Dedicated to.....

Maa-Deuta Dada and Mahi

Declaration of Academic Integrity

"I declare that this written submission represents my ideas in my own words and where other's ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be cause for disciplinary action as per the rules and regulations of the Institute."

Sincerely,

Goreishmita Boreah

Gorishmita Borah (TZ132964 of 2013)

Place: Tezpur University Date: 20-03-2023

Dr.Nayanmoni Gogoi Assistant Professor Department of Chemical Sciences Tezpur University, Napaam, Tezpur-784028, Assam, INDIA E-mail: ngogoi@tezu.ernet.in Tel: +91(3712)27-5065 +91 8011545888(M)

CERTIFICATE FROM SUPERVISOR

This is to certify that the thesis entitled "**Phosphonate functionalized N-heterocyclic carbenes and zirconium phosphate supported CdS quantum dots: Application in aerobic oxidation reactions**" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Chemical Sciences is a record of research work carried out by **Ms. Gorishmita Borah** under my supervision and guidance. She has been duly registered (Registration No. TZ132964 of 2013) and the thesis presented is worthy of being considered for the Ph. D. Degree. All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date: 20-03-2023 Place: Tezpur

Dr. Nayanmoni Gogoi (Supervisor)

ACKNOWLEDGEMENTS

In the pursuit of this Ph.D. endeavour, I feel I have been singularly fortunate. I would like to take this opportunity to express my gratitude to the well-wishers who has greatly influenced in the success of my Ph.D. thesis.

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Dr. Nayanmoni Gogoi, Assistant Professor at Tezpur University, for his patience, enthusiasm, insightful comments, suggestions, and unceasing ideas, which have greatly aided me throughout my Ph.D. work. His vast knowledge and vast experience enabled me to successfully complete this work. I am grateful to him for his dedication to my research, which has been influential in allowing me to grow as a researcher. His sincere and unwavering commitment to scientific research will continue to inspire me in my future endeavours. Working under his direction was a true privilege and honour.

I would like to express my heartfelt gratitude to the members of my doctoral research committee, Prof. Ruli Borah and Dr. Pankaj Bharali, Department Chemical Sciences, Tezpur University for their constant inspiration and support throughout this period.

It gives me great pleasure to thank Prof. Panchanan Puzari, Head, Department of Chemical Sciences, Tezpur University, as well as the former Head(s) of the department, Prof. Ruli Borah and Prof. Ashim Jyoti Thakur, for giving me the opportunity to conduct research in the department and for their valuable advice and support during my PhD tenure.

I am also grateful to all the faculty members and non-teaching staff of Department of Chemical Sciences, Tezpur University for their insightful suggestions and unwavering support and the Cleaning Staff for providing us a supportive, clean & healthy environment.

I thank Dr. Shashank Mishra (Université Claude Bernerd Lyon 1) for assisting me in recording XPS, solid state NMR and BET. My heartfelt gratitude goes to Dr. Kalyan Raidongia (IIT Guwahati) for his assistance in recording the NMR. I am grateful to Prof. Ramesh Chandra Deka (Vice Chancellor, Cotton University) for helping me to carry out computational studies of my work.

I am pleased to acknowledge the financial support provided by UGC (University Grant Commission). I sincerely thank SAIC, Tezpur University, SAIF NEHU, Guwahati Biotech Park, IIT Guwahati for providing the required analytical facilities for my thesis work.

V

Here, with much appreciation I acknowledge all the teachers I have met throughout my student life. I will be eternally grateful to them for their invaluable lessons; without their guidance, blessing, and support, I would not be where I am today.

With great pleasure I would like to acknowledge my colleagues in our research Dr. Mamon Dey, Dr. Suchibrata Borah, Dr. Prashurya P. Mudoi, Dr. Bagmita Bhattacharyya, Anup Choudhury, Sanjoy Sarkar, Niku Ahmed, Dabasish Deka and Surangana Kashyap for instilling a motivating and fun filled ambience in work place.

I would also like to thank Dipika Konwar, Debashish Sharma, Dr. Parag Bora, Dr. Anindita Dewan, Dr. Nand Kishore Gour, Prantika Bhattacharyya, Niharika Kashyap, Hiya Talukdar, Mahendra Tahu, Sangita Kalita, Nishant Biswakarma, Debanga Bhusan Bora, Debabrat Pathak, Bijoy Ghosh, Raktim Abha Saikia. My heartfelt gratitude also goes to all my friends, seniors and juniors at Tezpur University's Department of Chemical Sciences.

