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Lepton flavor violation and leptogenesis in

A4 based discrete flavor symmetric radiative

seesaw model

We have studied the radiative seesaw model also known as scotogenic model proposed

by Ernest Ma, which is an extension of the Standard Model by three singlet right handed

neutrinos and a scalar doublet. This model proposes that the light neutrinos acquire a

non-zero mass at 1-loop level. In this work, realisation of the scotogenic model is done

by using discrete symmetries A4 ×Z4 in which the non-zero θ13 is produced by assuming

a non-degeneracy in the loop factor. Considering different lepton flavor violating(LFV)

proceses such as lα −→ lβ γ and lα −→ 3lβ , their impact on neutrino phenomenology is

studied. We have also analysed 0νββ and baryon asymmetry of the Universe(BAU) in this

chapter.
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4.1 Introduction:

Standard model(SM) has been the most successful model of particle physics which is

supported by a large amount of experimental evidences. But, SM fails to provide proper

explaination for some imporant problems of modern physics, such as absolute neutrino mass

[178], baryon asymmetry of universe(BAU) [179, 180], dark matter [181, 182] etc. The

quest for these unexplained physical problems results in the several SM extensions, aiming

at a common explanation for these issues. The scotogenic model proposed by Ernest Ma

[73] is one such attractive framework where SM is minimally extended. In this framework,

SM is extended by a scalar doublet and three singlet fermions which are charged under Z2

symmetry. This inbuilt discrete symmetry forbids the usual tree level generation of neutrino

mass. Neutrino mass is generated at 1-loop level within this model. Phenomenology of

scotogenic model has been adressed in various literatures [183, 110, 184, 185].

The scotogenic model is probably the simplest TeV scale model that can simultaneously

account for neutrino masses and dark matter. In this model, lepton flavor violating processes,

such as µ → eγ and µ → 3e, also takes place at 1-loop, via diagrams analogous to those

responsible for neutrino masses. Lepton flavor violation(LFV) in the scotogenic model

has already been studied[186, 187]. However, most of the literature primariliy foucses on

µ → eγ due to its stringent experimental limit whereas other decays are rarely considered.

Here, in this work, we have LFV in details along with other phenomenologies. We know

that the baryon asymmetry of universe is one the most important problems which cannot be

adressed in SM as it fails to satisfy the Sakharov conditions [109], which demands baryon

number (B) violation, C and CP violation, and departure from thermal equilibrium. We

are therefore, intersested to study BAU in the framework of scotogenic model. We can

incorporate baryogenesis via leptogenesis [179], where a net leptonic asymmetry is generated

first, which further gets converted into baryogenesis through (B+L) violating electroweak

sphaleron phase transitions [188]. As discussed in many literatures [189, 190], it is known
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that there exists a lower bound of about 10TeV for the lightest of the right handed neutrino in

the Scotogenic model considering the vanilla leptogenesis scenario [180, 110]. Thus, in our

work, a similar kind of leptogenesis takes place. One of the most important significance of

BSM frameworks is to study the origin of neutrino mass along with charge lepton mixing and

identifying possible symmetries related to this. By incorporating symmetries to a model one

can make a model more general and predictive as it will corelate two or more free parameters

of the model or make them vanish. Discerete flavor symmetric realisation of sctogenic model

is done in a very few work [191, 192].

In this work we realised the scotogenic model through A4 ×Z4 discrete flavor symmetry.

The implications of the discrete symmetry can be seen as it contraints the Yukawa couplings of

a particular model. Here, we produce a realistic neutrino mixing to do an extensive analysis of

lepton flavor violating processes. Considering different lepton flavor violating(LFV) proceses

such as lα → lβ γ and lα → 3lβ , we analysed their impact on the neutrino phenomenology

as well. The most stringent bounds on LFV comes from the MEG experiment [41]. The

limit on branching ratio for the decay of µ → eγ from this experiment is obtained to be

Br(µ → eγ)< 4.2× 10−13. In case of lα → 3lβ decay contraints comes from SINDRUM

experiment [42] is set to be BR(lα → 3lβ )< 10−12. Neutrinoless double beta decay(0νββ )

is also studied within the model by the consideration of the constraints from KamLAND-Zen

experiment. We have also incorporated BAU within the model and have shown the viable

parameter space satisfying the Planck bound.

The rest of the chapter is organized as follows: in section(4.2) we introduce the model

whereas in section(4.3) we realise the scotogenic model using A4 × Z4 symmetry. Sec-

tion(4.4) and (4.5) contains the discussions on LFV processes and leptogenesis respectively.

Phenomenological analysis of the model is given in section(4.6).
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4.2 Radiative seesaw Model

Radiative seesaw model is an extension of the IHDM [76, 193–196] and the IHDM is

nothing but a minimal extension of the SM by a Higgs field which is a doublet under SU(2)L

gauge symmetry with hypercharge Y = 1 and a built-in discrete Z2 symmetry [73–77]. The

necessity of this modification took place as the inert Higgs doublet model(IHDM) could only

accommodate dark matter, whereas it failed in explaining the origin of neutrino masses at

a renormalizable level . In this model, three neutral singlet fermions Ni with i = 1,2,3 are

added in order to generate neutrino masses and assign them with a discrete Z2 symmetry.

