
Chapter 4

RNA secondary structure

estimation

4.1 Introduction

The four bases adenine (A), cytosine (C), guanine (G), and uracil (U) make up

ribonucleic acid (RNA). Depending on its purpose, RNA can range in size from

a few bases to millions of nucleotides. While messenger RNAs can be as long

as 106 bases, transfer RNAs (tRNA) are among the shortest RNAs, ranging in

size from 75 to 95 bases. The consecutive bases of an RNA primary sequence

are connected by phosphate bonds. Unlike deoxyribonucleic acid (DNA), RNA

is primarily single-stranded, but the bases of RNA tend to form base pairs with

the help of hydrogen bonds that lead to the folding of RNA to attain a definite

shape. The secondary structure of RNA refers to this folded form. The secondary

structure allows RNA to carry out a number of crucial tasks. For instance, tRNA

participates in translation by folding into the usual cloverleaf shape and the typical

rho-independent hairpin structure contributes in transcription termination site in

prokaryotes.

Figure 1-2 depicts the secondary structure associated with a hypothetical

RNA sequence. Complementary base pairings A:U and G:C, as well as non-
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Chapter 4. RNA secondary structure estimation

complementary base pairs G:U, make up the three canonical base pairs in RNA.

The space between two base pairs is sometimes referred to as a stacking region

or stack, and the stem of secondary structure of RNA is formed by cascading

stacking regions. A loop is formed by a series of unpaired bases between the

stem region. A pseudoknot is created when two unpaired base sequences or loops

inside a secondary structure join up to create an entangled tertiary structure.

Pseudoknots play important roles in any biological system, including catalysis of

RNase P ribozyme, RNA splicing, and/or recognition of tRNA-like structures [41].

Pseudoknots often have an important role in natural RNAs, specif-

ically in viral RNAs [71]. Pseudoknots are also known to control the splicing,

translation, ribosomal frame shifting [213][249], and gene expression [148] processes.

About 40% of RNAs have pseudoknots. They also play an important role in RNA

3D folding [43]. H-type pseudoknots, in which the bases in the loop pair with bases

in a single-stranded area that is not a part of the loop region, are the most prevalent

type of pseudoknot. As illustrated in Figure 1-2, the other sorts of pseudoknots

are HH-types, where the bases of one loop area pair with the bases of another loop

region. There are also particular pseudoknots like the HL-type or LL-type, where

L stands for an internal or bulging loop [67].

4.1.1 RNA secondary structure representation format

Different representations of RNA secondary structure are used for computational

processing and visualisation. Dot-bracket notation, connection tables (CT), and

BPSEQ are a few of the common ways to represent secondary structure.

4.1.1.1 Dot-bracket notation

A pair of parentheses is employed in this form to denote paired bases; the open-

parenthesis ”(” stands for the 5’-base and the matching close parenthesis ”)” for the
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4.1. Introduction

3’-base. Unpaired bases are represented by the dot/period ”.”. Only straightforward

pairs of matching parentheses are unable to clearly distinguish crossing base pairs

when pseudoknots are present. As a result, a pseudoknotted secondary structure

that permits crossing interactions is represented using an expanded dot-bracket

notation with various sorts of brackets [254].

4.1.1.2 Connectivity Table (CT) format

In the CT format, the first row contains the length L of the RNA sequence. There

are L subsequent rows, one per each base in the RNA sequence. Each row has six

columns; the first column represents the index of a base starting from 1 and the

second column represents the base itself. The third and fourth column represents

the predecessor 5’-bases and successor 3’-bases index, respectively. The fifth column

represents the index of the pairing base; the value is 0 for an unpaired base. The

sixth or last column represents the index of base again. If the base is from the first

RNA molecule, then the corresponding third column value is set to 0, and if the

base is from the second molecule, then the corresponding fourth column value is

set to 0 [254]. CT format is better than the BPSEQ format. CT format could be

used to represent complexes consisting of two or more RNA molecules.

4.1.1.3 BPSEQ format

: In this format, secondary structure of RNA is represented in the form of a table.

One base is shown in each row of the table. There are three columns in each row,

with the first one specifying the base’s index in the sequence, starting with 1 for

the leftmost base. The base itself is specified in the second column. A 0 denotes

that the pairing base indicated in the second column is unpaired. The third column

displays the index of the related pairing base. The BPSEQ format is actually just

a condensed version of the CT format [254].

73



Chapter 4. RNA secondary structure estimation

4.1.2 RNA secondary structure visualizing tool

Proper visualization of RNA secondary structure motifs is essential to this research.

Suitable visualization of the RNA structure motifs can help identify functional

domains, compare secondary structures, and finding conserved regions across

species. Some of the software available in the public domain to visualize RNA

structure are FORNA [93], RNA secondary structure graphical rendering library

[133], PseudoViewer [21], VARNA [34], and TraVeLer [40].

