when all the non-optimal codons are used for which w values are

0.0, CAI value equals to 0.0. However, in reality, the range of the CAI values

differ from organism to organism. Distributions of CAI values for the genes of two

bacteria, Bradyrhizobium japonicum (Genome G+C 64.06%), and Staphylococcus

aureus (Genome G+C 32.84%) are given in Figure 2-1, Figure 2-2. For the machine

learning analysis, in each bacterium, we calculated CAI values for the genes with

size more than 100 amino acids, arranged genes in the decreasing order of CAI

values and considered top 100 genes as HEG and bottom 100 genes as LEG. We

ignored smaller genes because some of amino acids might be missing in these genes

leading to biased result. CAI values in HEG set were always more than the values

in LEG set among the bacteria studied here. For example, in Bradyrhizobium

japonicum, average CAI value for HEG was 0.781 and LEG was 0.212 and in

Staphylococcus aureus, average CAI value for HEG was 0.750 and LEG was 0.362.

Therefore, machine learning based study with other different sets of HEG and LEG

genes lead to similar conclusion on codon importance values (data not shown).

Figure 2-1: Distribution of CAI values in Bradyrhizobium japonicum

bacteria
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Chapter 2. Codon usage bias in bacterial genomes

Figure 2-2: Distribution of CAI values in Staphylococcus aureus

2.2.1 Machine learning-based estimation of the impor-

tance of the codons in classifying high and low ex-

pression genes

The dataset of our work can be represented as D={X,y}, where X is a 2-dimensional

matrix and any particular row r of X, xr = [x1r, x
2
r, x

3
r, , x

(n−1)
r , xnr ], consists of

n RSCU values. Here the value of n is 59 (except codons of Met and Trp of

degeneracy one and 3 stop codons). The target variable y is a one-dimensional

integer-valued vector such that y∈0,1, where 0 represents class of LEG and 1 class

of HEG. Number of synonymous codons encoding one amino acid differs among

amino acids: Met and Trp are encoded by one codon each; Phe, Tyr, His, Gln, Asn,

Lys, Asp, Glu, and Cys are encoded by two codons each; Val, Pro, Thr, Ala, and

Gly are encoded by four codons each; Three codons encode Ile; Leu, Ser and Arg

are encoded by six codons each. Accordingly, codon degeneracy for amino acids

is 1/2/3/4/6 depending on the number of synonymous codons for an amino acid.

RSCU values of these codons are used to estimate the codons’ importance towards

classifying high and low expression genes, as described in the following section.

We have used the Boruta algorithm [101][102] to estimate the im-

portance of the codons towards classifying high and low expression genes. This

algorithm is a wrapper built around the random forest classifier [19][108]. In this
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algorithm, values of a feature are randomized to create shadow features of each

attribute (Figure 2-3) to remove any correlation with the target variable. Due to

the randomization of the feature values, there is a loss in accuracy incurred in

random forest classification. The extent of accuracy loss in terms of Z-scores is

considered for estimating the codons’ importance. Z-score is defined as the ratio

between the mean and standard deviation of accuracy losses for the decision trees

for a particular feature generated in the random forest classification. Once the

importance of each of the original and shadow features are calculated, the shadow

feature with the highest importance is taken as the threshold (shadow Max Z-score).

Any feature with an importance value more than the threshold is marked as a

confirmed attribute and the one less than the threshold is as a rejected one. If the

importance value is close to the threshold for any feature, it is marked as tentative

(Figure 2-3). The process is repeated for a maximum number of iterations (say

1000 iterations) to calculate feature importance. Considering the default random

forest classifier parameters, importance of the codons is generated using Boruta

package in R language [101]. Boruta algorithm has also been used to determine the

important features instead of Principal Component Analysis (PCA) in different

domains that reports the useful features without reducing the dimensions and

having better results [189][55]. A hypothetical example is presented in Figure 2-3,

and a flowchart of the algorithm is illustrated in Figure 2-4.

2.2.2 Machine learning-based analysis of CUB between

high and low expression genes

To understand the role of codon degeneracy, we considered two popular classification

algorithms, Random Forest described earlier and another Extreme Gradient Boost

(XGBoost) [28]. The python language-based sklearn.ensemble [146] package for

Random Forest and xgboost [28] package for XGBoost are used in our analysis.