Here, Ni is odd under Z2 symmetry, whereas the SM fields remain Z2 even. Symbolic

transformation of the particles under Z2 symmetry is given by,

Ni −→−Ni, η −→−η , φ −→ φ , Ψ −→ Ψ, (4.1)

where η is the inert Higgs doublet, φ is the SM Higgs doublet and Ψ denotes the SM fermions.

The new leptonic and scalar particle content can thereafter be represented as follows under

the group of symmetries SU(2)×U(1)Y ×Z2:(
να

lα

)
L

∼ (2,−1
2
,+), lc

α ∼ (1,1,+),

(
φ+

φ 0

)
∼ (2,

1
2
,+),

Ni ∼ (1,1,−),

(
η+

η0

)
∼ (2,1/2,−). (4.2)

The scalar doublets are written as follows :

η =

(
η±

1√
2
(η0

R + iη0
I )

)
, φ =

(
φ+

1√
2
(h+ iξ )

)
. (4.3)

We have no Dirac mass term with ν and Ni, however, the similar Yukawa-like coupling

involving η is allowed. Nevertheless, the scalar cannot get a VEV. The neutrino mass can be
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νi νj

η0 η0

Nk

< φ0 >= v < φ0 >= v

Fig. 4.1 One- loop contribution of neutrino mass generation with the exchange of right
handed neutrino Ni and the scalar η0.

generated through a one-loop mechanism, which is based on the exchange of η particle and

a heavy neutrino. In figure, we see two Higgs fields φ 0 are involved. They will not propagate

but will acquire VEV after the EWSB. The lagrangian involving the newly added field is :

L ⊃ 1
2
(MN)i jNiN j +Yi jL̄η̃N j +h.c (4.4)

where, the 1st term is the Majorana mass term for the neutrino singlet and the 2nd term is

the Yukawa interactions of the lepton. The new potential on addition of the new inert scalar

doublet is:

VScalar =m2
1φ

+
φ +m2

2η
+

η +
1
2

λ1(φ
+

φ)2 +
1
2

λ2(η
+

η)2 +λ3(φ
+

φ)(η+
η)

+λ4(φ
+

η)(η+
φ)+

1
2

λ5[(φ
+

η)2 +h.c.]
(4.5)

All the parameters in Eq. (4.5) are real by hermicity of the Lagrangian, except for λ5.

Since, the bilinear term (φ+η) is forbidden by the exact Z2 symmetry, therefore one can

always choose λ5 real by rotating the relative phase between φ and η . Furthermore, after the

spontaneous symmetry breaking like in the SM, we are left with one physical Higgs boson h

which resembles the SM Higgs boson, as well as four dark scalars: one CP even(η0
R), one CP
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odd(η0
I ) and a pair of charged ones (η±). The masses of these physical scalars are:

m2
h =−m2

1 = 2λ1v2,

m2
η± =m2

2 +λ3v2,

m2
η0

R
=m2

2 +(λ3 +λ4 +λ5)v2,

m2
η0

I
=m2

2 +(λ3 +λ4 −λ5)v2.

(4.6)

It is clear from the above equations that all the scalar couplings are written in terms of

physical scalar masses and m2 , thereby providing six independent parameters of the model

to be : {m2,mh,mη0
R
,m

η0
I
,mη±,λ2}. Here, mh is the mass of SM-Higgs, m

η0
R
, m

η0
I

and mη±

are the masses of CP-even, CP-odd and charged scalars of the inert doublet respectively. In

this work, as we have considered the CP-even scalar to be the lightest particle and a probable

DM candidate, so we consider λ5 < 0 without any loss of generality. Also, the limit λ5 → 0

leads to the mass degeneracy of the neutral components of the inert doublet. Following the

’t Hooft scenario [197] , the smallness of λ5 to obtain the lepton asymmetry, which would

have been lost if considered to be zero, is acceptably natural. We have a simplified diagram

shown in Fig. (4.2) that can be split further into two diagrams and from which the mass can

be easily calculated by considering mechanism after EWSB.

νi νjNk

η0R, η0I

Fig. 4.2 One-loop diagram with exchange of η0
R and η0

I . νi and ν j representing two different
generations of active neutrinos. Ni is the right handed neutrino.

Calculation on the basis of one diagram is sufficient and considered as other would be

same except for η0
R replaced by η0

I . The neutrino mass matrix arising from the radiative mass
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model is given by :

Mν
i j =∑

k

YikYjk

16π2 MNk

 m2
η0

R

m2
η0

R
−M2

Nk

ln
m2

η0
R

M2
Nk

−
m2

η0
I

m2
η0

I
−MNk

2

ln
m2

η0
I

MNk

2
≡∑

k

YikYjk

16π2 MNk [Lk(m2
η0

R
)−Lk(m2

η0
I
)],

(4.7)

where Mk represents the mass eigenvalue of the mass eigenstate Nk of the neutral singlet

fermion Nk in the internal line with indices j=1,2,3 running over the three neutrino generation

with three copies of Nk and Y is the Yukawa coupling matrix. The function Lk(m2) used in

Eq. (4.7) is given by:

Lk(m2) =
m2

m2 −M2
Nk

ln
m2

M2
Nk

(4.8)

4.3 Flavor Symmetric realization of radiative seesaw model:

In this section we have realised scotogenic model using A4×Z4 flavor symmetry. Scotogenic

model already has an inbuilt Z2 symmetry which provides the explanation of dark sector

within this framework [73]. The particle content and respective charge corresponding to the

discrete symmetries are given in Table 4.1. The discrete symmetries, i.e A4 ×Z4 will impose

constraints on the Yukawa coupling matrix, thereby, constraining the model.