4.1.3 Computational methods used for RNA secondary

structure prediction

Expensive and complex scientific experiments such as Nuclear Magnetic Resonance

(NMR) spectroscopy and X-ray crystallography are often used to determine RNA

secondary structure. However, it is useful to estimate RNA secondary structure

with reasonable accuracy using interdisciplinary approaches based on computational

algorithms. A generalized form of the objective function of these computational

methods may be represented as follows:

Objective function (Z) : Determine a set of base pairs (Z)

Subject to:

1. A base pair (x:y) can be either of A:U, G:C or G:U

2. A base pair (x:y) is accepted if the difference between their positions in the

sequence is ≥ 3

3. If a base pair (x:y) exists, then (x:z) doesnt exist

There are quite a few ways to determine RNA secondary structure that exist

in literature which are briefly described in this section. There are broadly two ways

to determine RNA secondary structure. First, using multiple homologous strains
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of RNA or similar RNA sequences [74][14][231][17]. This method is reported as

one of the widely accepted methods. Considering an alignment of a large number

of homologous sequences, conserved base pairs in the secondary structure are

estimated in these approaches. These methods are highly accurate, provided a

large number of homologous sequences are available and the sequences are aligned

with expert knowledge. The second approach is to estimate the secondary structure

using only one sequence. Some of the notable proposals utilizing this approach

are: dynamic programming approach based on a scoring system and free energy

minimization [259][256][257], stochastic context free grammar approach which is

based on probability of base pairs[96], genetic algorithm [222], backtracking of path

matrix [106], thermodynamic RNA prediction[153] and learning based methods.

Another approach is finding the near maximum independent set (MIS)

of chords of a circle graph, where the nucleotides are placed on the circumference

of a circle graph. Base pairs are represented as the chords in the circle graph.

MIS gives the largest number of vertices that are not adjacent to each other. In a

real scenario, one base pairs with exactly one base, if any, and there would be no

intersection of base pairs. So a planar circle graph with the maximum number of

chords is supposed to provide a suitable RNA secondary structure. To determine

MIS of a graph is known to be NP-complete[52]. Still, some methods have been

proposed to determine MIS [53][79]. Parallel algorithm also been suggested in

the literature to determine MIS [212][156][112]. This method is based on a single

neuron model, which iterates over few hundred iterations to find the MIS. But

some of the limitations of this method are, some parameters needs to be set at

the start. These parameters need to be changed on every run, which would give

new MIS, which further needs to be compared with previous runs and to keep the

optimal one. If the number of bases in the RNA sequence is high enough, then

one single run takes a large amount of time. The selection of parameters is also

a concern, as the results do not follow any definite pattern, so on what interval

should we increase or decrease the parameters are a question.
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4.2 Improved method to predict RNA secondary

structure based on MIS

In our approach to find MIS, we used python igraph package to identify all possible

MIS on a single run. The algorithm used is explained in the method section

4.2.1.1 that considers the secondary structure having a large proportion of the base

sequence coming under stem regions. Because of the limitation of the computing

power of our server, we analyzed shorter RNA sequences and observed better

results as compared to other methods.

4.2.1 Materials and Method

The more the stacking regions in RNA, the more stable the structure is, where

the stacking region is the region between two base pairs. So, the requirement is to

maximize the number of base pairs.

Figure 4-1: RNA Secondary Structure with Stem and Hairpin loop

To explain the method, say for a given RNA sequence ‘AUCGC-

CGGU’, we find all possible base pairs using a base pairing matrix [216] as shown

in Figure 4-2(i). The RNA sequence is taken as row and column header, for every

possible base pair G:C, A:U, G:U, we mark 1 for the intersection of base pairs in

the matrix. G:C, A:U are known as the Watson-Crick base pair, and G:U is known

as non-Watson-Crick base pair. We take only the upper right triangular matrix for

the subsequent steps, as the matrix generated is symmetric. Next, we consider a

circle graph as shown in Figure 4-2(ii), with each nucleotides as it’s vertex and
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4.2. Improved method to predict RNA secondary structure based on MIS

possible base pairs as chords. As stated in the literature, for a stable structure,

the minimum number of nucleotides in the loop region is supposed to be at least 3

[216]. Taking this constraint, we remove certain base pairs, where two bases can

pair, if there are more than two bases between them, as shown in Figure 4-2(iii).

Then, we map the circle graph to an adjacency graph as in Figure 4-2(iv), we take

all chords of the circle graph as new nodes of the adjacency graph and intersecting

chords of the circle graph as new edges of the adjacency graph.

For a chord, say ‘2’ between ‘A’ at node ‘1’ and ‘U’ at node ‘9’ as

shown in Figure 4-2(iii), two variables are taken as ‘from’ and ‘to’, where ‘from’

< ‘to’, hence, from of chord ‘2’ is ‘1’ (from(2) = 1), similarly to of chord ‘2’ is ‘9’

(to(2) = 9) as the chord ‘2’ emerges from vertex 1 and ends at 9.

For intersection of chords, we check the following conditions taking

every two chords say ‘a’ and ‘b’ in circle graph as follows: from(a) < from(b) <

to(a) < to(b), from(b) < to(a) < to(b) < to(a), to(a) = to(b), to(a) = from(b),

from(a) = to(b), from(a) = from(b). The first two conditions check if two chords

are intersecting. The last four checks if two chords have same vertex in common.

For example, in Figure 4-2(iii) chord ‘2’ and ‘11’ intersect, as they have the same

vertex ‘9’ in common, so in the adjacency graph there will be an edge between ‘2’

and ‘11’.

Next, we find all possible Maximum Independent Sets (MIS) of the

adjacency graph, here in case we have only one MIS {2,5,7}, which are dark circled

as shown in Figure 4-2(iv). In the next step, we choose the edges of MIS from

the circle graph. So finally, we get a planar graph as shown in Figure 4-2(v) by

selecting the chords of the circle graph named ‘2’,‘5’,‘7’.