I would like to thank my beloved friends Dikshita Dowerah, Parishmita Phukan, Tribenee Gogoi, Sukanya Das, Rakesh Borah, Anikha Handique, Dimpi Sarma, Abhishek Borborah, Hridip R. Sarma, Diganta Hati Baruah, Uttam Sonowal, Surajit Saikia, Vishal IJ Gogoi, Debasish Kalita, Dhrubanka Sarma for their love, motivation and faith in me. I would also like to thank my beloved sisters Trishna Barman, Hilly Gohain Baruah, Prathana Saikia, Bhaswati Borgohain, Antara Borbora and Junali Hazarika for their love I am glad to have their presence in my life.

I would also like to acknowledge all my friends, seniors and juniors from Dept. of Chemical Sciences, Tezpur University who has made my life much joyful with their inspiration and company.

I would like to express my heartfelt gratitude to Mrs. Zumi Gogoi (Madam) and cute little Zhanskar (Gigi) for their warm hospitality and affection during my stay at Tezpur University.

My heartfelt gratitude goes to my parents Late Sarat Chandra Borah, Smt. Minati Hazarika Borah, brother (Dipjyoti Borah), and mahi (Ms. Aruna Sonowal) for their unconditional love, inspiration and belief in me. Very Special thanks to Rakesh Saikia for his unceasing encouragement, support, and faith in me towards the end of my Ph.D. journey. His constant motivation, support has greatly aided me in advancing in my life. My heartiest thank goes to all my lovable cousins and my family members.

List of Abbreviations

g	Gram
mg	Milligram
mL	Milliliter
L	Liter
m	Meter
cm	Centimeter
mm	Millimeter
nm	Nanometer
Å	Armstrong
Κ	Kelvin
mol	Mole
mmol	Millimole
ν	Stretching mode (FT-IR)
8	Second
σ	Sigma
br	Broad
λ	Wavelength
m	Medium
W	Weak
Т	Temperature
viz.	Namely
ca.	About
i.e.	That is
<i>e.g.</i>	For example
m. p.	Melting point
NMR	Nuclear magnetic resonance
FT-IR	Fourier transform - infrared
AAS	Atomic absorption spectroscopy
EDS	Energy dispersive X-ray spectroscopy
UV	Ultraviolet
m/z	Mass to charge ratio

Me	methyl
H - bond	hydrogen bond
RT	room temperature
TGA	Thermo gravimetric analysis
XRD	X-ray diffraction
XPS	X-ray photoelectron spectroscopy
BET	Brunauer-Emmett-Teller surface area analysis
SEM	Scanning electron microscopy
TEM	Transmission electron microscopy
ICP	Inductively coupled plasma
EDX	Energy-Dispersive X-ray
TLC	Thin-layer chromatography
р	para
MAS NMR	Magic angle spinning nuclear magnetic resonance
CPMAS	Cross polarization magic angle spinning
MOF	Metal organic framework
THF	Tetrahydrofuran
DCM	Dichloromethane
ZrP	Zirconium phosphonate
NHC	N-heterocyclic carbene

List of Schemes

Scheme		Page
	Chapter 1	No.
1.1.	Formation of Breslow Intermediate	6
1.2.	Benzoin condensation and Stetter reaction	7
1.3.	Scheme showing various pathways involving the Breslow intermediate	8
1.4.	Proposed mechanistic pathway for NHC catalyzed oxidative esterification of aldehydes with alcohols	11
1.5.	Plausible mechanism for oxygenative NHC catalyzed esterification involving aldehyde and alcohols	13
1.6.	Direct oxidative esterification reaction of alkyl halides with aldehydes	15
1.7.	Glycerol valorization by heterogeneous NHC-catalysis	18
1.8.	Synthesis of saturated esters and γ -butyrolactones as a mixture of <i>cis</i>	19
	(like) and <i>trans</i> (unlike) diastereoisomers catalyzed by polymer supported imidazolium salt	
1.9.	Esterification reaction of benzoic acid and 4-bromobenzyl alcohol in presence of imidazole salt supported onto Fe ₃ O ₄ /Chloro-silane core-shell nanoparticles	19
1.10.	Oxidative coupling of 2-chlorobenzaldehyde with methanol by using polystyrene-supported NHC	20
1.11.	Synthesis of Zr(IV) phosphonate supported NHC and its application in preparation of Zr(IV) phosphonate supported NHC complexes	24
1.12.	Photocatalytic oxidation of Benzyl alcohol to Benzaldehyde using CdS nanoparticles	28
1.13.	Visible Light-Driven Splitting Alcohol over a Ni-Modified CdS Photocatalyst	28
1.14.	Coupling reaction of 1-phenylpyrrolidine, and phenyl trans-styryl sulfone	29
1.15.	β-Alkylation of Octanal with CdSe QD Photocatalysts	29
1.16.	Proposed mechanism for the photocatalytic hydrogen evolution over the CdS/ZnO heterostructures	30