The default parameters are considered both in RF and XGBoost classifiers. For
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Chapter 2. Codon usage bias in bacterial genomes

Figure 2-3: Codon importance estimation using Boruta Algorithm with the help
of a hypothetical set of genes and RSCU values of a few codons

Figure presents codon importance estimation using Boruta Algorithm with the
help of a hypothetical set of genes and RSCU values of a few codons. The table on
left hand side shows genes with original and shadow RSCU values for three codons.

The shadow codons are randomly shuffled values of original codons and are
initialized with the name “Shadow ” for each codon. The last column indicates if
a gene is from HEG class or LEG class with 1 and 0 respectively. The figure on
the right hand side shows the importance graph of all the original and shadow

codons using the method described in section 2.2.2. Any codon with importance
value more than threshold (Shadow FFS gtt or Shadow max) is considered as

important or confirmed (FFS gtt); any codon having importance value less than
threshold (Shadow FFS gtt) is considered as non-important or rejected (TFS aaa)

Figure 2-4: Workflow of Boruta Algorithm

Figure presents workflow of Borutas algorithm. The feature set is imported and
corresponding shadow features are created. All of these features are passed to the

random forest classifier to retrieve the accuracy loss of each feature. Z-score is
calculated from the accuracy loss for each feature. The process is repeated for
maximum number of runs or until all the features are classified as confirmed or

rejected. Threshold is chosen as the shadow feature having maximum importance
value. Based on this threshold, the codons are classified as confirmed or rejected
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performance measurement, the precision, recall, accuracy, and F1 score were

estimated for both classifiers, and ROC curves were also plotted.

Precision measures how accurate the model is out of those predicted

positive. Recall measures how accurate our model is out of those actual positive.

Accuracy measures the correctly predicted observations out of total observations. F1

score is the weighted average of Recall and Precision. F1 Score = 2*Recall*Precision

/ (Recall + Precision). All these measures are summarized in Figure 2-5. The

higher these values, the better the model is. We also chose the Receiver Operating

Characteristics curve (ROC) and its Area Under the Curve (AUC) values to

compare the models or feature sets. ROC is a probability curve set on various

threshold settings. ROC is a plot against True positive Rate (TPR) or False

Positive Rate (FPR). AUC measures how good the model is in account of the

separability of classes. AUC values range from 0.0 to 1.0. Higher the AUC value,

the better the model [42][214]. For statistical analysis and determining p-value for

significance test, Mann Whitney test is used [125].

Figure 2-5: Confusion Matrix along with Precision, TPR or Recall, FPR, and
Accuracy

Figure presents confusion matrix and the performance metrices Precision, TPR or
Recall, FPR, and Accuracy
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2.2.3 Results and Discussion

2.2.3.1 RSCU values of the codons do not contribute equally towards

classifying high and low expression genes

It is known that the codon usage is optimized in HEG for faster or accurate

translation. In comparison to LEG, some codons are used more frequently in HEG,

whereas some other codons are avoided. This difference is prominently visible for

some amino acid codons, whereas the difference is not significant for some other

codons. Keeping this difference in view, we tried to access the contribution of

individual codons towards classifying HEG and LEG using the Boruta algorithm

and assigned Z-score-based importance values to each of the codons. The result

is presented in Figure 2-6. The range of codon importance values varies between

0.37 and 16.23. As per the Boruta algorithm result, codons are categorized into

two groups. First, the codons having Z-score less than the shadow Max Z-score.

These codons had similar usage both in HEG and LEG and accordingly had no

significance in classification. The range of the Z-scores for the codons in this group

was between 0.37 to 2.42. Two-fold degenerate amino acids codons Cys (TGT and

TGC) and Lys (AAG and AAA) and split box Arg codons (AGA and AGG) were

belonging to this group. The other codons belonging to this group were AGC(Ser),

GGC(Gly), CTT(Leu), CCT(Pro), CCA(Pro), ACA(Thr). The remaining codons

were categorized under the second group. In the second group, codons had Z-score

more than the shadow Max Z-score. The range of the Z-scores for the codons in

this group was between 2.67 to 16.24. These codons had different codon usage in

HEG and LEG sets and significantly classified HEG and LEG.