The Lagrangian for the charged lepton sector is given by:

Ll =
ye

Λ
(lLφ χT )lc

R1
+

yµ

Λ
(lLφ χT )lc

R2
+

yτ

Λ
(lLφ χT )lc

R3
(4.9)

where, Λ is the cut-off scale of the theory and ye,yµ ,yτ are the coupling constants. Terms in

the first parenthesis reperents the product of two triplets(lL and χT ) under A4, each of these

terms contracts with A4 singlets 1,1
′

and 1
′′

corresponding to lR1, lR2 and lR3 respectively.

When the flavon χT gets vaccum expectation value(vev), flavor symmetry will break and we

will get the flavor structure for lepton. Finally it sets the charged lepton coupling matrix as
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the diagonal one, once the flavon vev as well as Higgs vev are inserted. For the Dirac mass

term, the effective Lagrangian can be written as:

LD =
η

Λ
[Y

′
lLiNiχS +Y

′′
lLiNiχ]. (4.10)

Again, the additional right handed neutral fermions are represented by the Lagrangian:

LMN = MNiN j. (4.11)

Now, let us consider the vev allignment of the flavons as follows[191]:

< χT >= vT (1,0,0), < χS >= vS(1,1,1), < χ >= u. With the above considerations, the

charged leptonic mass matrix is given by:

Ml =
vT < φ >

Λ

ye 0 0

0 yµ 0

0 0 yτ

 (4.12)

also, the Yukawa coupling matrix takes the form:

Y =

2a+b −a −a

−a 2a b−a

−a b−a 2a

 (4.13)

where, a = Y
′ vS

Λ
and b = Y

′′ u
Λ

. From Eq.4.11 and by taking into account the degenerate mass

spectrum of the right handed neutrinos, we obtain the mass matrix of the form:

MN =

M 0 0

0 0 M

0 M 0

 . (4.14)



4.3 Flavor Symmetric realization of radiative seesaw model: 103

Field lL lc
R1

lc
R2

lc
R3

Ni φ η χT χS χ

A4 3 1 1
′′

1
′

3 1 1 3 3 1
Z4 i i i i −1 1 1 −1 i i

Table 4.1 Fields and their respective transformations under the symmetry group of the model.

Now, in order to transform the mass matrix of RHN to a diagonal one, we go to a different

basis with the help of an unitary matrix, U, which is represented by:

U =

0 0 1

0 1 0

1 0 0

 . (4.15)

By this change in basis, we further obtain a change in the Yukawa coupling matrix, which is

given by:

Y =

 −a −a 2a+b

b−a 2a −a

2a b−a −a

 . (4.16)

Also, it is seen that the charge lepton mass matrix remains diagonal in this new basis:

M
′diag
l =U†.Ml.U = Mdiag

l . (4.17)

As already mentioned, the realisation of scotogenic model is done through A4 ×Z4 flavor

symmetry in this study. Within this model, a loop contribution factor ri is adressed via the

relation ri ∝
1

MNi
[198, 192]. So, the contribution of right handed neutrino can be given by

diag(r1, r2, r3). However, due to the degeneracy in the RHN masses, the loop factor also

becomes degenerate. Using Eq.4.7, the light neutrino mass matrix arising from the loop

diagram Fig.4.1 is of the following from:

Mνl =

K1 K2 K2

K2 K3 K4

K2 K4 K3

 (4.18)
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Eq.4.18 results in a µ − τ symmetric light neutrino mass matrix. Therefore, we concentrate

on generation of realistic neutrino mixing i.e. non zero θ13, which requires deviation from

exact µ − τ symmetric mass matrix. To break the µ − τ symmetry we have to consider the

non-degenerate right handed neutrino mass spectrum. Firstly we will take the condition

r1 ̸= r2 = r3 = r and further split the degeneracy of N2 and N3 by a small amount d, i.e

r3 = r2 + d. Now the structure of the light neutrino mass matrix given in Eq (4.18) will

deviate by say M0 which is proportional to d. So the elements of light neutrino mass

matrix(M) after considering r1 ̸= r2 = r3 = r are given as follows:

m11 =
π2

16

[
a2r1

{
−Plog(r2

1P)
r2
1P−1

+
Qlog(r2

1Q)

r2
1Q−1

}
+ a2r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}
+(2a+b)2r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}] (4.19)

m12 = a
π2

16

[
− (−a+b)r1

{
−Plog(r12P)

r2
1P−1

+
Qlog(r2

1Q)

r2
1Q−1

}
−2ar

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}
−(2a+b)r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}]
(4.20)

m13 = a
π2

16

[
−2ar1

{
−Plog(r2

1P)
r2
1P−1

+
Qlog(r2

1Q)

r2
1Q−1

}
− (−a−b)r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}
−(2a+b)r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}]
(4.21)

m22 =
π2

16

[
(a−b)2r1

{
−Plog(r2

1P)
r2
1P−1

+
Qlog(r2

1Q)

r2
1Q−1

}
+4a2r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}
+a2r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}]
(4.22)
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m23 = a
π2

16

[
2(−a+b)r1

{
−Plog(r2

1P)
r2
1P−1

+
Qlog(r2

1Q)

r2
1Q−1

}
+2(−a+b)r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}
+ar
{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}]
(4.23)

m33 =
π2

16

[
4a2r1

{
−Plog(r2

1P)
r2
1P−1

+
Qlog(r2

1Q)

r2
1Q−1

}
+(a−b)2r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}
+a2r

{
−Plog(r2P)

r2P−1
+

Qlog(r2Q)

r2Q−1

}]
(4.24)

where, P = m2 +v2(λ3 +λ4 −λ5) and Q = m2 +v2(λ3 +λ4 +λ5) with v signifying the

vev of the SM Higgs and λ2, λ3, λ4, λ5 are the quartic couplings.

