"Creativity is seeing the same thing but thinking differently"

~ Avul Pakir Jainulabdeen Abdul Kalam

Declaration

I hereby declare that the thesis entitled "*Layer Dependent Physical and Chemical properties in Two Dimensional Carbon based materials and their heterostructure*" submitted to The School of Sciences, Tezpur University, in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Physics, has been carried out by me at Department of Physics, Tezpur University, Assam, India, under the supervision of Professor Pritam Deb. The work is original and has not been submitted in part or full in any other university or institute for any degree, diploma, associateship, fellowship or any other similar title or recognition.

Date:

Place:

(Meenakshi Talukdar) Registration No. TZ156171 of 2015

TEZPUR UNIVERSITY

(A Central University established by an Act of Parliament) DEPARTMENT OF PHYSICS Napaam, Tezpur-784028, Assam, India

Professor Pritam Deb E-mail: pdeb@tezu.ernet.in Phone No.: +91-3712- 275560 (O) Fax: +91-3712- 267005/6

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "*Layer Dependent Physical and Chemical properties in Two Dimensional Carbon based materials and their heterostructure*" submitted to the School of Sciences, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in Physics, is a record of research work carried out by **Ms. Meenakshi Talukdar** under my supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date:

Place:

(Pritam Deb) Principal supervisor

TEZPUR UNIVERSITY

(A Central University established by an Act of Parliament) Napaam, Tezpur-784028, Assam, India

CERTIFICATE OF THE EXTERNAL EXAMINER AND ODEC

This is to certify that the thesis entitled "*Layer Dependent Physical and Chemical properties in Two Dimensional Carbon based materials and their heterostructure*" by **Ms. Meenakshi Talukdar** to Tezpur University in the Department of Physics under the School of Sciences in partial fulfilment for the award of the degree of Doctor of Philosophy in Physics, has been examined by us and found to be satisfactory.

The committee recommends for the award of the degree of Doctor of Philosophy.

Signatures:

Supervisor Date: External examiner Date:

Dedicated to My Beloved Parents

Mr. Hiralal Talukdar

and

Mrs. Hemalata Talukdar

Acknowledgment

Foremost, I am deeply indebted to my supervisor **Prof. Pritam Deb of Department of Physics, Tezpur University,** for his continuous support, motivation, and patience throughout this voyage. This endeavour would not have been possible without his constant guidance and instructions. His supervision and fruitful discussions have helped me in maintaining a steady pace of work and also have helped me in building up my selfconfidence to a great extent. I will always cherish the memories of my association with him.

I express my sincere thanks to my doctoral committee members **Prof. Gazi Ameen** Ahmed and Dr. Shyamal Kumar Das of Department of Physics, Tezpur University, for their valuable suggestions and support during my research work.

I gratefully acknowledge our collaborators Dr. Nirmal Mazumder and Dr. Sanjiban Chakrabarty of Manipal School of Life Sciences, for providing me with Biological facilities. I express my appreciation towards the Sophisticated Analytical Instrument Facility (SAIF) of North-Eastern Hill University, Shillong, Institute of Advanced Study in Science and Technology (IASST) Guwahati, and North East Institute of Science and Technology, Jorhat for providing the TEM, AFM and FESEM characterization facilities respectively. I would also like to extend my gratitude to Dr. Pabitra Nath and Prof. Dambarudhar Mohanta of the department of Physics, Tezpur University for their support in conducting the Raman scans and UV analysis.

I would like to acknowledge the funding sources for supporting me in carrying out my research work, without any financial trouble. Initially, I was an Institutional fellow student, funded by **Tezpur University.** Later on, I got selected as a Senior Research Fellow under the **Human Resource Development (HRD) Group of the Council of Scientific and Industrial Research (CSIR), India**.

I would like to acknowledge the **technical staff of the Department of Physics** and **Sophisticated Analytical Instrumentation Centre (SAIC) of Tezpur University** for their support in carrying out the experiments with numerous analytical instrument facilities. I offer my gratitude to the entire fraternity of Tezpur University for giving me all types of amenities for the fruitful execution of my research work.

I express my heartfelt gratitude to Deepak Bhaiya, Kakoli Ba, Koushik Da, Kashmiri Ba, and Sushant Bhaiya who were my senior lab mates at Advanced Functional Material Laboratory, Department of Physics, Tezpur University for their interest, suggestions, and valuable help.

Thanks should also go to my friends and juniors Kashmiri, Saransha, Monica, Sayoree, Liyenda, and Anil for their timely help, support, and their wholehearted cooperation. I consider myself to be very lucky as I have met Mayuri and Korobi, who are my lab mates. During my Ph.D. tenure, they supported me. They always inspired me to do something new. Thank you for being my rock and supporting me in this journey. I would not have made it without you two. Your support keeps me going.