In support of the above result, we did a simulation study. Instead

of considering two distinct sets of HEG and LEG, we randomly categorized genes

into two groups and estimated the importance of the codons using the Boruta

algorithm. The distribution of the Z-scores is presented in Appendix A.1.1. It can

be seen from the figure that almost all the codons were of very low Z-scores. This
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Figure 2-6: Importance of the codons in E. coli genome

Figure presents importance of the codons in E. coli genome estimated in terms of
Z-scores using Boruta algorithm. The algorithm was run 1000 times. The

distribution of Z-scores for the codons was presented in box plots. Codons that
contribute to classifying HEG and LEG are shown with gray boxes, and those

with negligible contribution are shown with white boxes. The distribution of the
Z-score for shadow boxes are shown in black.
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confirmed estimation of codon importance is actually because of the difference

between high and low expression gene sets.

Further, in support of the result on codon importance, we did a

classification study considering set of confirmed codons and set of rejected codons

separately. In both the sets of codons, we split the genes in the ratio of 70:30, where

70% of data was used for training purposes and 30% of data for testing purposes to

predict the two classes of genes (HEG and LEG). On the training data, a random

forest classifier was employed. The testing data was used for the prediction of

a class of genes i.e., HEG or LEG. Based on the predictions and unseen target

variable, TPR and FPR is calculated on different threshold values. ROC curves

with AUC values are generated based on TPR and FPR values to exhibit the

difference in classifier performance in the two data sets. The classification result

is presented in the ROC curve in Figure 2-7. A considerable difference in AUC

values of both sets of codons can be observed.

Figure 2-7: ROC curve of confirmed and rejected features using RF classifier

Figure presents ROC curves with AUC values generated based on TPR and FPR
values to exhibit the difference of classifier performance in the two sets of

confirmed and rejected features. A considerable difference in AUC values of both
sets of codons can be observed.

Codon importance estimated using the Boruta algorithm is summa-

rized in Table 2.1. Codons that classify HEG and LEG are shown in shaded
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Table 2.1: RSCU values in high and low expression genes in E. coli