Now the final light neutrino mass matrix after splitting the degereracy of N2 and N3 with

a small perturbation d can be written as:

Mνl = M+M0 (4.25)

where,

M0 = d

0 0 x

0 x 0

x 0 0

 (4.26)

with x = 2λ5v2.

4.4 Lepton flavor violating processes :

No experiment so far has observed a flavor violating process involving charged leptons.

However, many experiments are currently going on to set strong limits on the most relevant

LFV observables, in order to constraint parameter space involved in many new physics

models. In this section we will discuss various lepton flavor violating processes (LFV) such
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lα

η+

γ

Ni

lβ

η+

lα

η+

Ni lβ

lβ

γ

lα

γ

lα

Ni

lβ

Fig. 4.3 The 1-loop Feynman diagrams giving rise to lα −→ lβ γ .

as lα → lβ γ ,lα → 3lβ and µ − e conversion in nuclei [199, 200]. Currently muon decay

experiments are most prominent in nature which provides stringent limits for most models.

The MEG collaboration [41] has been able to set the impressive bound on muon decay

BR(lα → lβ γ)< 4.2×10−13. This is expected to improve as the experiment is upgraded to

MEG II. In case of lα → 3lβ decay, contraints comes from SINDRUM experiment [42] to

be BR(lα → 3lβ )< 10−12 which is set long ago. The future Mu3e experiment announces a

sensitivity of 10−16, which would imply a 4 orders of magnitude improvement on the current

bound.

The neutrinoless µ − e conversion of muonic atom is the most interseting developments

regarding the LFV processes [119]. There are many experiments which will basically aim for

the positive signal. DeeMe [120], Mu2e [121], COMET [122] and PRIME [123] are such

experiments primarily focusing on µ −e conversion of muonic atom. The sensitivity of these

experiments will range from 10−14 to 10−18. The current limits on τ observables are less

stringent, but will also get improved in the near future by the LHC collaboration , as well

as by B-factories such as Belle II [124]. In this part we will discuss the analytical results of

branching ratios of different LFV processes such as lα → lβ γ ,lα → 3lβ and µ −e conversion

in nuclei within the framework of scotogenic model.

In case of radiative lepton decay, the branching ratio of lα → lβ γ is given by[187]-
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BR(lα → lβ γ) =
3(4π3)αem

4G2
F

|AD|2BR(lα → lβ να
¯νβ ). (4.27)

Here, GF is the Fermi constant and αem = e2

4π
is the electromagnetic fine structure constant,

with e the electromagnetic coupling. AD is the dipole form factor which is given by-

AD =
3

∑
i=1

Y ∗
iβYiα

2(4π)2
1

m2
η+

F2(ρi) (4.28)

where the parameter ρi is defined as ρi =
M2

Ni
m2

η+
and the loop function F2(x) is given in

appendix.

For three body decay process like lα → 3lβ , the branching ratio is given by-

BR(lα → 3lβ ) =
3(4π2)α2

em

8G2
F

[
|AND|2 + |AD|2

(
16
3

log
(

mα

mβ

)
− 22

3

)
+

1
6
|B|2 +

(
−2ANDA∗

D +
1
3

ANDB∗− 2
3

ADB∗+h.c
)]

×BR(lα → lβ να
¯νβ ).

(4.29)

Here, we have kept mβ << mα only in the logarithmic term, where it avoids the appear-

ance of an infrared divergence. The form factor AD is generated by dipole photon penguins

and is given in equation 17. Regarding the other form factors AND is given by-

AND =
3

∑
i=1

Y ∗
iβYiα

6(4π)2
1

m2
η+

G2(ρi). (4.30)

AND is generated by non-dipole photon penguins, whereas B, induced by box diagrams

is given by-

e2B =
1

(4π)2m2
η+

3

∑
i,j=1

[
1
2

D1(ρi,ρj)Y∗
jβ Yjβ Y∗

iβ Yiα +
√

ρiρjD2(ρi,ρj)Y∗
jβ Y∗

jβ Yiβ Yiα

]
.

(4.31)

The loop functions G2(x), D1(x,y) and D2(x,y) are defined in appendix. Here, e Z-boson

penguin contributions are negligible, since in this model they are suppressed by charged
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lα

η+

η+

Ni

lβ
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lβ

lα

η+
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lα
lα

η+
lβ

l̄β

lβ

Ni

Fig. 4.4 The penguin contributions to lα −→ lβ γ , where the wavy lines depicts either a
Z-boson or a photon.

lepton masses. Similarly, Higgs-penguin contribution is also supressed which are not taken

into consideration. Next we consider the case of µ − e conversion in nuclei. The conversion

rate, normalized to the muon capture rate, can be expressed as -

CR(µ − e,Nucleus) =
peEem3

µG2
Fα3

emZ4
effF

2
p

8π2ZΓcapt
×
[
|(Z+N)(g(0)LV +g(0)LS )+(Z−N)(g(1)LV +g(1)LS )|

2

+|(Z+N)(g(0)RV +g(0)RS)+(Z−N)(g(1)RV +g(1)RS)|
2
]

(4.32)

here, number of photon and neutron is given by Z and N. Zeff is the effective atomic

charge, Fp denotes the nuclear matrix element and total muon capture rate is denoted by

Γcapt. The values of these parameter are different for different nucleus under consideration.