It would be remiss in not mentioning the name of Aftab Da. Thanks for being there whenever I was in need during my Ph.D. and for the valuable support throughout my research work.

It's my pleasure to express my deepest gratitude towards my loved and respected **parents** (**Deuta and Ma**) for their infinite support through these hard times and for affection during the happiest time. I am immensely grateful to my elder sister (**Juri**), brother-in-law (**KKB**), and my brother (**Babu**) for their encouragement and motivation. I would also like to thank my husband **Deep** for his priceless and valuable support during this beautiful journey. Their encouragement leads me to the successful completion of this thesis. Also, I express my heartful gratitude and affection to my parents-in-law Mr. Premeswar Nath and Mrs. Rupali Devi, and sisters-in-law Parishmita Devi for extending moral support during the tenure of my doctoral research.

Finally, I owe all my endeavours to **Almighty God** for granting me the mental health and strength to accomplish this research work.

(Meenakshi Talukdar)

List of Figures

Figure	Caption	Page No.
Figure 1.1	Different Strategies to improve the functionalities in	3
	Carbon Nitride based materials beyond catalyst	
Figure 1.2	Geometrical structure of Carbon Nitride along with	7
Figure 1.3	its fascinating properties Engineering the surface and interfaces of Graphitic	14
	Carbon Nitride (g-C ₃ N ₄) for its use in various	
	applications	
Figure 1.4	Diverse technological applications in research field	19
	using Carbon nitride based materials.	
Figure 2.1	Schematic description of oil-water separation by g-	29
	C ₃ N ₄ @FeNi ₃ nanocomposite.	
Figure 2.2	XRD plot of (a) FeNi ₃ (b) g-C ₃ N ₄ and	34
	(c) g-C ₃ N ₄ @FeNi ₃ nanocomposite.	
Figure 2.3	(a) TEM micrograph and (b) SAED pattern of g-	35
	C ₃ N ₄ @FeNi ₃ nanocomposite before oil adsorption	
Figure 2.4	AFM images of the surface modified nanocomposite	36
	(a) phase profile (b) topology profile of before oil	
	adsorption and (c) phase profile (d) topology profile	
	of after oil adsorption embedded with their	
	respective 3D image on the left top.	
Figure 2.5	(a) BET adsorption-desorption isotherm and (b) BJH	37
	pore-size distribution analysis	
Figure 2.6	(a) Hydrophilic/oleophobic surface of	38
	nanocomposite showing contact angle below 90° and	
	(b) surface modified to hydrophobic/oleophilic	
	showing contact angle above 90°. (c) Removal	
	process of crude oil ((i)-(iv)) from water surface by	
	nanocomposite under magnetic field.	
Figure 2.7	GC-MS plot of the surface modified composite	39

before and after oil adsorptions.

- Figure 2.8 The surface adsorbed oil by nanocomposite (a) and the water after magnetic separation (b) with an inset showing the oil adsorbed nanocomposite (marked by dotted lines). The rapid response time for magnetic separation is shown in both the cases as t=0 sec and t=1 sec. (c) The separation efficiency as a function of wt. % of the g-C₃N₄@FeNi₃ composite system.
- Figure 2.9The collected surface modified g-C3N4@FeNi342nanocomposite (a) is washed (b) and oil is collected(c).
- Figure 2.10 Surface atomic configuration of (a) g-C₃N₄ layer structure with a interplanner spacing of 12 Å, (b) composite of g-C₃N₄ and FeNi₃ where the FeNi₃ is stabilized on surface of the layer structure, monolayers of (c) g-C₃N₄ and (d) composite. Color codes of the respective atoms are marked in the figure. Dotted red circle shows the presence of FeNi₃ on g-C₃N₄ surface.
- **Figure 2.11** Electronic density of state pattern of both g-C₃N₄ and g-C₃N₄@FeNi₃ nanocomposite (a) DOS and (b) LDOS. Projected density of states (PDOS) for indivisual atomic orbitals shown in (c) for g-C₃N₄ and (d) g-C₃N₄@FeNi₃ nanocomposite. The Fermi level is denoted by black dotted lines at energy $E_F = 0$ eV.
- **Figure 3.1** Schematic description of an in-plane microsupercapacitor of g-C₃N₄@FeNi₃ heterostructure. Pseudocapacitive (FeNi₃) and electrochemical double layer (g-C₃N₄) are combined to form the heterostructure system.

