TABLE OF CONTENTS

Subje	ct			Page No.
Abstract				i - vi
List of Figures			vii - xii	
List of Tables				xiii - xv
List of	List of Abbreviations and Symbols			xvi - xix
Chapt	<u>er 1</u>			1.1 - 1.11
Introd	luction			
1.1	Introdu	ction		1.1 - 1.6
1.2	Probler	n Stateme	ent	1.6
1.3	Objecti	ves		1.7
Refere	nces			1.8 - 1.11
Chapt	<u>er 2</u>			2.1 - 2.54
Review	w of liter	rature		
2.1	Structu	re of ligno	ocellulosic biomass (LCB) and its components	2.1 - 2.2
2.2	Pretrea	tment of I	LCB: necessity	2.2 - 2.3
	2.2.1	Physical	pretreatments	2.3
		2.2.1.1	Milling	2.3 - 2.4
		2.2.1.2	Microwave-assisted size reduction	2.4 - 2.5
		2.2.1.3	Extrusion	2.5 - 2.6
		2.2.1.4	Ultrasonication	2.6 - 2.7
	2.2.2	Chemica	al pretreatments	2.7
		2.2.2.1	Alkali pretreatment	2.7 - 2.8
		2.2.2.2	Acid pretreatment	2.8 - 2.9
		2.2.2.3	Ionic Liquids	2.9 - 2.11
		2.2.2.4	Organosolv process	2.11
		2.2.2.5	Deep eutectic solvents	2.11 - 2.12
	2.2.3	Physico	chemical pretreatments	2.12
		2.2.3.1	Steam explosion	2.12 - 2.13
		2.2.3.2	Ammonia fiber explosion (AFEX)	2.13 - 2.14
		2.2.3.3	CO ₂ Explosion pretreatment	2.14 - 2.15
		2.2.3.4	Liquid hot water (LHW)	2.15 - 2.16
	2.2.4	Biologic	al pretreatment	2.16

2.3	Glucose production from LCB 2.17			
2.4	HMF s	HMF synthesis: An overview		
2.5	Solven	Solvent effects towards glucose to HMF production		
	2.5.1	Water	2.19 - 2.20	
	2.5.2	Organic solvents	2.20 - 2.22	
	2.5.3	Ionic Liquids (ILs)	2.22 - 2.24	
	2.5.4	Biphasic solvents	2.24 - 2.25	
	2.5.5	Mixed solvents	2.25 - 2.26	
2.6	Hetero HMF	geneous catalysts for the dehydration of carbohydrates into	2.26 - 2.27	
	2.6.1	Metal oxides	2.27 - 2.29	
	2.6.2	Silica-based catalysts	2.29 - 2.30	
	2.6.3	Heteropoly acids	2.30 - 2.31	
	2.6.4	Carbon-based solid acids	2.31 - 2.32	
	2.6.5	Meta phosphates	2.32 - 2.33	
2.7	Densit HMF	y functional theory (DFT) study of glucose dehydration to	2.33 - 2.35	
References 2.36 - 2.54				
<u>Chapter 3</u> 3.1 - 3.35				
Isolation of cellulose from lignocellulosic feedstocks (Saccharum				
spont	aneum a	and Banana agrowastes) using an integrated pretreatment		
techn	ique: Pr	ocess optimization and structural characterization		
3.1	Introdu	action	3.1 - 3.3	
3.2	Materi	als and methods	3.3	
	3.2.1	Materials and chemicals	3.3	
	3.2.2	Preparation of raw material	3.3 - 3.4	
	3.2.3	Cellulose isolation from the untreated materials	3.4 - 3.5	
	3.2.4	Optimizing acid hydrolysis variables using Taguchi design	3.5 - 3.6	
	3.2.5	Characterization	3.6	
			a - a =	
		3.2.5.1 Chemical composition	3.6 - 3.7	
		3.2.5.1 Chemical composition3.2.5.2 Yield and Degree of Polymerization	3.6 - 3.7	
		1		
		3.2.5.2 Yield and Degree of Polymerization	3.7	

3.3	Results	and discussion	3.8
	3.3.1	Isolation of cellulose and chemical composition	3.8 - 3.12
	3.3.2	FTIR spectroscopy analysis	3.12 - 3.13
	3.3.3	X-ray diffraction analysis	3.14 - 3.16
	3.3.4	Thermogravimetric analysis (TGA)	3.16 - 3.18
	3.3.5	Morphological analysis	3.18 - 3.19
	3.3.6	Optimization of acid hydrolysis treatment using Taguchi	3.19 - 3.27
		design	
3.4	Conclu	sion	3.27 - 3.28
Refere	nces		3.29 - 3.35
Chapt	<u>er 4</u>		4.1 - 4.34
Optim	ization	of enzymatic hydrolysis of cellulose extracted from	
Saccha	arum sp	ontaneum and banana peduncle using RSM, ANN, and	
ANFIS	S statisti	cal tools	
4.1	Introd	uction	4.1 - 4.3
4.2	Materi	als and methods	4.3
	4.2.1	Materials and chemicals	4.3
	4.2.2	Enzymatic hydrolysis	4.3 - 4.4
	4.2.3	Optimizing enzymatic hydrolysis variables using RSM	4.4 - 4.5
	4.2.4	Optimizing enzymatic hydrolysis variables using ANN	4.5 - 4.6
	4.2.5	Optimizing enzymatic hydrolysis variables using ANFIS	4.6 - 4.7
	4.2.6	Model performance indices	4.7 - 4.8
	4.2.7	Product analysis	4.9
4.3	Result	s and discussion	4.9
	4.3.1	Optimization of enzymatic hydrolysis using RSM	4.9 - 4.18
	4.3.2	Optimization of enzymatic hydrolysis using ANN	4.18 - 4.20
	4.3.3	Optimization of enzymatic hydrolysis using ANFIS	4.20 - 4.24
	4.3.4	Performance assessment of predictive ability of RSM, ANN	4.24 - 4.26
		and, ANFIS models	
	4.3.5	Experimental validation of RSM, ANN and, ANFIS optimal	4.26 - 4.27
		predictive outputs	
	4.3.6	Comparison between the glucose yield obtained from this	4.28
		work to that of previous work	
4.4	Conclu	usion	4. 29