AA Codon
RSCU
LEG

RSCU
HEG

AA Codon
RSCU
LEG

RSCU
HEG

AA Codon
RSCU
LEG

RSCU
HEG

AA Codon
RSCU
LEG

RSCU
HEG

Phe
UUU 1.10 0.69

Ser

UCU 0.81 1.79
Tyr

UAU 1.13 0.80
Cys

UGU 0.85 0.77

UUC 0.90 1.31 UCC 0.92 1.44 UAC 0.87 1.20 UGC 1.15 1.23

Leu

UUA 0.67 0.30 UCA 0.63 0.40
TER

UAA x x TER UGA x x

UUG 0.75 0.39 UCG 1.01 0.47 UAG x x Trp UGG 1.00 1.00

CUU 0.61 0.42

Pro

CCU 0.59 0.49
His

CAU 1.12 0.73

Arg

CGU 2.48 3.64

CUC 0.67 0.50 CUC 0.67 0.50 CAC 0.88 1.27 CGC 2.54 2.13

CUA 0.19 0.07 CCA 0.76 0.63
Gln

CAA 0.66 0.45 CGA 0.31 0.08

CUG 3.10 4.31 CCG 2.23 2.75 CAG 1.34 1.55 CGG 0.48 0.08

Ile

AUU 1.58 1.15

Thr

ACU 0.60 1.06
Asn

AAU 0.83 0.48
Ser

AGU 0.84 0.37

AUC 1.27 1.82 ACC 1.82 2.10 AAC 1.17 1.52 AGC 1.78 1.53

AUA 0.15 0.03 ACA 0.43 0.24
Lys

AAA 1.52 1.58 AGA 0.12 0.05

Met AUG 1.00 1.00 ACG 1.14 0.61 AAG 0.48 0.42 AGG 0.07 0.02

Val

GUU 0.99 1.52

Ala

GCU 0.59 1.02
Asp

GAU 1.26 1.01

Gly

GGU 1.40 1.93

GUC 0.86 0.57 GCC 1.08 0.73 GAC 0.74 0.99 GGC 1.68 1.71

GUA 0.59 0.76 GCA 0.81 0.94
Glu

GAA 1.37 1.50 GGA 0.35 0.13

GUG 1.56 1.15 GCG 1.52 1.30 GAG 0.63 0.50 GGG 0.58 0.23

Table presents RSCU values in two sets of E. coli genes (i) High Expressed Genes (HEG) (ii)
Low Expression Genes (LEG). The list of genes considered in the two sets is given in Appendix
A.1.2. In general, RSCU values are more variable among synonymous codons in HEG than
LEG. For example, RSCU values of Leu codons vary between 0.07 and 4.31 in HEG, whereas
the same values vary between 0.19 and 3.10 in LEG. The higher codon usage bias in HEG is
attributed to facilitating faster translation. In contrast to this observation, certain codons are
avoided in HEG. For example, RSCU value Gly codon GGG are 0.23 and 0.58 respectively in
HEG and LEG sets. This lower RSCU value in HEG is attributed to the high probability of
frameshift error in GGG codons. Similar is the case for Pro codon CCC. Lys and Cys amino
acid codons are exceptions regarding the above observations, as codon usage is similar in both
the gene sets. Codons contributing towards classifying HEG and LEG are highlighted with dark
shade. Based on the codon importance estimated using Borutas algorithm, codons preferred
(positively selected) and avoided (negatively selected) in HEG are shown in large and small fonts
in the shaded boxes

boxes, and others are shown in white boxes. Among the codons in shaded boxes,

codons used more frequently in HEG in comparison to LEG, termed as positively

selected codons, are shown in large font. In contrast, codons used less frequently in

HEG than LEG, termed as negatively selected codons, are displayed in small font.

Codons in large font are known to be optimal codons Table 2.1 [180]; some of the

codons known to be beneficial for optimum translation across bacteria species are

CGU and GGU [178] and UUC, UAC, CAC and AAC [193]. In addition to these

optimal codons, several other codons are being avoided in HEG, for example, CCC

and GGG, possibly because these codons are prone to translational frameshift

[140][141].
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2.2.3.2 Codons with higher degeneracy are more important toward

gene expression prediction

Codon usage bias is influenced by codon degeneracy [181]. To understand the

relationship between codon importance values and codon degeneracy, we compared

them. We considered all the amino acid codons of degeneracy >= 2 into two

groups: (i) 2-fold degenerate codons (TFS) and 4-fold degenerate codons (FFS).

Family box and split box codons of Ser, Arg and Leu were separated into FFS

and TFS, respectively. Ile codons AUU and AUC were also considered in TFS. In

general, codons with higher degeneracy were with higher importance values than

codons with lower degeneracy. Accordingly, codon importance values for TFS were

significantly different from those of FFS codons (p-value <0.05).

Further, we considered RSCU values of FFS and TFS into two

separate datasets and employed RF and XGBoost classifiers to classify high and

low expression genes. Both the classifiers were trained separately by dividing the

dataset into 70%:30%, where 70% of data were used for training purposes and 30%

for testing purposes. Once the classifier was trained, then the prediction of high

and low expression genes was performed on the testing data for several iterations.

Based on the confusion matrix values (Figure 2-5), the average accuracy, precision,

recall, and F1 score values were calculated (Table 2.2). The accuracy score in

terms of AUC and ROC curve is plotted in Figure 2-8. It can be observed that the

accuracy, precision and F1 scores for FFS were higher than TFS according to both

the classifiers. This result further supports our observation concerning the role of

codon degeneracy.