41

44

45

49

Figure 3.2	2 Microstructural characterization 2D heterostructure	
	for in-plane micro-supercapacitor; (a)TEM	
	micrograph of g-C ₃ N ₄ and (b) g-C ₃ N ₄ @FeNi ₃	
	heterostructure. (c) FESEM image of g-C ₃ N ₄ @FeNi _{3.}	
Figure 3.3	(a) Phase profile and (b) surface topology AFM	53
	images of g-C ₃ N ₄ @FeNi ₃ .	
Figure 3.4	Raman curve for hybrid g-C ₃ N ₄ @FeNi ₃	54
	heterostructure	
Figure 3.5	Electrochemical performance of g-C ₃ N ₄ @FeNi ₃	55
	heterostructure samples under three-electrode mode	
	at different scan rates.	
Figure 3.6	Galvanostatic charge discharge curve of the	57
	prepared heterostructure system at different current	
	densities with (a) 1M KOH and (b) 2M KOH	
	electrolyte concentration.	
Figure 3.7	(a) Nyquist plot of the electrode. (b) inset shows the	59
	enlarged high-frequency region.	
Figure 3.8	(a) Comparative study 3D visualization graph for	60
	areal capacitance of the heterostructure. (b) Cycling	
	capacity of the g-C $_3N_4$ @FeNi $_3$ heterostructure. (c)	
	inset shows the stability of the system after its 1000^{th}	
	cycle.	
Figure 3.9	Mechanism for the device fabrication using 2D g-	61
	C ₃ N ₄ @FeNi ₃ heterostructure.	
Figure 3.10	(a) g-C ₃ N ₄ and (b) g-C ₃ N ₄ @FeNi ₃ heterostructure	65
	from the top view. (c) Multi-layered heterostructure	
	system with an interlayer spacing of 1.5 Å in a	
	supercell of 3×3×1 units marked with black dotted	
	line. Pink coloured arrows marks are shown to	
	distinct out-plane and in-plane direction of the	
	supercell model for easy understanding of the	

calculation method with respect to the Cartesian coordinate system.

- **Figure 3.11** The total energy variation as a function of cut-off 65 energy of the system gained after geometry optimization to achieve structural stability via BFGS algorithm.
- Figure 3.12 Local density of states (LDOS) calculation for both. a, 66 g-C₃N₄ and b, g-C₃N₄@FeNi₃ heterostructure system. In both cases, monolayer and multi-layered sheets are considered.
- Figure 3.13Partial density of states (PDOS) are shown for (a) g-
 C_3N_4 and (b) g-C3N4@FeNi3 heterostructure system.67Fermi energy level is shown with black dotted line.
- Figure 3.14 Band Structure of (a) g-C₃N₄ and (b) g-C₃N₄@FeNi₃ 68 heterostructure system are shown. Similarly, the band structure of respective multilayer systems is shown in (c) g-C₃N₄ and (d) g-C₃N₄@FeNi₃ heterostructure. The bands are plotted along the symmetric k-points of Γ-M-K-Γ direction.
- Figure 3.15 (a) Calculated quantum capacitance (C_Q) as a 69 function of the electrode potential and (b) Ragone plot of the heterostructure g-C₃N₄@FeNi₃ system compared with other reported systems.
- Figure 4.1Schematic of the developed 2D heterostructure based75composite film.
- Figure 4.2 Represents surface morphology of the developed 79 heterostructure based packaging film. (a) FESEM images of the cross-sectional and (b) top view of the film. The uniformity of heterostructure into the polymer can be easily identified from the cross sectional image.

- Figure 4.3AFM images of (a) Surface topology (b) phase profile80(c) height profile of the developed film
- **Figure 4.4** Thermogravimetric analysis (TGA) curves (a) g- 81 C₃N₄, (b) 2D/2D heterostructure and (c) 2D/2D biodegradable film
- Figure 4.5 Barrier properties (a) real time image of Water 83 vapour transmittance rate (b) 3D representation of WVTR before and after nanomaterial incorporation into host matrix
- Figure 4.6 (a) Tensile strength and (b) Young's Modulus of 84PVA/Chitosan and 2D heterostructure based film,(c) Flexibility of the film.
- Figure 4.7 3D representation of contact angle measurement of 85 PVA/Chitosan film before and after inculcating with 2D/2D heterostructure.
- **Figure 4.8** Effect of CuSe as antimicrobial property studies on 87 2D g- $C_3N_4@CuSe$ heterostructure film (a, b) Gram negative bacteria and (c, d) Gram positive and (e) identifies the zone of inhibition of the respective concentration. It can be seen from the (a-d) that without presence of CuSe within the pristine g- C_3N_4 leads towards no antimicrobial property as a result no zone of inhibition occurs.
- **Figure 4.9** Investigation of Ion migration of the film after 150 88 days. The developed heterostructure film does not release any ion when the food items are in contact with it.
- Figure 4.10Represents the 3D presentation of film degradation.90The complete film gets degraded easily without
causing damage to the environment. The image of
degradation of the film was taken after keeping the

film buried in soil for 10 days, later the same film was further buried to continue its degradability