References	4.30 - 4.36	
<u>Chapter 5</u>	5.1 - 5.49	
Synthesis of magnetically recoverable polyaniline-based bifunctional		
solid-acid catalyst for the catalytic transformation of biomass-derived		
glucose into hydroxymethylfurfural		

glucos	e into h	ydroxymethylfurfural	
5.1	Introd	5.1 - 5.2	
5.2	Exper	imental section	5.2
	5.2.1	Materials	5.2
	5.2.2	Synthesis of Fe ₃ O ₄ nanoparticles	5.3
	5.2.3	Synthesis of Fe ₃ O ₄ @sulfonated polyaniline	5.3 - 5.4
	5.2.4	Catalysts characterization	5.4 - 5.5
	5.2.5	Reaction procedure using Multivariate Experimental Design	5.6 - 5.7
	5.2.6	Substrate and product analysis	5.7 - 5.8
	5.2.7	Catalyst reusability test	5.8
	5.2.8	Computational details	5.8
5.3	Resul	ts and discussion	5.8
	5.3.1	Comparison of catalytic activity of different synthesized	5.8 - 5.11
		catalysts and in different solvents based on HMF yield	
	5.3.2	Catalysts characterization	5.11 - 5.20
	5.3.3	Optimization of reaction parameters for HMF production	5.21 - 5.29
		using Multivariate Experimental Design	
	5.3.4	Experimental validation of RSM and ANN predictive	5.29 - 5.31
		outputs and assessment of catalytic performance of 15-	
		Fe ₃ O ₄ @SPAN-9/3 with lignocellulose (Saccharum	
		spontaneum and banana peduncle) derived glucose	
	5.3.5	Recyclability and stability of the catalyst	5.32 - 5.33
	5.3.6	Probable mechanism for the catalytic dehydration of glucose	5.33 - 5.34
		to HMF over Fe ₃ O ₄ @SPAN based catalyst	
5.4	Comp	earison of activity of 15-Fe ₃ O ₄ @SPAN-9/3 with other reported	5.34 - 5.36
	cataly	st	
5.5	Computational study on glucose conversion to HMF 5.36 - 5.4		
5.5	Concl	usion	5.42
References 5.43			5.43 - 5.49

Chapter 6			
		bifunctionality (Lewis and Brønsted) on mesoporous	
silicate,	KIT-6	for the conversion of biomass-derived glucose into	
hydroxy	ymethy	lfurfural	
6.1		Introduction	6.1 - 6.3
6.2		Experimental section	6.3
	6.2.1	Materials	6.3
	6.2.2	Synthesis of mesoporous Nb-KIT-6	6.3
	6.2.3	Preparation of functionalized mesoporous Nb-KIT-6	6.4
	6.2.4	Catalysts characterization	6.5 - 6.6
	6.2.5	Reaction procedure using Multivariate Experimental Design	6.6 - 6.7
	6.2.6	Substrate and product analysis	6.7 - 6.8
	6.2.7	Catalyst reusability test	6.8
6.3	Results	s and discussion	6.8
	6.3.1	Comparison of catalytic activity of different synthesized	6.8 - 6.11
		catalysts and in different solvents based on HMF yield	
	6.3.2	Catalysts characterization	6.12 - 6.21
	6.3.3	Optimization of reaction parameters for HMF production	6.21 - 6.30
		using Multivariate Experimental Design	
	6.3.4	Experimental validation of RSM and ANN predictive	6.30 - 6.32
		outputs and assessment of the catalytic performance of Nb-	
		KIT-6(20)-SO ₃ H with lignocellulose (Saccharum	
		spontaneum and banana peduncle) derived glucose	
	6.3.5	Recyclability and stability of the catalyst	6.32 - 6.33
	6.3.6	Probable mechanism for the catalytic dehydration of glucose	6.33 - 6.35
		to HMF over Nb-KIT-6(20)-SO ₃ H catalyst	
6.4	Compa	arison of the activity of Nb-KIT-6(20)-SO ₃ H with other	6.35 - 6.36
	reporte	ed silica-based catalyst	
6.5	Conclu	ision	6.36 - 6.37
Referen	ices		6.38 - 6.44

Chap	<u>Chapter 7</u>				
Conc	Conclusion and future perspective				
7.1	Summary and conclusions	7.1 - 7.4			
7.2	Future prospects of the current work	7.4 - 7.6			
List o	List of publications				
Confe	Conferences and Symposiums attended				