Also, pe and Ee are the momentum and energy of electron. The expression for g(0)XK and g(1)XK

(X=L,R and K=S,V) present in the above equation is given by-

g(0)XK =
1
2 ∑

q=u,d,s

(
gXK(q)G

q,p
K +gXK(q)G

q,n
K

)
(4.33)

g(1)XK =
1
2 ∑

q=u,d,s

(
gXK(q)G

q,p
K −gXK(q)G

q,n
K

)
. (4.34)

Numerical values of GK are given in various literatures. Again the effective couplings

gXK(q) in scotogenic model has many contributions, which are given below-

gLV (q)≈ gγ

LV (q) (4.35)
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gRV (q) = gLV (q)|L↔R (4.36)

gLS(q)≈ 0 (4.37)

gRS(q)≈ 0 (4.38)

where gγ

LV(q) stands for the contribution due to photon penguins. Because of the inbuilt

Z2 symmetry in scotogenic model, there is no box contribution to µ − e conversion of nuclei.

This additional symmetry forbids the coupling between scalars(η+ and η−) and the quark

sector. Regarding the Z-boson penguins contributions, they turn out to be suppressed by

charged lepton masses. So the effective coupling can be written as-

gγ

LV (q) =

√
2

GF
e2Qp(AND −AD). (4.39)

The form factors AND and AD have been already defined. Furthermore, Qp is the electric

charge of the corresponding quark.

4.5 Leptogenesis

We study baryogenesis in the Scotogenic model realised by A4 × Z4 symmetry. We can

produce observed baryogenesis via the mechanism of leptogenesis [179] in our model.

However, the leptogenesis process must occur by the out of equilibrium decay of the RHN,

in our case N1. As discussed in many literatures [189, 190], we now know that there exists

a lower bound of about 10TeV for the lightest of the RHNs(MN1) in the Scotogenic model

considering the vanilla leptogenesis scenario [180, 110]. For a heirarchical mass of RHN,

i.e MN1 << MN2 ,MN3 , the leptogenesis produced by the decay of N2 and N3 are supressed

due to the strong washout effects produced by N1 or N2 and N3 mediated interactions [110].

Thereby, the lepton asymmetry is produced only by the virtue of N1 decay and this is

further converted into the baryon asymmetry of the Universe(BAU) by the electro-weak

sphaleron phase transitions [111]. Now for the generation of BAU, we solve the simultaneous
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Boltzmann equations for N1 decay and formation of NB−L. The B-L calculation depends

on the comparison between the decay rates for N1 → lη , l̄η∗ processes and the Hubble

parameter, which causes a certain impact on the asymmetry as well as on the CP-asymmetry

parameter ε1. In the calculation of leptogenesis, one important quantity that differentiates

between weak and strong washout regime is the decay parameter. It is expressed as:

K1 =
Γ1

H(z = 1)
, (4.40)

where, Γ2 gives us the total N2 decay width, H is the Hubble parameter and z =
MN1

T with

T being the temperature of the photon bath. We can express H in terms of T and the

corresponding equation is given by:

H =

√
8π3g∗

90
T 2

MPl
. (4.41)

In Eq.(4.41), g∗ stands for the effective number of relativistic degrees of freedom and

MPl ≃ 1.22×1019 GeV is the Planck mass. We have introduced a perturbation (ξ ) in our

work to generate non-zero θ13 by breaking the µ − τ symmetry. Thus we obtain a non-

degeneracy in the RHN masses as discussed in the above section4.3. The mass of the lightest

RHN is fixed in the range MN1 = 104 − 105 GeV and that of N2 is MN2 = 108 − 109 GeV.

The range of MN3 will be evaluated considering the relation MN3= MN2 + d. Now, by this

choice of RHN masses along with m
η0

R
= 400−800 GeV and most significantly the lightest

active neutrino mass m1 = 10−13 − 10−12 eV, we fall on the weak washout regime. The

Yukawa couplings obtained by solving the model parameters are incorporated in the decay

rate equation for N1 which is given by,

Γ1 =
MN1

8π
(Y †Y )11

[
1−
(m

η0
R

MN1

)2
]2

=
MN1

8π
(Y †Y )11(1−η1)

2 (4.42)
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Again for the decays N1 → lη , l̄η∗, the CP asymmetry parameter ε1 is given by,

ε1 =
1

8π(Y †Y )11
∑
j ̸=1

Im[(Y †Y )2]1 j

[
f (r j1,η1)−

√r j1

r j1 −1
(1−η1)

2
]
, (4.43)

where,

f (r j1,η1) =
√

r j1

[
1+

(1−2η1 + r j1)

(1−η1)2 ln(
r j1 −η2

1
1−2η1 + r j1

)

]
, (4.44)

and r j1 =
(MNj

MN1

)2, η1 ≡
(m

η0
R

MN1

)2.