In this example, we have only one MIS. But we may have multiple

MIS for a given sequence. In that scenario, to resolve the conflict, first, we choose

the structures with the maximum number of stacking regions. If the conflict still
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Figure 4-2: Steps followed to detect RNA Secondary Structure
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exists, then we check for structures having maximum consecutive stacks. If conflict

still persists, then we compare the energies of stacks based on the stacking energy

table 4.1[221]. If the conflict still remains, we then compare the individual bond

energies, along with loop energies also known as Tinocos stability number [216].

4.2.1.1 Algorithm RNA structure estimation

Following is the list of functions and variables/constants used in the algorithm

1. BPM(rna seq): for a given RNA sequence, it returns all possible base pairs

2. CG(Base Mat): Maps the Base Mat to a circle graph, where:

Bases in row header of Base Mat = Vertices aligned to circumference of circle

graph

Base pairs of Base Mat = Chords of circle graph, joining two bases

3. CHG(Cir Graph): Returns a circle graph, by keeping only those base pairs

where distance between bases is more than two, called hairpin condition

4. ADJ(Cir Hpin Graph): Maps Cir Hpin Graph to an adjacency graph, where:

Chords of Cir Hpin Graph = Vertices of Adjacency Graph

Intersecting chords of Cir Hpin Graph = Edges of Adjacency Graph

5. Largest vertex set(Adj Graph): This function returns Maximum Inde-

pendent set (MIS) of the adjacency graph, computed using python igraph

package. It returns a 2D matrix MIS Mat, containing all possible sets of

MIS. MIS Mat[i] represents each 1D matrix i.e. ith row of MIS Mat, where i

ranges from 1 to no. of possible MIS.

6. CS(MIS Mat[i]): A stack consists of two consecutive base pairs. This function

returns an array containing the total number of stacks, in each MIS Mat[i]
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Table 4.1: Stacking Energy:- The table presents stacking energy, where the leftmost
column represents the current base pair and the topmost row represents the next
base pair in the stack. For example, value in row 2, column 1 represent the energy
when C/G is followed by A/U [221].

A/U C/G G/C U/A G/U U/G
A/U -0.9 -1.8 -2.3 -1.1 -1.1 -0.8
C/G -1.7 -2.9 -3.4 -2.3 -2.1 -1.4
G/C -2.1 -2.0 -2.9 -1.8 -1.9 -1.2
U/A -0.9 -1.7 -2.1 -0.9 -1.0 -0.5
G/U -0.5 -1.2 -1.4 -0.8 -0.4 -0.2
U/G -1.0 -1.9 -2.1 -1.1 -1.5 -0.4

7. Max(Count Stack): It returns the maximum number of stacks comparing

each MIS Mat[i], and the count of how many maximum values

8. CQS(MIS Mat[i]): This function returns an array containing total number

of highest consecutive stacks in each MIS Mat[i]

9. Max(Count Consqutv Stack): It returns the maximum number of con-

secutive stacks comparing each MIS Mat[i] and the count of how many

maximum values

10. SE(MIS Mat[i]): It returns the total Stacking energy as per the table given

in Stacking Energy Table 4.1[221]

11. Min(Stack Energy): It returns the minimum stacking energies comparing

each MIS Mat[i]

12. TSN(MIS Mat[i]): It returns Tinocos Stability Number comparing each

MIS Mat[i], for a particular MIS Mat[i], TSN is the sum of Base Pair Energy

(BP), Hairpin Energy (HP), Bulge loop energy (BL) and Interior Loop Energy

(IL)

TSN =
∑

BP +
∑

HP +
∑

BL+
∑

IL (4.1)

80



4.2. Improved method to predict RNA secondary structure based on MIS

Table 4.2: Tinoco’s Stability Number

Size HP BL IL

< 2 NA -2 NA
2 NA NA -4
3 -5 -3 -5

4 to 7 -6 NA -6
> 7 -7 -7

4 to 15 NA -5 NA
> 15 NA -6 NA

The energies are as follows:

BP =


1, for A:U base pair

2, for G:C base pair

0, for G:U base pair

 (4.2)

13. Max(Tinoco Stability No): It returns the Maximum Stability Number

when compared to each MIS Mat[i].

14. RNA Sec Struct(MIS Mat[i]): This function represents MIS mat[i] as a

dot-bracket notation, where brackets ‘(’ or ‘)’ represent nucleotides that

participate in a base pair and ‘.’ represents nucleotides that do not participate

in base pair. The corresponding RNA secondary structure can be visualized

from the dot-bracket notation.
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Result: Estimated RNA secondary structure
Base Mat = Compute BPM(rna seq)
Cir Graph = Compute CG(Base Mat)
Cir Hpin Graph =Compute CHG(Cir Graph)
Adj Graph = Compute ADJ(Cir Hpin Graph)
MIS Mat = Largest vertex set(Adj Graph)

if length(MIS Mat) = 1 then
Compute RNA Sec Struct(MIS Mat)

else
Count Stack = CS(MIS Mat[i])
Count Stack Max = Max(Count Stack)

if length(Count Stack Max) = 1 then
Compute RNA Sec Struct(MIS Mat[i])