Codon adaptation index (CAI) correlates with gene expression in E.

coli significantly. When considering all the genes (MM section), Pearson r(CAI,

gene expression) was 0.713. To understand the role of codon degeneracy, we

segregated E. coli genes into two datasets: compared to average codon composition

value, (i) genes richer in FFS and (ii) genes poorer in FFS. Pearson r(CAI, gene
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Table 2.2: Confusion matrix matrices of Random Forest (RF) and XGBoost (XGB)
Classifier

Metrices
Random Forest XG Boost
FFS TFS FFS TFS

Accuracy 0.837 0.789 0.827 0.792
Precision 0.936 0.760 0.854 0.790

Recall 0.733 0.813 0.797 0.773
F1 Score 0.822 0.786 0.823 0.781

Figure 2-8: ROC curve of FFS and TFS features using RF and XGB

Figure presents ROC curves with AUC values generated based on TPR and FPR
values. RF and XGBoost classifiers are employed to exhibit the difference in

classifier performance in the two sets of FFS and TFS codons. Both the graphs
show FFS with better accuracy.
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expression) value was found to be 0.753 for gene set richer in FFS whereas, on

the other hand, Pearson r(CAI, gene expression) value was found to be only 0.643

for the second set of genes (Figure 2-9). Further, we segregated E. coli genes into

two datasets: compared to average codon composition value, (i) genes richer in

TFS and (ii) genes poorer in TFS. In concordance with the above result, Pearson

r(CAI, gene expression) values were found to be 0.640 and 0.751, respectively, for

the two sets (Figure 2-9).

Figure 2-9: Correlation of CAI and gene expression based on the composition of
FFS and TFS in E. coli

Figure presents correlation of CAI and gene expression based on the high or low
composition of FFS codons and TFS codons. A better correlation is observed in

case of high FFS and low TFS in E. coli

2.2.3.3 Codon importance features of 683 bacteria species

We further extended our study to find Boruta algorithm-based codon importance

values in genomes of other bacteria. For this study we considered genomes of 683

bacteria which are summarized in Table 2.3. These bacteria belong to twenty

nine phylogenetic groups and with coding region (G+C)% between 23.65 and

74.68. The estimated codon importance values among the bacteria found to have

both similarities and differences. The importance values for the two bacteria with
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extreme (G+C)%, Wigglesworthia glossinidia with (G+C)% equal to 23.65 and

Anaeromyxobacter dehalogenans with (G+C)% equal to 74.68 are given for example

in the Figure 2-10 and Figure 2-11. In both the bacteria, several codons such

as UUC(Phe), AUC(Ile), GGU(Gly), GGG(Gly) and CUG(Leu) were found to

be important and some other codons such as AUA(Ile) not important towards

classifying high and low expression genes. Considering codon importance values in

individual bacterium, we have summarized the result for all the 683 bacteria in

the following section. The codons selected as important codons (marked as ‘C’)

for each organism were presented in Appendix A.1.4.

Figure 2-10: Importance of the codons in Wigglesworthia glossinidia genome

A frequency distribution graph of the importance value of all 683

organisms is presented in Figure 2-12. Here, a high importance value indicates a

substantial difference in usage of the corresponding codon in HEG and LEG. A

low importance value indicates almost equal codon usage in both HEG and LEG.

We can observe a significant variation in the selection of these codons as important

to classify HEG and LEG. Most prominently, the two cysteine codons have been

equally used in HEG and LEG across the majority of the organisms. The ATA

codon of Ile has been selected as most important by 40 organisms, indicating a
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Figure 2-11: Importance of the codons in Anaeromyxobacter dehalogenans genome

high usage difference of this codon in HEG and LEG. Codons like CCC of Pro and

GGG of Gly have been selected by most organisms with importance value above 5.

This observation indicates a high usage difference in HEG and LEG, most probably

due to frameshift mutation. Similarly, CTG of Leu, CGA of Arg, GCC of Ala,

ACC of Thr, ATC of Ile, and ATA of Ile have been selected as important codons

by most organisms. We further calculated the RSCU values of HEG and LEG of

all those organisms whose importance value of Leu CTG codon is more than 5. We

observed that Leu CTG codon is used extensively in HEG and is thus positively

selected. Arg CGA codon is also positively selected. In the case of Thr ACC codon,

it is also extensively used in HEG, the codon is positively selected. Whereas Ile

ATC is primarily used in LEG, and thus the codon is negatively selected. Similar

is the case with Ile ATA, Gly GGG, and Pro CCC and is negatively selected.
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Figure 2-12: Frequency distribution of importance value in 683 organisms

Figure presents the frequency distribution of the mean of importance values of 683
organisms. The X-axis represents 59 codons arranged degeneracy-wise. The y-axis

shows the number of bacteria. The grey bar presents the number of organisms
that has mean importance value ranging from 5 to 10. In general, there is a wide

variation in the codons with respect to individual organisms.