The Boltzmann equations for the number densities of N1 and NB−L, given by [189],

dnN1

dz
=−D1(nN1 −neq

N1
), (4.45)

dnB−L

dz
=−ε1D1(nN1 −neq

N1
)−W1nB−L, (4.46)

respectively. neq
N1

= z2

2 K1(z) is the equilibrium number density of N1, where Ki(z) is the

modified Bessel function of ith type and

D1 ≡
Γ1

Hz
= KN1z

K1(z)
K2(z)

(4.47)

gives the measure of the total decay rate with respect to the Hubble rate, and W1 =
ΓW
Hz is the

total washout rate. Again, W1 =W1D +W∆L=2, i.e the total washout term is the sum of the

washout due to inverse decays lη , l̄η∗ → N1 (W1D = 1
4KN1z3K1(z)) and the washout due to

the ∆L = 2 scatterings lη ↔ l̄η∗, ll ↔ η∗η∗ which is given by,

W∆L=2 ≃
18
√

10MPl

π4gl
√

g∗z2v4 (
2π2

λ5
)2MN1m̄ς

2. (4.48)

Here, gl is the internal degrees of freedom for the SM leptons, and m̄ς is the effective neutrino

mass parameter, defined by:

m̄ς
2 ≃ 4ς

2
1 m2

1 + ς2m22 + ς
2
3 m2

3, (4.49)
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where m′
is is the light neutrino mass eigenvalues and ςk is as defined as:

ςk =
( M2

Nk

8(m2
η0

R
−m2

η0
I
)
[Lk(m2

η0
R
)−Lk(m2

η0
I
)]
)−1

(4.50)

The final B-L asymmetry n f
B−L is evaluated by numerically calculating Eq.(4.45) and

Eq.(4.46) before the sphaleron freeze-out. This is converted into the baryon-to-photon

ratio given by:

nB =
3
4

g0
∗

g∗
asphn f

B−L ≃ 9.2×10−3n f
B−L, (4.51)

In Eq.(4.51), g∗ = 110.75 is the effective relativistic degrees of freedom at the time when

final lepton asymmetry was produced, g0
∗ =

43
11 is the effective degrees of freedom at the

recombination epoch and asph = 8
23 is the sphaleron conversion factor taking two Higgs

doublet into consideration. The Planck limit 2018 gives a bound on the observed BAU(nobs
B )

to be (6.04±0.08)×10−10[201]. Therefore, in our work we have chosen the free parameters

appropriately so as to generate the observed BAU. The values of the quartic coupling, λ5

is taken in range 10−8 −10−4 for successful generation of leptogenesis as well as to have

significant results for LFV.

4.6 Numerical Analysis

In our work, we do a random scan for the free parameters of our model given by:

MN1,MN2,η
0
R,λ5 (4.52)

The values of the above mentioned parameters for which we study the impact on neutrino

mass, LFV and BAU are given in the Table4.2 as follows:
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Fig. 4.5 Plots in the first-row shows baryon asymmetry as a function of RHN (MN1), the
second-row shows baryon asymmetry as a function of the quartic coupling (λ5), in third-row
baryon asymmetry as a function of lightest neutrino mass eigenvalue(ml) is depicted and
in the fourth row a variation between leptonic Dirac CP phase(δ ) and baryon asymmetry is
shown respectively. The black horizontal line gives the current Planck value for BAU.
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Parameter Parameter space
MN1 104 GeV - 105 GeV
MN2 108 GeV - 109 GeV
η0

R 400 GeV- 800 GeV
λ5 10−8- 10−4

Table 4.2 Free parameters of the model and their respective parameter space.

Fig. 4.6 Effective mass as a function of lightest neutrino mass eigenvalue(ml) for NH/IH.
The horizontal(black) line is the upper limit for the effective mass (mββ (eV )∼ 0.1(eV )) of
light neutrinos obtained from KamLAND-Zen experiment and the vertical red line depicts
the Planck limit for the sum of the light neutrino masses.

We choose the parameter space in such a way so as to fulfill the constraints coming

from various phenomenologies. Considering the lightest RHN in TeV scale is a significant

characteristic for vanilla leptogenesis in Scotogenic model [180, 202]. A lower bound of

about 10 TeV is set for N1, which has been verified in many literatures [110, 180]. Again, an

inert Higgs doublet cannot possibly produce the observed relic density in the mass regime

MW < MDM ≤ 550 GeV, also called the IHDM desert. Thus, we have considered the lightest

of the inert scalar doublet in the range given in Table.(4.2) in order to abide by the bounds

from Planck limit to be a probable dark matter candidate and also to check its viability in the

range 400-800 GeV. Again the charged scalar(η+) of the inert doublet is taken to be (η0
R +5)

GeV, following the constraints from LEP II [203]. The choice of quartic coupling between

the SM Higgs and inert doublet λ5 ̸= 0 is to cause violation of the lepton number.



4.6 Numerical Analysis 115

Fig. 4.7 Baryon asymmetry of the Universe as a function of effective mass of active
neutrinos(mββ ) for NH/IH. The horizontal(black) line is Planck value on BAU and the
vertical red line depicts the upper bound on the effective mass (mββ (eV )∼ 0.1(eV )) of light
neutrinos obtained from KamLAND-Zen experiment.

Fig. 4.8 Contour plots relating the model parameter a and b to the baryon asymmetry of the
Universe. The left panel is for NH and right panel for IH.