1.17.	Scheme for the photocatalytic hydrogen production over NiS/CdS	31
	nanocomposites under visible light	

2.1.	Mechanism of NHC catalysed Benzoin Condensation and Stetter reaction	50
	proposed by Breslow and Stetter	
2.2.	NHC catalysed esterification of benzaldehyde with different substrates	51
2.3.	Synthesis of N-aryl substituted imidazole 1-4	58
2.4	Synthesis of phosphonate ester functionalized imidazolium salts 5-8	63
2.5	Proposed mechanism for NHC catalyzed esterification of benzaldehyde	76
	with phenyl boronic acid	

Chapter 3

3.1.	Synthesis of 5 & 9	93
3.2.	Synthesis of 10	99

5.1.	Synthesis of phosphonate ester functionalized imidazolium salts, 5-	145
	8	
5.2.	Synthesis of zirconium(IV) organophosphonate framework with dangling covalently anchored imidazolium groups	146
5.3.	Synthesis of CdS@α-ZrP composite	147

List of Figures

Figure		Page
		No.
	Chapter 1	
1.1.	Stabilization of NHC by mesomeric effect	4
1.2.	N-aryl-bicyclic functionalised trizolium salt	17
1.3.	Application of phosphonate-based MOFs	22
1.4.	Application of Zr(IV)-phosphate/phosphonate framework	23
1.5.	Semiconductor band gap structure	26

2.1	FT-IR spectra of N-aryl imidazole's (1-4)	58
2.2	¹ H NMR spectra of N-aryl imidazole's (1-4)	59
2.3	¹³ C NMR spectra of N-aryl imidazole's (1-4)	60
2.4	Molecular structure of N-aryl imidazoles (1-3)	61
2.5	FT-IR spectra of phosphonate ester functionalized imidazolium salts (5-	64
	8)	
2.6	¹ H NMR spectra of phosphonate ester functionalized imidazolium salts (5-	65
	8)	
2.7	¹³ C NMR spectra of phosphonate ester functionalized imidazolium salt (5-	66
	8)	
2.8	³¹ P NMR spectra of phosphonate ester functionalized imidazolium salt (5-8)	67
2.9	High resolution mass spectrometry of Phosphonate ester functionalized	68
	imidazolium salts (5-8)	
2.10	Optimized structures of singlet-state geometries of all the four NHC's (A-D)	73
	calculated at the B3LYP/6-31+G(d,p) level of	
	theory	
2.11	HOMO, LUMO iso-surfaces of all the four NHC's (A-D) calculated at the	74
	B3LYP/6-31+G(d,p) level of theory	
2.12	Correlation (R^2 =0.9929) between the proton affinity of free carbenes and the	75
	eigenvalues of the σ lone-pair	

2.13	Optimized structure of all stable species calculated at B3LYP/6-31+G(d,p)	77
	level of theory	
2.14	Optimized structure of transition states calculated at B3LYP/6-31+G(d,p)	78
	level of theory	
2.15	Potential energy diagram of proposed reaction at B3LYP/6-31+G(d,p) level	80
	of theory	

3.1.	FT-IR spectrum of 1-mesityl-3-(2-phosphonoethyl)-1H-imidazol-3-ium	94
	chloride (9)	
3.2.	¹ H NMR spectrum 1-mesityl-3-(2-phosphonoethyl)-1H-imidazol-3-ium	95
	chloride (9)	
3.3.	¹³ C NMR spectrum of 1-mesityl-3-(2-phosphonoethyl)-1H-imidazol-3-ium	96
	chloride (9)	
3.4.	³¹ P NMR spectrum of 1-mesityl-3-(2-phosphonoethyl)-1H-imidazol-3-ium	97
	chloride (9)	
3.5.	High Resolution Mass Spectrometric fragmentation pattern of 1-mesityl-3-	98
	(2-phosphonoethyl)-1H-imidazol-3-ium chloride (9)	
3.6.	Thermo gravimetric analysis pattern of 9	98
3.7.	FT-IR Spectrum of 10	100
3.8.	Thermo-gravimetric analysis pattern of 10	101
3.9.	Powder X-ray diffraction pattern of 10	102
3.10.	¹³ C CP MAS NMR spectra of 10	103
3.11.	³¹ P MAS NMR spectra of 10	104
3.12.	X-ray photoelectron spectra of 10 (a) entire range; (b) Zr 3d range; (c) Zr 3p	105
	range; (d) P 2p range; (e) C 1s range; (f) N 1s range	
3.13.	SEM image of 10	106
3.14.	% yield of ester formed during six consecutive catalytic cycle of 10 catalysed	
	esterification of benzaldehyde with (a) aryl boronic acid (b) methanol (c) FT-	111
	IR of as synthesized 10 and 10 isolated after 6^{th} catalytic cycles (d) powder	
	X-ray diffraction pattern of as synthesized 10 along with catalyst isolated	
	after 6th catalytic cycle.	