else
Count Consqutv Stack = CQS (MIS Mat[i])
Count Consqutv Stack Max = Max(Count Consqutv Stack)

if length(Count Consqutv Stack Max) = 1 then
Compute RNA Sec Struct(MIS Mat[i])

else
Stack Energy = Compute SE(MIS Mat[i])
SE Min = Min(Stack Energy)

if length(SE Min) = 1 then
Compute RNA Sec Struct(MIS Mat[i])

else
Tinoco Stability No = Compute TSN(MIS Mat[i])
Tinoco Stability No Max = Max(Tinoco Stability No)
for all MIS Mat[i] with Tinoco Stability No Max
Compute RNA Sec Struct(MIS Mat[i])

end

end

end

end

The implementation of the algorithm is available in a web portal

from Tezpur University (TU web server), which is accessible at the link

http://14.139.219.242:8003/rna struct
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4.2.1.2 Description of how to use the TU web server:

Step I: Enter nucleotide sequence of RNA: The first step is to provide

nucleotide(base) sequence of RNA for which secondary structure is to be detected.

Step II: Enter the restrictions for each nucleotide (Optional):

This step is optional, where the user is provided with an option to impose restriction

on bases, of which to pair and which not to. For every base, a ‘x’ is to be entered

to restrict the base to pair, and a ‘.’ to allow the base to pair.

Step III: Select the base pairs to keep: In this step, we provide an

option to the user; to select base pairs that are to be included in RNA structure

detection.

Step IV: Enter e-mail id: This step is optional; an email-id can be

provided; if the user wants the results in their email.

In the next step, the user may hit the Calculate button to view the results,

a dot-bracket notation, a circle graph of RNA structure, and a link [93] to visualize

the RNA structure is also provided.

4.2.1.3 Performance Measurement

To determine the accuracy of our method and other known methods as provided

in web servers of Vienna RNA fold [116], RNAStructure [164], and Cofold [153]

in comparison to original RNA structures, we perform sensitivity (SS), specificity

(SP) and correlation coefficient measures as follows:

SS =
TP

TP + FN
, SP =

TP

TP + FP
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BP predicted: No BP predicted: Yes
BP exists: No True Negative (TN) False Positive (FP)
BP exists: Yes False Negative (FN) True Positive (TP)

Table 4.3: Comarative Result. L: Sequence Length (number of bases), SS:
Sensitivity, SP: Specificity and CC: Correlation coefficient.

Sequence
Name

L
Vienna RNAfold

web server
RNAStructure
web server

Cofold
web server

TU
web server

SS SP CC SS SP CC SS SP CC SS SP CC
1F1T 38 1.00 1.00 100.00 1.00 1.00 100.00 1.00 1.00 100.00 1.00 0.93 96.36
1RAW 36 0.75 0.75 75.00 0.75 0.75 75.00 0.75 0.75 75.00 0.80 0.67 73.03
2JTP 34 1.00 1.00 100.00 0.85 1.00 91.99 f1.00 1.00 100.00 1.00 1.00 100.00
3DKN 32 0.75 0.75 75.00 0.75 0.75 75.00 0.75 0.86 80.18 1.00 0.73 85.28

E coli 16S rRNA 38 0.77 0.77 76.92 0.77 0.77 76.92 0.92 1.00 96.08 1.00 0.87 93.09
R17 Viral RNA 55 0.90 1.00 95.12 0.90 1.00 95.12 1.00 1.00 100.00 1.00 1.00 100.00

CC =

√(
TP

TP + FN

)
∗
(

TP

TP + FP

)

where the confusion matrix is provided below, BP means Base pair:

4.2.2 Results and Discussion

For this study, RNAs which has been used in the literature are taken for comparison

analysis. The first four RNAs depicted in Table 4.3, have been collected from

the online database (http://server3.lpm.org.ru/urs/struct.py) named Universe of

RNA structures. In the table 4.3, the sequence IDs given are the PDBId of RNA

sequence. These RNA structures are experimentally obtained either by NMR or

X-ray crystallography and are considered original RNA secondary structures. We

also extracted dot-bracket notation for each RNA structure, for the comparison of

RNA structures from different computational sources [74][12][153]. The last two

RNAs are taken from available research literatures [212][202][112].

SS is the probability of correctly predicting base pairs, whereas SP is the

probability that a base pair prediction is correct [8]. From the above table, we

can say that in terms of sensitivity (SS) our algorithm has a higher probability of
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predicting correct base pairs as SS is almost 1.0 in almost all cases, as compared

to other methods. Whereas the specificity (SP) measure is comparable of our

web server to other methods in the sequences of 3DKN, 1RAW and 1F1T. In our

method, the correlation coefficient measure performs better in the case of 2JTP,

3DKN, E coli 16S rRNA and R17 Viral RNA, but other methods perform well in

case of 1F1T, 1RAW.

In this study, we proposed a method that determines the maximum pos-

sible base pairs in an RNA secondary structure with no intersections. We used

the Maximum Independent Set (MIS) based approach which gives all possible

combinations of base pairs that are maximum in number. The computational time

complexity of this approach is O(nmµ), where n is the number of vertices, m is

the number of edges and µ is the number of maximum independent sets of the

circle graph [218]. Our proposed method not only maximizes the number of base

pairs but stacking regions also, as it is known that the more the stacks in a RNA

secondary structure, the more stable the structure will be.