Now, we diagonalise the light neutrino mass matrix (Mν l) by:

UT
PMNSMν lUPMNS = M̃ν l =

m1 0 0

0 m2 0

0 0 m3

 (4.53)

where,

UPMNS =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

UMaj (4.54)
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Fig. 4.9 Contour plots relating the model parameter a and d(i.e. the perturbation) to the
baryon asymmetry of the Universe. The left panel is for NH and right panel for IH.

is the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix and ci j = cosθi j, si j = sinθi j and

δ is the leptonic Dirac CP phase. The diagonal matrix UMaj = diag(1,eiα ,ei(β+δ )) contains

the Majorana CP phases α,β .

The diagonal mass matrix of the light neutrinos can be written as, M̃ν l = diag(m1,
√

m2
1 +∆m2

21,
√

m2
1 +∆m2

31)

for normal hierarchy and M̃ν l = diag(
√

m2
3 +∆m2

23 −∆m2
21,
√

m2
3 +∆m2

23,m3) for inverted

hierarchy. We then numerical solve the model parameter, thereby generating the light neu-

trino mass matrix, the Yukawa coupling matrix and the neutrino mixing matrix.

A significant experimental technique of detecting neutrino mass is by the process of neutrino-

less double beta decay (0νββ ) [204–207]. Some of the well known experiments related to it

are KamLAND-Zen [208, 209], GERDA [40, 210], KATRIN [211, 212]. We measure the

effective neutrino mass |mββ | expressed by the formula,

|mββ |=
3

∑
k=1

mkU2
ek (4.55)

where, U2
ek are the elements of the neutrino mixing matrix with k holding up the generation

index. This eq.(4.55) can be further expressed as,

|mββ |= |m1U2
ee +m2U2

eν +m3U2
eτ |. (4.56)
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It is important to check if the model obeys the bound of the effective mass with the lightest

neutrino mass so that we can relate the current light neutrino parameters giving correct hints

to ongoing experiments and their future sensitivity.

Fig. 4.10 Br(µ → eγ) and Br(µ → 3e) as a function of ρN (where ρN = ( MN
m

η+
)2) for NH and

IH. The dashed horizontal lines are the recent upper bounds
.

Fig. 4.11 Br(µ → eγ) and Cr(µ → e,Ti) as a function of ρN (where ρN = ( MN
m

η+
)2) for NH

and IH. The dashed horizontal lines are the recent upper bounds.

From Fig.(4.6), we see that the effective mass of the light neutrinos are consistent with the

KamLAND-Zen experiment for ml = 10−4−10−2 eV incase of both NH and IH. A variation

between mass of the lightest RHN(MN1) and BAU for NH/IH is depicted in the first row of

Fig.(4.5). We see that the parameter space taken for MN1 is compatible for generating the

observed BAU for both NH/IH. The second row of Fig.(4.5) shows that λ5 = 10−6−10−4 has

concentrated points satisfying the Planck value for BAU for NH/IH. However, we have fewer

points below λ5 = 10−6 which satisfy the bound for BAU. Thus, we can conclude that the
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Fig. 4.12 Br(µ → eγ) and Br(µ → 3e) as a function of lightest neutrino mass eigenvalue(ml)
for NH and IH. The dashed horizontal lines are the recent upper bounds.

Fig. 4.13 Rµe as a function of lightest neutrino mass eigenvalue(ml) for NH and IH. Here,
Rµe =

Br(µ→3e)
Br(µ→eγ) .

space λ5 = 10−6 −10−4 is consistent with the BAU. Again from the variation plot between

the lightest active neutrino mass eigenvalue(ml) and BAU, we get a constraint region of ml

which satisfies the Planck value for BAU both for NH/IH. Also, interestingly the constraint

region of ml falls within the bounds given by Planck for the summation of the light neutrino

masses. The fourth row of Fig.(4.5) shows that the variation of CP violating phase(δ ) with

the baryon asymmetry of the Universe. Here, we observe that δ value above 10−2 satisfies

the Planck value for BAU for both NH/IH. A plot of BAU as a function of effective neutrino

mass is evaluated as can be seen from Fig.(4.7). It is thereby observed that the effective

neutrino mass ranging from 10−2 −10−1 eV is successful in generating the correct BAU for

NH, similar to that incase of IH. In Fig.(4.8), we show a contour plot between the model

parameters a and b with the effective mass of light neutrinos. And from Fig.(4.8), we see
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Fig. 4.14 Rµe as a function of ρN for NH and IH. Here, Rµe =
Br(µ→3e)
Br(µ→eγ) .

a co relation between a and b with the baryon asymmetry of the Universe. From these

plots, we obtain the range of the model parameters, i.e a ≃ 0.8×10−4 −0.13×10−4 and

b ≃ 0.2−0.4 which further gives rise to a constraint in the Yukawa coupling matrix with its

elements having values less than 3.We have considered a perturbation d in order to break the

degeneracy of the RHN as well as to deviate from the µ − τ symmetry. So, in Fig.4.9 we

show a contour plot so as to constraint d w.r.t the baryon asymmetry of the Universe.