- Figure 4.11Shelf life of food stored using 2D heterostructure91based composite film.
- Figure 5.1Schematic representation of interaction between952D/2D vdW heterostructure with localized charge
distribution for efficient dye degradation.
- **Figure 5.2** X-ray diffraction analysis of g-C₃N₄/CuSe 99 heterostructure.
- Figure 5.3 (a) SEM images of CuSe nanoflakes and (b) g- 100 C₃N₄/CuSe heterostructure (c) Zoomed version of the selected area in red dotted line. Yellow dotted line shows the interfaces formed between g-C₃N₄ and CuSe
- **Figure 5.4** (a and b) HRTEM images of g-C₃N₄/CuSe 100 heterostructure (c) Zoomed version of the selected area in red dotted line which identifies the formation of the heterointerface.
- **Figure 5.5** Raman spectrum of 2D/2D g-C₃N₄/CuSe 101 heterojunction.
- Figure 5.6 UV-vis diffuse reflectance of (a) CuSe, (b) g-C₃N₄ and 102
 (c) 2D/2D g-C₃N₄/CuSe heterojunction. Inset showing the band energies of respective systems.
- **Figure 5.7** Photoluminescence spectra of (a) CuSe, (b) $g-C_3N_4$ 103 and (c) 2D/2D $g-C_3N_4$ /CuSe heterojunction
- Figure 5.8 (a-d) Identifies the Real Time Images of MB dye 105 removal under sun light exposure, (e) Investigation of Photo degradation of MB using 2D/2D heterostructure under UV-vis absorbance spectrum taking different time interval. (f) Mechanism showing the removal of dye using 2D/2D

heterostructure.

- **Figure 5.9** (a) Kinetics and (b) Zeta potential for dye 106 degradation nanosystem
- Figure 5.10 Density of States (DOS) plot for (a) g-C₃N₄/CuSe and 109 (b) g-C₃N₄/CuSe-MB are shown.
- **Figure 5.11** Electronic Charge density counter maps have been 110 plotted for (a) g-C₃N₄/CuSe and (b) g-C₃N₄/CuSe-MB with scale bar.
- Figure 5.12 Local density of states (LDOS) plot for (a) g- 111 $C_3N_4/CuSe$ heterostructure and (b) g- $C_3N_4/CuSe$ -MB heterostructure.
- Figure 5.13 Projected density of states (PDOS) of individual 112 atoms (a) C (b) N (c) Se and (d) Cu for g-C₃N₄/CuSe heterostructure and (e) C, (f) N, (g) Se (h) S and (i) Cu for g-C₃N₄/CuSe-MB heterostructure are plotted.
- Figure 5.14 Band alignment of the heterojunctions (top panel 113 from (a-c)) for g-C₃N₄/CuSe and (bottom panel from (d-f)) g-C₃N₄/CuSe-MB obtained from PBE, MGGAC and HSE functional, respectively.
- Figure 5.15 Inverse participation plots of the heterojunctions for 115
 (a) g-C₃N₄/CuSe and (b) g-C₃N₄/CuSe-MB. All the calculations have been performed using HSE functional. Black dotted vertical line presents the Fermi level in (a) and (b).
- Figure 5.16 Electrostatic potential plots of the system for (a) g- 115 C₃N₄/CuSe and (b) g-C₃N₄/CuSe-MB. All the calculations have been performed using HSE functional.
- Figure 6.1 Schematic illustration of functionalization 2D 121 heterostructure materials for targeted imaging of cancerous cells