It has been seen that in small RNAs not having bifurcation, the maximum

number of base pairs is possible when the first bases pair with the last bases of the

RNA sequence. In our implementation, we took some threshold values:

Considering the two position of bases ‘p’ and ‘q’ and length of RNA

sequence as ‘l’, we choose base pairs (bp) with the following conditions:

bp =


(l − 3) < (p+ q) < (l + 3), l < 10

(l − 6) < (p+ q) < (l + 6), l < 400

(l − 10) < (p+ q) < (l + 10), l > 400

 (4.3)

We observed that, the number of MIS generated is independent of the

sequence length. However, a large number of MIS might be generated for a sequence

rich in AT or GC bases, possibly because they lead to a large number of base pairs.
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4.3 A review on RNA secondary structure pre-

diction using deep learning methods

Apart from the classical methods, machine learning and deep learning based

methods have recently gained wide attention to predict RNA secondary struc-

tures. In this section, we have reviewed these available methods and software

implementations for research purposes.

4.3.1 Computational methods that predict pseudoknot-

free structures

4.3.1.1 Learning based RNA folding methods

Bases in the stem region of RNA secondary structure are nearly palindromic.

Therefore, Context-Free Grammars (CFG) have been used along with machine

learning approaches in predicting RNA secondary structures. As the name suggests,

in stochastic context-free grammar (SCFG) based algorithms, probabilities are

appended to the context-free grammar production rules used for secondary structure

prediction. Production probabilities are learned from parse trees or directly from

the RNA sequences. Training algorithms such as the inside-outside method have

proven to provide consistent SCFGs [103][96]. Apart from that, conditional log-

linear models, along with Maximum expected accuracy, has also been devised

with SCFG using machine learning approaches to predict secondary structure.

CONTRAfold [37] and MaxExpect [122] are examples of such approaches.

4.3.1.2 Deep-learning based RNA folding methods

Recently deep neural networks have also been used to predict pseudoknot-free

structures. NNFold [225], CDPFold [247], MxFold2 [182] or using the nearest
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neighbour model with deep learning [236] are examples of such approaches. In

CDPFold the CNN has been trained over large datasets containing known RNA

secondary structures, and implicit features are retrieved. The output layer of CNN

predicts the probability of each base with respect to three dot-bracket notation

symbols ‘(’, ‘)’ and ‘.’. To resolve a few discrepancies like: the unequal number of left

and right brackets, mis-pair of suggested matched brackets with the corresponding

bases, maximum probability sum algorithm (MPSA) [249] is used. This MPSA

algorithm is an extended version of Nussinovs dynamic Programming algorithm

[139].

4.3.2 Computational Methods that predict pseudoknotted

structures

4.3.2.1 Machine learning methods to predict pseudoknotted structures

Core machine learning algorithms like SVM are also used to predict secondary

structure [77][88], based on the principle that the different RNAs have different

properties and different machine learning tools can identify different properties

of secondary structure. Other machine learning techniques use gradient-based

methods that use the derivatives of the thermodynamic model against pairing

probabilities [22]. A decision tree (DT) based method along with a training

algorithm has been proposed. Maintaining a window size with decision trees

are used to realize the pseudoknots [118], and machines are also developed with

multi-layer perceptron to predict the pseudoknots [121].

4.3.2.2 Deep learning methods that can predict RNA secondary struc-

ture with pseudo-knots

The discipline of machine learning algorithms has been revolutionized by deep

neural networks. It has become a standard tool for computer vision, natural
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language processing or speech recognition problems. Deep neural networks consist

of many layers that map the data from input space to output space, thus learning

higher level features of the training data. Recently, deep neural networks are also

applied in predicting RNA secondary structures. The deep learning models vary

among themselves with respect to architecture, model of input, and output formats

(Table 4.4).

(i) RNN App : The Recurrent Neural Networks (RNN) [235] models came

into the light to predict RNA secondary structure. Input to this network is a

one-hot encoded vector. The input with its cartesian product is passed to

Bi-directional Long Short Term Memory (BLSTM). Several hidden layers of

CNN are then applied, which are passed to the output layer. The output is

an LxL (L is the length of RNA sequence) matrix with pairing probabilities

within the interval [0,1]. To check for overlapping base pairs, the pair let’s

say (i, j) with the highest probability is first chosen and is put in a set S

representing the final secondary structure. Then the probabilities of all bases

that are associated with either i or j are set to 0. The pair with the next

highest probability is then chosen until all the bases in the RNA sequence

are traversed.

(ii) SPOT-RNA: The architecture of this SPOT-RNA model [197] uses ResNets,

BLSTM, FCL, and transfer learning techniques. Input to the architecture is

a one-hot encoding which is then extended by self-Cartesian product. Two

datasets considered in this model are namely bpRNA and PDB. The five

best models were chosen using the training and validation data from many

2D learning models. The PDB dataset contains a small number of RNA

sequences; hence it is insufficient to train the network. So, transfer learning is

applied, where all the models are first trained over larger dataset i.e. bpRNA

dataset and then the learning parameters like weights and biases are stored in

the model. The model is then trained over a smaller dataset i.e. PDB dataset.

The advantages of applying transfer learning are: it takes less amount of
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time on training the second dataset, the performance of the network model

increases, also the second dataset need not be very large. The dataset over

which the network was trained consists of a sequence length less than or equal

to 500 bases. The reason being hardware limitations and high-resolution

RNA of length more than 500 is not abundant.