We have studied the LFV processes within the model. LFV obervables are ploted against

different parameters defined within the parameter spaces of the model. Relevant formulae for

LFV proceses lα → lβ γ , lα → 3lβ and µ − e conversion are discussed in section(4.4). We

have defined the ratio of branching ratio of two LFV decay lα → lβ γ and lα → 3lβ as Rµe

[187] i.e

Rµe =
Br(lα → 3lβ )
Br(lα → lβ γ)

(4.57)

In case of µ − e conversion the Z-penguins gives a very little contribution compared to

γ-penguines. In this sutuation dipole operator will dominate the conversion rate. So, the

coversion rate will have a very simple relation given below-

CR(µ − e, ,Nucleus)
Br(µ → eγ)

≈ f(Z,N)

428
(4.58)

Where f(Z,N) is a funation which depends on the nucleus and ranges from 1.1 to 2.2 for

nuclei of interest i.e titanium.
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We have computed all the branching ratio of LFV decays and conversion ratio taking

consideration of contraints coming from the model. Variation of Br(µ → eγ) and Br(µ → 3e)

as a function of ρN (where ρN = ( MN
m

η+
)2) is depicted in Fig.(4.10). In this case for both the

mass orderings, we get Br(µ → eγ) in the range 10−18 to 10−13 and Br(µ → 3e) spanning

from 10−33 to 10−23, which are consistant with current and near future experimental limits.

Similarly we have ploted the variation of µ − e conversion ratio in Fig.(4.11) against ρN

which is also in the experimental limits. Variation of lightest neutrino mass eigenvalue for

both the mass orderings with both the branching ratio Br(µ → eγ) and Br(µ → 3e) is given

in Fig.(4.12). From this we can see that for both the mass ordering results are consistant with

experimental limit.

In Fig.(4.13) we have ploted the variation of Rµe which is the ratio of two LFV decays

lα → lβ γ and lα → 3lβ against the lightest neutrino mass eigenvalue for both the mass

orderings. From this we can infer that in case of both NH/IH ,lα → lβ γ decay supress the

lα → 3lβ decay in our prameter spaces. Also, we can see that the parameter space of lightest

active neutrino mass for which we get this kind of suppression is in the range 10−3 −1eV.

Further, we have also generated a plot (Fig.(4.14)) depicting the co relation between Rµe

and ρN and it is observed that the viable range for ρN is 1010 −1012 GeV. We have shown a

common parameter space of the model parameters, satisfying the baryon asymmetry of the

Universe in Table 4.3.

Parameter NH IH
a 0.8×10−4 −0.13×10−4 0.6×10−4 −0.9×10−4

b 0.2−0.4 0.1−0.16
d 10−6 −0.15×10−4 0.9×10−6 −10−6

Table 4.3 Model parameters of the model and their respective parameter space satisfying the
Planck limit for baryon asymmetry of the Universe.

We see from Table. 4.3 that a larger parameter space of a,b and d are consistent with the

Planck limit for BAU incase of NH as compared to that of IH.
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4.7 Summary

In this chapter, we have basically realised Ernest Ma’s Scotogenic model with the help of

discrete symmetries A4 ×Z4. A µ − τ symmetric neutrino mass matrix is obtained, which

is thereafter broken by introducing a perturbation to it. This mechanism is required for the

generation of realistic neutrino mixing i.e. non zero θ13, deviation of θ23 from maximality

and small correction in solar mixing angle θ12. As ri ∝
1

MNi
, we have broken the degenracy

in the masses of the RHN with the implementation of a perturbation which further breaks

the µ − τ symmetry. We have taken four free parameters, MN1,MN2,η
0
R and λ5 whose values

are mentioned above. By this choice of the parameter space, we have shown its consistency

with various experimental and cosmological bounds. The lightest of the RHN, decays to

produce lepton asymmetry which is further converted into BAU. Thus, the parameter space

taken into account for the generation of the BAU are seen to follow the Planck value for

BAU. From the third row of Fig.(4.5), we can see that the lightest active neutrino mass

eigenvalue obtained from the model satisfies the Planck value for BAU and consecutively

obeys the Planck limit for the summation of light neutrino masses for NH/IH. Thus, the model

is viable in connecting BAU and 0νββ , also satisfying the bounds coming from neutrino

oscillation data. We have also calculated the effective mass of the light neutrinos and shown

the results in Fig.(4.6). The lightest active neutrino mass eigenvalue for both NH/IH is seen

to satisfy the KamLAND-Zen limit for effective mass of light neutrinos. Additional to this,

a contour plot co-relating the model parameters with BAU is also studied. The conclusion

we can draw from it is that the parameter space obtained from the model falls within the

experimental bounds, thereby constraining the Yukawa coupling matrix. Furthermore, we

have computed the branching ratios, Br(µ → eγ) and Br(µ → 3e) of LFV decays along with

the µ −e conversion ratio. A variational plot between the branching ratios and ρN is shown in

Fig.(4.10), which is conistent with the current and the near future experimental bounds. Also,

a similar plot for conversion ratio is also shown in Fig.(4.11), which also satisfies the current
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upper bound. We have also studied a co-relation plot between the branching ratios and the

lightest neutrino mass eigenvalue and see that it also obeys the experimental upper bounds for

the branching ratios. It is predicted well from Fig.(4.13) and Fig.(4.14) that lα → lβ γ decay

supress the lα → 3lβ decay incase of both NH/IH. We can say that the results hardly show

any change depending on the mass hierarchies. Overall, this realisation of the Scotogenic

model by discrete symmetries, with the considerations on the free parameters taken from

various bounds is viable for studying neutrino as well as cosmological phenomenologies.
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