4.1	FT-IR spectrum of α-ZrP and CdS@-α-ZrP	122
4.2	Powder XRD pattern of Hexagonal CdS, α-ZrP and CdS@α-ZrP	123
4.3	(a) SEM image of CdS@ α -ZrP (b) TEM image of CdS@ α -ZrP (c) Electron	124
	diffraction pattern of CdS@a-ZrP and (d) TEM image (lattice fringes) of	
	CdS@a-ZrP quantam dots	
4.4	(i) Elemental mapping of (a) zirconium (b) phosphorus (c) oxygen (d)	125
	cadmium (e) sulfur (ii) EDS spectrum of CdS@α-ZrP	
4.5	(a) UV-visible DRS spectrum of CdS@ α -ZrP and (b) TAUC plot of CdS@ α -	126
	ZrP	
4.6	Photoluminescence spectrum of CdS@a-ZrP	126
4.7	TGA pattern of CdS@α-ZrP	127
4.8	Transient photocurrents of CdS@α-ZrP	128
4.9	(a) Nyquist plot of CdS@ α -ZrP (b) Nyquist plot fitting at 30 °C (c) Nyquist	129
	plot fitting at 35 $^{\circ}$ C (d) Nyquist plot fitting at 40 $^{\circ}$ C (e) Nyquist plot fitting at	
	45 °C (f) Nyquist plot fitting at 50 °C (g) Nyquist plot fitting at 55 °C (h)	
	Nyquist plot fitting at 60 °C	
4.10	Arrhenius plot of hole conductivity vs T ⁻¹	130
4.11.	HPLC data of photo-catalytic oxidation of benzyl alcohol using $CdS@\alpha$ -ZrP	131
	as catalyst	
4.12.	HPLC data for photo-catalytic oxidation of benzyl alcohol using $CdS@\alpha$ -	134
	ZrP as catalyst and using different radical scavenger (a) p-benzoquinone (b)	
	AgNO ₃ (c) ammonium oxalate (d) <i>t</i> -BuOH	
4.13.	(a) FT-IR spectrum and (b) powder X-ray diffraction pattern of pristine	135
	$CdS@\alpha$ -ZrP and $CdS@\alpha$ -ZrP recovered after 5 th photocatalytic cycle	

List of Tables

Table		Page
	Chapter 1	No.
1.1.	Examples of NHC catalyzed oxidative esterification of aldehydes with	10
	alcohols	
1.2.	Examples of NHC catalyzed oxygenative esterification of aldehydes	12
	with alcohols	
1.3.	NHC catalyzed oxygenative esterification of aldehydes with aryl boronic	14
	acid	

Chapter 2

2.1.	Crystal data and refinement parameters of 1-3	62
2.2.	Selected bond lengths [Å] and bond angles [°] of 1-3	63
2.3.	Optimization of reaction condition for 5 catalyzed aerobic esterification of 4-chlorobenzaldehyde with phenyl boronic acid	69
2.4.	5-8 catalyzed esterification of different benzaldehydes with phenyl boronic acid	70
2.5.	Optimization of reaction condition for 5 catalyzed aerobic esterification of 4-nitrobenzaldehyde with methanol	71
2.6.	5-8 catalyzed conversion of different benzaldehydes with alcohols into corresponding esters under optimized reaction condition	72
2.7.	Eigen values of σ lone pair orbitals are in correlation with the donor strength of NHCs (A -D), and their proton affinity values and E(σ_{HOMO}).	75
2.8.	Standard enthalpy and Gibbs free energy changes (in kcal mol^{-1}) of reaction steps calculated at B3LYP/6-31+G(d,p) level of theory	80

3.1	Optimization of reaction condition for 10 catalyzed esterification of	107
	benzaldehyde with phenyl boronic acid	
3.2	Optimization of esterification reaction of p-substituted benzaldehydes	108
	with phenyl boronic acid	

3.3	Optimization of reaction conditions of 10 catalyzed esterification of benzaldehydes with aliphatic alcohols	109
3.4	Optimization of esterification reaction of p-substituted benzaldehydes	110
	with different alcohols	

4.1	Circuit parameters calculated from Nyquist plot	130
4.2	Optimization Table with different reaction condition	132
4.3	Optimization Table with different substrate	133
4.4	Percentage conversion and selectivity of aldehyde obtained in presence	133
	of different scavengers	
4.5	Comparison of % conversion and % selectivity in CdS composite	136
	catalyzed photo-oxidation of benzyl alcohol to benzaldehyde	

List of Charts

Chart		Page
	Chapter 1	No.
1.1.	Important NHC based organometallic catalysts	3
1.2.	Examples of functionalized NHCs	16