(iii) DMfold: This model [232] uses BLSTM, FCL and a probability method

named as Improved Base Pair Maximization Principle (IBPMP). DMFold

uses 3975 RNA sequences with known primary structure from public database

of Mathews Lab. Data cleaning for redundant or similar sequences is done

by CD HIT. There are two parts of DMFold: Prediction Unit (PU) and

Correction Unit (CU). The Prediction Unit (PU) part has two segments,

encoder and decoder. Encoder is used to encode each base of RNA sequence.

As the secondary structure of RNA is assumed to be context-dependent,

three layers of Bidirectional Long Short-Term Memory (BLSTM) is used as

encoder, which uses its memory capacity to remember contextual information

of the sequence. The forward LSTM processes RNA sequences from left to

right and backward LSTM in reverse order. The Correction Unit (CU) part

is for compensating any errors of PU part and thus predicts RNA structure

using Improved Base Pair Maximization Principle (IBPMP). IBMP is a

modified measure used to select candidate stems in multiple steps and assign

different priorities to them to determine secondary structure of RNA. CU

part first obtains all possible pseudoknot-free structures and then determines

the optimal pseudoknotted structure. The method works well for shorter

sequences, but mediocre for longer sequences. Dataset for training is not

very large. RNA sequences vary in length, so a threshold of 300 bases is kept

and the sequences are truncated, also if it is less than 300, a series of N is

padded to the sequence, which may lead to loss of information.

(iv) Adaptive DRNN: Machine learning methods employed to determine sec-

ondary structure of RNA uses fixed size feature set, which leads to truncation
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of sequences into parts and then to use neural network model on that part

which may lead to loss of information. So, an adaptive sequence length

based on deep learning model is used in ADNN [119]. The architecture of

ADNN consists of three modules: Adaptive Module, LSTM module and

Energy-based filter. Adaptive model is used for adaptability of the model of

variable length sequence. If the maximum length, the model could handle is

L and the sequences size are less than L, then the feature set of sequences

is extended with arbitrary feature values up to L. A mask vector is used of

size L, where the elements of mask vector are 1 if the feature is of original

sequence, 0 for extended sequence. If the mask value is 0 for a base the

gradient value will be 0 and hence for extended sequence weights will not

be updated. Along with mask vector a dynamic weight vector is also used,

the weight for any corresponding base would be equal to the number of

unpaired bases if the base is paired in the original sequence, otherwise 1. For

the LSTM module, the input features are mapped into higher dimensional

feature vectors and inputs them to both forward and backward LSTM, the

output is then passed to fully connected layer, and then an output layer with

softmax activation function is used to determine the classification probabili-

ties or the pairing results. LSTM may result in conflicting base pairs, so an

energy-based filter is used to address this issue, the conflicting base pairs

are extracted and a matrix is generated which is initialized with 0s and 1s

randomly. Then for each combination thermodynamic energy is calculated,

the one with minimum energy values is retained as the final structures. And

then the output is generated as pairing result.

(v) DpacoRNA: Parallel ant colony optimization (PACO) algorithm augmented

to deep learning method is also used for searching motifs of secondary

structure from primary sequence of RNA [157]. Deep learning model is

specifically used to learn structural constraints of secondary structure. PACO

is used to increase ability of global optimal search. It has the ability to run
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in parallel with different objective functions, where they share a matrix that

can be used to share experiences learned from different ant colonies. Using

different ant colonies help to incorporate multiple objective functions. A

deep learning model is used to learn the structural constraints and then to

use them to filter out discrepancies of PACO.

(vi) 2dRNA: The network model [126] is a two-stage model, the first stage is

for determining if the base is paired or unpaired. In the next stage the errors

of mispairing are compensated using U-net segmentation model. The first

stage is termed as coarse-grained dot-bracket prediction (CGDBP), which

takes input as one-hot encoding of RNA sequence and passes it to two layers

of bidirectional LSTM, which is then passed to 3 layers of fully connected

layer that gives the output in one-hot encoded vector of output notations.

The next stage is fine-grained dot-plot prediction (FGDPP) which takes the

output of CGDBP and passes it to LSTM and a fully convolutional network

U-net to obtain the correct base pairings.

(vii) E2Efold: This network [29] is also a two-stage model. The first stage uses 3

layers of transformer encoder over the positional encoding of RNA sequence.

It concatenates the results and passes on to 2 layers of CNN that outputs a

score matrix. This stage encodes any complex information or dependency of

sequence. In the next stage, the constraints of RNA are gradually enforced

using unrolled algorithm. The network model is an end-to-end model, which

enforces the constraints during the training procedure.

(viii) Ufold: This method is based on an encoder-decoder transformer architecture

[23]. Input to this architecture is an element wise cross multiplication of a

one-hot encoded vector of RNA sequence of size Lx4 to its transpose. Each

row of one-hot encoded matrix is cross multiplied with its transpose, leading

to 16 such matrices. Thus, the model considers all long-range relationships

of base pairs. In this encoder decoder architecture, the encoder derives the

semantic representation of input and decoder fills the contextual information.
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The output of the architecture is a scoring matrix that consists of base

pair probabilities. The issue of overlapping base pairs is resolved by linear

programming. The final output is the predicted secondary structure in dot

bracket notation.