2.3 Improved Implementation of CAI

2.3.1 Limitations in existing implementation of CAI

Implementation of CAI is available in several software such as CodonW [145], INCA

[209], CAIcal [155], EMBOSS [167], CAI Calculator 2 [239] and DAMBE7 [241].

However, there are several difficulties in using existing software for calculating

CAI. One of the crucial step in calculating CAI is to select the reference set of

high expression genes and then to calculate the relative adaptedness of the codons,

i.e the wk values as given in equation 1.3. The above methods have employed

various approaches to do so, and have their own limitations. In CAIcal, there is

dependency of reference database tables. If the organism for which CAI value is

to be calculated is not present in the database, then the user have to generate

the reference database table. This approach is not user friendly for providing

information about codon usage in reference set of high expression genes. It has
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been reported by Xia [240] that the EMBOSS [167] and CAI Calculator 2 [239]

software provide erroneous result, might be because of some implementation issues.

These organism specific wk values are available in existing softwares

only for few organisms. Therefore, users can directly calculate CAI values for the

genes of only those organisms. For calculating CAI for the genes of an organism,

CodonW [145] provides alternative indirect approach using correspondence analysis

[61].

2.3.1.1 Considering default E. coli reference set may generate erro-

neous result

High expression gene set of E. coli is also suggested to be used as a default set for

calculating CAI. E. coli is an organism with strong selection on codon usage [57]

and (G+C)% around 50.0. However (G+C)% of the organism varies widely among

bacteria from as less as around 17.0% to more than 75.0% [159]. Furthermore,

though the selected codon usage bias is universal among organisms [210], it varies

from organism to organism [194][179] and also differs among bacteria phylogeny

[180]. While selection on codon usage is very strong in E. coli, Bacillus subtilis and

Saccharomyces cerevisiae (yeast), it is very low in several other organisms [179].

Therefore calculating CAI considering default E. coli reference set can generate

erroneous result.

Alternatively, if the user is familiar with any high level computer

programming languages, they may calculate wk values from high expression gene

sequences separately and input the values to CodonW to calculate CAI. These

approaches may be complicated for naive users and not suitable for researchers

unfamiliar with high level programming languages. Keeping these constraints in

calculating CAI in the command driven CodonW and other software in view, we

developed a web portal that provides online tool for calculating CAI.
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2.3.2 Improved Codon Adaptation Index web portal

2.3.2.1 Reference set of high expression genes available in the web

portal

We downloaded the bacterial genomes from the NCBI site[154]. Then,we extracted

set of gene known to be highly expressed and widely conserved across organism

[192] from these genomes using python scripts and made available in our portal as

the reference gene sets. Ribosomal protein genes, outer membrane protein genes

such as rplA, rpmB, rpsA, etc, elongation factor genes such as tufA, tufB, fusA

etc, regulatory/repressor genes such as dnaG, araC etc are some of the example

genes considered in the high expression gene sets. At present we have provided

high expression gene sets for 684 unique species of bacteria in our database. These

bacteria belong to 29 different phylogenetic groups and with coding region (G+C)%

between 23.65 and 74.68 as shown in Table 2.3. High expression gene sets for E.

coli [85], Saccharomyces cerevisiae(yeast)[54] and Homo sapiens(human)[149][176]

available in our portal are based on the experimental expression data.

Server configuration and language used for the web portal

Our web portal is launched in an IBM System x3630 M4 server with CentOS

6.10 operating system. The web portal is developed using Python programming

language.