Figure 6.2	X-ray diffraction (XRD) patterns of g-C ₃ N ₄ @FeNi ₃	128
	heterostructure, FESEM images of g-C ₃ N ₄ @FeNi ₃	
	heterostructure, AFM image of the developed	
	heterostructure, where (d) indicates the topology (e)	
	denotes the phase profile and (f) indicates the height	
	of the heterostructure system	
Figure 6.3	(a) Magnetic hysteresis curves of M-H plots for Hc	129
	and Mr measurements (b) Zero field cooled (ZFC)	
	and field cooled (FC) magnetization curves of the	
	heterostructure	
Figure 6.4	UV-vis spectra of g-C ₃ N ₄ @FeNi ₃ heterostructure	130
	before and after pegylation in water solution	
Figure 6.5	Photoluminescence emission spectra of g-	131
	$C_3N_4@FeNi_3$ heterostructure before and after	
	pegylation in water solution	
Figure 6.6	TGA of g-C ₃ N ₄ @FeNi ₃ heterostructure	132
Figure 6.7	Zeta Potential distribution of g-C ₃ N ₄ @FeNi ₃	133
	heterostructure before and after pegylation in water	
	solution	
Figure 6.8	a) Cytotoxicity assay for g-C ₃ N ₄ @FeNi ₃	134
	nanocomposite in human normal and cancer cell	
	lines, (b) in vitro fluorescence characterization of g-	
	C ₃ N ₄ @FeNi ₃ nanocomposite.	
Figure 6.9	Confocal fluorescence imaging of g-C ₃ N ₄ @FeNi ₃	135
	nanocomposite treated MCF-7 cells (a) Ex: 405nm	
	and Em: 420-750nm; (b) Ex: 405nm and Em: 420-	
	600nm; (c) Ex: 405nm and Em: 600-750nm; (d) Ex:	
	488nm and Em: 518-570nm; (e) Ex: 561nm and Em:	
	585-650nm; (f) Ex: 405nm and Em: 420-750nm;	

zoomed in images of selected ROIs: (g) Ex: 488nm

and Em: 518-570nm; (h) Ex: 561nm and Em: 585-

хх

650nm; and (i) Ex: 405nm and Em: 420-600nm.

List of Abbreviations

Abbreviation	Full form
0-D	Zero Dimensional
1-D	One Dimensional
2-D	Two Dimensional
3-D	Three Dimensional
AAS	Atomic absorption spectrometry
AFM	Atomic Force Microscopy
BET	Brunauer-Emmett-Teller
BJH	Barrett-Joyner-Halenda
BFGS	Broyden-Fletcher-Goldfarb-Shanno
CN	Carbon Nitride
СА	Contrast Agent
CDC	Center for Disease Control and Prevention
CAGR	Compound Annual Growth Rate
CV	Cyclic Voltammetry
CQ	Quantum Capacitance
DFPT	Density functional perturbation theory
DFT	Density functional theory
DOS	Density of states
DLS	Dynamic light scattering
EIS	Electrochemical Impedance Spectroscopy
EDX or EDS	Energy Dispersive X-rays Spectroscopy

EDLC	Electric double layer capacitor
FC	Field cooled
FT-IR	Fourier transform infrared
GCD	Galvanostatic Charge-Discharge
GGA	Generalized Gradient Approximation
GC-MS	Gas chromatography-mass spectrometry
HRTEM	High Resolution Transmission Electron
	Microscopy
IUPAC	International union of pure and applied chemistry
JCPDS	Joint Committee on Powder Diffraction Standards
LDOSs	Local Densities of States
MB	Methylene blue
MTT	3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl
	tetrazolium bromide
MNP	Magnetic Nanoparticles
MRI	Magnetic Resonance Imaging
MPG	Max Plank Group
NMP	N-Methyl-2-pyrrolidone
NIR	Near Infrared
PVdF	Polyvinylidene fluoride
PDT	Photodynamic Therapy
PEG	Polyethylene glycol
PVP	Polyvinylpyrrolidone
PTT	Photothermal Therapy

PPMS	Physical property measurements system
PL	Photoluminescence
PBE	Perdew-Burke-Ernzerhof
QE	QUANTUM Espresso
RhB	Rhodamine B
ROS	Reactive Oxygen Species
SA	Stearic acid
SEM	Scanning electron microscope
SSC	Sandwich-supercapacitor
SAED	Selected area electron diffraction
TEM	Transmission electron microscope
TG-MSC	T-Graphene based micro-supercapacitor
TGA	Thermogravimetric analysis
UV	UV-Vis spectrophotometer
vdW	van der Waals
VSM	Vibrating sample magnetometer
WVTR	Water Vapour Transmittance Rate
XRD	X-ray diffraction
ZFC	Zero field cooled

List of Symbols

Symbol	Meaning
h	Planck constant
Qe	Adsorption capacity
k	Boltzmann constant
Hc	Coercivity
Ms	Saturation magnetization
D	Diffusion co-efficient
Тв	Blocking temperature
Тс	Curie temperature
M _R	Remanence
ζ	Zeta potential
μ, Λ, η, β, γ, δ, ρ	Parameter in DFT formalism
N	Avogadro's number