(ix) ATTfold: This network model [234] employs the transformer encoder to

retrieve the global information of sequences using the attention mechanism.

To avoid the problem of vanishing gradient, Residual Networks are employed.

The output of the encoder is a symmetric matrix. It then employs CNN as

a decoder which takes the symmetric matrix of the encoder as input and

finally produces a base pair probability matrix. In the next step, the hard

constraints of the RNA secondary structure are enforced into the network to

obtain the final prediction.

(x) SPOT-RNA2: This network model [198] takes one hot encoded vector of

RNA and features of homologous sequences from NCBI database and from

SPOT-RNA as input. The features extracted from homologous sequences are

termed as Position specific scoring matrix (PSSM), and mutational direct

coupling analysis (DCA). These features are then passed to the deep neural

network architecture, which is comprised of Dilated convolutional networks

(DCN). This network is reported to be faster and better than the LSTMs to

cover long range dependencies. Transfer learning technique is used to train

the model in a larger data set and then to smaller data set to produce better

results.

(xi) GoogLeNet and TCN: The network [196] is a two-step model. In the

first step, GoogLeNet and Temporal convolutional network (TCN) is used to

determine the base probability. Both the networks use convolutional neural

network to build the architecture. In GoogLeNet, Inception network model

is used that reduced the dimension of the network and number of parameters.

To avoid the vanishing gradient problem softmax layers are incorporated.

While in TCN, casual, dilated convolution layer and residual blocks are
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employed. The method gave more importance to the bases of the stem that

appear in the centre of the stem as compared to those appearing at the edges.

In the second step, correction of base pairs is taken care. By using dynamic

programming and following the rules of secondary structure, the correct base

pairings of the secondary structure is obtained.

(xii) VLDB GRU: The features of the model [120] are taken as the base pairing

probabilities using partition function. The model employs recursive bi-

directional gated recurrent unit (GRU) to capture long range dependencies.

Instead of truncating the sequences, it appends 0s as a flag vector and these

values are taken care by the loss function and is not considered in the training

phase. A weight vector is introduced to maintain the imbalance of paired and

unpaired bases in the RNA sequences. The model maps the feature vector

to the input of the bidirectional GRU. The output of GRU is followed by 2

FCL and an output layer. Drop outs are added to overcome overfitting.

(xiii) 2dRNA-LD: The network model [127] is a two-step process similar to

2dRNA. The model is an ensemble of the best five models chosen on the basis

of hyperparameters trained over the training set. Then the training dataset

is split into different sets having proportionate length. Transfer learning is

then applied using the model of the first step to all the sets of the training

data, hence they termed the model as length dependent (LD).

(xiv) RSSM: The network model [245] uses evolutionary information to predict

single sequence structure and transfer learning from pre-trained models

using multiple sequence alignment and evolutionary information. For longer

sequences, a sliding window method is used that is based on local structure

prediction method. MSA Transformer is used that detects the base pair

probability from homologous sequences.

(xv) Other deep learning techniques: Approaches have also been used to

predict secondary structure of RNA comprising LSTM, ResNet [233]. Au-
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Table 4.5: Confusion Matrix

BPPredicted: YES BPPredicted: NO

BPActual: YES True Positive (TP) False Negative (FN)
BPActual: NO False Positive (FP) True Negative (TN)

toencoders and neural networks based on graphs have also been used to

predict secondary structures of RNA [24][244]. Deep learning techniques

along with thermodynamics and architectures like transformers have also

been used to predict secondary structure of RNA [182][29].

4.3.3 Comparative Results and Discussion

4.3.3.1 RNA secondary structure information

For a comparative study among pseudoknotted RNA secondary structure

prediction methods, we considered 25 RNA sequences whose secondary

structures are available in the public domain in bpRNA [33] and URS database

[11]. The length of pseudoknotted structures ranges from 28 to 406 bases. In

this study, we have considered only smaller RNA sequences (of size less than

500 bps) because available software tools can efficiently process sequences of

this size (Appendix A.3.1).

4.3.3.2 Performance measurement

Confusion matrix and associated matrices, are commonly used for evaluating

performance of the prediction methods [81][107][111][253]. Confusion matrix

is an MxM matrix where M is the number of classes. In the secondary

structure prediction problem, any base in the RNA sequence can be grouped

into two classes, (i) paired and (ii) unpaired and accordingly, confusion matrix

can be presented as in Table 4.5 where BP denotes base pair.

However, when the pairing position of a base differs between actual

and predicted structure, there is no consensus among existing literature
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Table 4.6: Anomalous Representation