Description of how to use our web portal

Keeping limitations of the available softwares and lack of reference set of high

expression genes for large number of organisms in view, we envisaged this web

portal. It is designed to simplify the computation. It is very simple to use and

accessible in Internet from any computer. It is designed not to have any limitation

on the input genome sequences length. The user interface of the portal provides a

two-step process to calculate CAI.
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Table 2.3: Details of bacteria whose reference set of high expression genes available
in the web portal

Sl No. Bacterial No. of Maximum Minimum

Group Organisms (G+C)% (G+C)%

1 Acidobacteria 1 61.1 61.1
2 Actinobacteria 80 74.5 46.31
3 Alphaproteobacteria 86 72.09 30.37
4 Aquificae 7 52.24 32.03
5 Bacteroidetes 35 66.73 27.25
6 Betaproteobacteria 59 70.36 37.78
7 Chlamydiae 10 44.31 36.1
8 Chlorobi 8 57.66 45.06
9 Chloroflexi 5 60.94 47.85
10 Cyanobacteria 10 62.86 40.4
11 Deferribacteres 3 43.2 31.08
12 Deinococcus-Thermus 11 70.23 63.01
13 Deltaproteobacteria 28 74.68 37.48
14 Dictyoglomi 2 33.99 33.81
15 Elusimicrobia 1 40.69 40.69
16 Epsilonproteobacteria 16 44.89 27.19
17 Fibrobacteres 1 48.89 48.89
18 Firmicutes 124 69.29 28.34
19 Fusobacteria 3 34.69 26.2
20 Gammaproteobacteria 137 70.46 23.65
21 Gemmatimonadetes 1 64.49 64.49
22 Nitrospirae 1 34.16 34.16
23 Planctomycetes 2 57.91 55.46
24 Spirochaetes 17 52.08 27.7
25 Synergistetes 2 64.45 45.75
26 Tenericutes 18 40.66 23.96
27 Thermodesulfobacteria 2 42.61 30.67
28 Thermotogae 11 47.08 30.73
29 Verrucomicrobia 3 65.47 45.85

The first step is to input the nucleotide sequence of the genes whose

CAI values are to be calculated in a single file in fasta format.

The second step of the calculation is to provide additional input file

of reference set of high expression genes. The web portal provides three simple

options for input of this reference set.

• The user can input the reference set of high expression genes in the form of
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a fasta file.

• At present the web interface provides a list of 684 bacteria species whose

high expression gene set is available in our database. User can select the

name of the organism from this list corresponding to the organism whose

gene sequences were uploaded in the first step.

• In the third alternative, the web interface shows the gene informations from

the uploaded file in the first step. User can select multiple genes know to

be highly expressed from the displayed list. Those selected genes will be

considered as the reference set while calculating CAI.

Integrity checks: Before processing, the web portal examines the accuracy of

the input sequences. These include presence of internal stop codons, presence of

accepted start (i.e. NTG, ATN) [142] and stop codons, presence of non-IUPAC

characters. If any of these problems are found, CAI is calculated for those sequences

with potential errors with appropriate warning messages. Therefore, sequences

that generate warnings should be carefully checked.

Based on these, output file is generated. Along with the CAI values, the

output file also contains additional information about the genes such as length in

terms of number of amino acids, G+C%. Once the result is produced, no input

sequence files are retained in the server to avoid any possible misuse of the users

data.

2.4 Conclusion

Codon usage bias is an important genomic feature extensively used for understand-

ing evolution at molecular level. Machine learning based study in this manuscript

demonstrates a commonality among bacteria regarding behaviour of certain codons

with regard to gene expression. Initial study in E. coli genome distinctly identified
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the positively and negatively selected codons for optimum translation and the

codons least influenced by gene expression. Codon adaptation index (CAI) was

used to predict high and low expression genes among 683 bacterial species. The

machine learning based analysis prominently identified certain codons being influ-

enced by gene expressed across a majority of these bacterial species. Further, a

higher proportion of 4-fold and 6-fold degenerate codons than the 2-fold degenerate

codons were observed to be influenced by the gene expression in these bacteria.

Some of the codons being least influenced by gene expression across the bacterial

species is an interesting codon usage feature to be investigated in coming future.

The web portal to calculate CAI is freely available for academic and

research purpose in our web server at http://14.139.219.242:8003/cai. At present

the web portal can be used for calculating CAI as per universal genetic code table.

Future scope lies for consideration of other available versions of genetic code. We

believe our web portal will be helpful for biologists working on molecular evolution.
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