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

RNA sequence G A C G G A A U U C U C C A A G U C
Actual Structure ( ( . ( ( . . [ ) ) ( . . . ) ] ) )
Predicted Structure ( . ( ( . . . ) [ ( ( . . ] ) ) ) )
Actual Structure (BPSEQ) 18 17 0 10 9 0 0 16 5 4 15 0 0 0 11 8 2 1
Predicted Structure (BPSEQ) 18 0 17 8 0 0 0 4 14 16 15 0 0 9 11 10 3 1
Confusion Matrix Value TP FN FP FP FN TN TN FP FP FP TP TN TN FP TP FP FP TP

regarding values to be filled in. In this study if a base pair is predicted

wrongly, we consider the prediction as FP. This anomaly is explained with

the hypothetical example Table 4.6. For example, let us have a hypothetical

sequence of length 18 bp, and the actual and predicted secondary structure

in the dot-bracket notation is given in Table 4.6. The anomalies can be seen

in position 8,9,10 etc. A clearer picture can be visualized using the BPSEQ

format of both the actual and predicted structure along with the remark as

given in Table 4.5. We can infer from Table 4.5 that; TP is marked where

index of a base and its corresponding base pair matches as in (1,18) in both

actual and predicted structure. TN is marked if for a base, corresponding

pairing value is 0 (i.e., unpaired) as in (6,0) in both actual and predicted

structure. FN is marked if in actual structure base pair is predicted as

in (2,17) but not in predicted structure (2,0). FP is marked if the actual

structure has an unpaired base as in (3,0) but the predicted structure marked

it as paired as in (3,17). Apart from these, base pairs in actual structure as

in (4,10) and in predicted structure as in (4,8) do not match. In this study,

these wrongly predicted base pairs are considered as FP and marked bold in

Table 4.6.

4.3.3.3 Performance metrices

To compare the actual RNA structures with the one obtained from predicted

model, we have used performance metrices namely Accuracy, Precision and

F1 Score as defined below: Accuracy measures fraction of predictions, model
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could correctly predict a class:

Accuracy = ((TP + TN))/(TP + TN + FP + FN) (4.4)

Precision measures the correctly predicted base pairs among all base

pairs that exist in predicted structure.

Precision = TP/(TP + FP ) (4.5)

Recall measures the correctly predicted base pairs among all base pairs

that exist in actual structure.

Recall = TP/(TP + FN) (4.6)

F1 Score is the harmonic mean of Precision and Recall values. F1 Score

value can be between 0.0 and 1.0. A good prediction model would be one

whose F1 score is high (close to 1.0). F1 score is high when both Precision

and Recall values are high.

F1 Score = 2 ∗ (Precision ∗Recall)/(Precision+Recall) (4.7)

We calculated Accuracy, Precision and F1 Score for all 25 RNA se-

quences. Since we classified the wrongly predicted base pairs into FP, Preci-

sion will be a critical measure to compare among the models.

4.3.3.4 Results

Based on the availability of implementation and scope for predicting new

RNA structures, we have compared two methods namely SPOT-RNA [197]

and UFold [23] for 25 pseudoknotted structures. We have used CT formats

of both the methods to compare between the structures and the gene wise

metrices are present in Appendix A.3.2.
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Figure 4-3: Box-plot of Accuracy, Precision and F1 Score for pseudoknotted
structures

Box plot representations for methods that predict pseudoknotted struc-

tures are presented in Figure 4-3. Accuracy is depicted in Figure 4-3(a). IQR

is small in case of Ufold (0.12) as compared to SPOT-RNA (0.16) and Q1 is

also higher (0.78) in Ufold as compared to SPOT-RNA (0.70). In terms of

Accuracy, Ufold is a better measure. But, the number of instances in paired

and unpaired class is not equal, as 2/3rd of the secondary structure of RNA

constitutes of paired region and 1/3rd of unpaired regions. So, we further

observed the performance of these methods using Precision and F1 Score.

The precision values are presented in Figure 4-3(b). IQR is small in

case of SPOT-RNA, also the values are skewed towards higher precision score

where Q1 is at 0.77. SPOT-RNA has a smaller number of wrongly predicted

base pairs with respect to all predicted base pairs, whereas in case of Ufold,

the IQR is comparatively larger, also the Q1 value is less (0.72).

The F1 scores of the methods are displayed in Figure 4-3(c). Smaller

IQR is in Ufold as compared to SPOT-RNA, also the Q1 values are higher

in case of Ufold (0.92) than SPOT-RNA (0.64). Hence in terms of F1 Score,

Ufold is a better prediction method.

Appendix A.3.3 presents the Count of RNAs, mean, standard devia-

tion, minimum value, 25% or Q1, 50% or Q2, 75% or Q3, maximum value,

Interquartile range (IQR) of Accuracy, Precision, Recall, Specificity and F1

Score of the pseudoknotted structures analysed.
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4.3.4 Conclusion

Machine or deep learning techniques have been extensively explored in recent

years for predicting RNA structure. Models based on these techniques require

a large amount of data to train for better prediction result. At present the

datasets available in public domain contain huge number of RNA structures,

but after pre-processing and removing the sequences having higher simi-

larity, very few unique sequences remain to train the deep neural network.

Algorithms that depend on homologous sequences for prediction accuracy

might be sensitive to alignment errors. Further, issue like the class imbalance

between paired and unpaired bases which may lead to locally optimal results.

When RNA sequence length differs in training dataset and the machine learn-

ing algorithm accept only fixed length data, truncating or adding arbitrary

data to the sequences may result in loss of information or reduce accuracy.

Machines are yet to be trained that could identify complex pseudoknots.

Non-canonical base pairs or triplets may also exist in the RNA secondary

structure. Techniques to introduce these pairs without much increasing the

complexity of the program needs to be proposed. In addition to these model

related issues, future scope lies in improving software implementations. Most

of the software implementations accept RNA sequences of length only up

to 2000 bases which may not be sufficient. Often symbols like (), [], {}, aA,

bB, cC etc., are used while representing RNA structures with pseudoknots.

Uniform standard annotations are to be adopted while representing these

motifs.
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