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Optimization of enzymatic hydrolysis of cellulose extracted from 

Saccharum spontaneum and banana peduncle using RSM, ANN, 

and ANFIS statistical tools  

 

Abstract 

Large-scale production of biomass-derived fuels and chemicals demands the economical 

and sustainable depolymerization of lignocellulosic biomass or their derived cellulose into 

sugars. Enzymatic hydrolysis of Saccharum spontaneum (S. spontaneum) and banana 

peduncle-derived celluloses for the production of glucose was performed using readily 

available commercial enzyme Cellulase (from Aspergillus niger) in a simple, effective, and 

ecologically sound way. The major emphasis of this study is the use of response surface 

methodology (RSM), artificial neural network (ANN), and adaptive neuro-fuzzy inference 

system (ANFIS) techniques in modeling the experimental parameters of the hydrolysis process 

to achieve an efficient condition for maximum glucose yield. This was investigated using 

enzyme loading (10-50 FPU/g), substrate concentration (20-80 mg/mL), surfactant 

concentration (2-8 mg/mL), and incubation time (24-96 h) as the influencing parameters. The 

optimum glucose yields predicted were 97.21% and 97.87% for S. spontaneum and banana 

peduncle, respectively. These compared well to ANN validated yields of 95.93% and 93.51% 

and ANFIS validated yields of 96.1% and 97.42% for S. spontaneum and banana peduncle, 

respectively. Based on the training and validation data sets, all models were statistically 

compared using the determination coefficient (R2), adjusted R2, root mean squares error 

(RMSE), hybrid fractional error function (HYBRID), average relative error (ARE), absolute 

average relative error (AARE) and Marquardt’s percent standard error deviation (MPSED). 

According to the statistical indices obtained, RSM performed the least, while ANFIS 

marginally outperformed ANN. This shows that ANFIS is a powerful tool for modeling and 

optimizing glucose production in enzymatic hydrolysis. 
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4.1. Introduction 

Glucose is a necessary sugar that serves as a platform component for producing chemicals, 

biofuels, and materials using chemical and biological methods [1]. Glucose is traditionally 

derived from starch, however, given the current food shortage globally, the quest for non-

food sugar sources is significant and intriguing [2]. Cellulose, an alternate source for 

glucose production is an abundant polymer of β 1,4-glycosidic bond linked glucose units 

that can be hydrolyzed either chemically or enzymatically. Over the last few decades, acid 

catalysts have been demonstrated to be the most accelerating agent for the degradation of 

cellulose [3, 4, 5]. However, the use of acid catalysts causes significant issues with 

equipment corrosion, catalysts isolation from products, and waste disposal [6]. On the 

other hand, enzymatic hydrolysis is advantageous, requires less energy, and operates in 

mild environmental conditions. Thus, the cost of the process is lower compared to acid 

hydrolysis [7]. Furthermore, the enzymatic hydrolysis is substrate-specific and does not 

result in the formation of any byproducts [8]. However, the bioconversion process is 

currently not economically viable since enzymatic hydrolysis is slow and requires a high 

enzyme loading to achieve acceptable rates and yields due to the recalcitrant nature of 

lignocelluloses [9]. Though, the removal of lignin and hemicellulose in the pretreatment 

process can significantly enhance the hydrolysis of lignocelluloses [10]. In addition, 

applying surfactants has also shown potential in improving the performance of cellulose 

hydrolysis due to the higher availability of enzymes for cellulose degradation [11, 12]. 

Extensive research has demonstrated that the efficiency of enzymatic hydrolysis of 

cellulose depends on several process parameters including enzyme loading, substrate 

concentration, reaction time, surfactant addition, and so on [10]. Since these variables 

often interact, optimizing the enzymatic hydrolysis process is crucial to improve the 

process efficiency.  

Modeling and optimization are perhaps the most essential measures in biological 

processes as they improve the system and increase process efficiency without increasing 

costs [13]. The conventional method of optimization, on the other hand, involves changing 

one independent variable at a time while holding the other variables constant, which is 

very time-consuming, laborious, and expensive, and often leads to an incomplete 

understanding of the system behavior, resulting in a lack of prediction ability [14]. In this 

context, response surface methodology (RSM) is an alternative and strong mathematical 

technique for quickly and efficiently analyzing the influence of numerous parameters, 
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alone or in combination, on a particular system with a minimal number of experiments and 

high statistical significance in the results [15]. This method has already been used to 

enhance the enzymatic hydrolysis of several substrates, including cellulose [16], wheat 

straw [17], rice straw [18], sugar beet pulp [19], etc. Artificial neural network (ANN), on 

the other hand, is a computational approach that replicates the biological processing power 

of the human brain. Because of its capacity to recognize and replicate cause-effect 

connections for multiple input-output systems through training, ANN can model and 

simulate very complex systems. Many researchers in the field of bioprocess engineering 

have reported on its application [20, 21, 22]. Likewise, Jang's adaptive neuro-fuzzy 

inference system (ANFIS) combines the characteristics of an adaptive neural network with 

a fuzzy inference system (FIS) to anticipate correct output from numerical input data [23, 

24]. ANFIS was used by Betiku et al. and Onu et al. to simulate the esterification process 

and estimate dye adsorption ability, respectively [25, 26]. Recently, ANFIS has been 

utilized to assist different lignocellulosic biomass studies. Rego et al. utilized ANFIS to 

predict the lignin, glucose, and xylose content in processed sugarcane bagasse [27], while 

Lerkkasemsan et al. used ANFIS to estimate the composition of J. curcas and Pongamia 

pinnata in pyrolysis reactions [28]. Although the approach has been used in modeling a 

variety of systems, its application to the enzymatic hydrolysis process is scarce.  

There is a lot of literature on RSM and ANN performance evaluations of process 

modeling [29, 30]. The findings are mixed for ANN and ANFIS [27, 31] and RSM and 

ANFIS [32, 33] in the same studies. ANN has been shown to outperform RSM [29]. While 

Kim and Park discovered that ANFIS is more accurate than RSM when it comes to 

prediction abilities, Taheri et al. reported the reverse [34, 35]. Another study found that 

ANFIS outperformed ANN, whereas Karimi et al. observed that both techniques were 

equally successful [36, 37]. However, data on comparing the predictive capabilities of 

RSM, ANN, and ANFIS in the same experiment to clarify these contradicting results are 

limited. 

The current study is a continuation of the previous chapter (Chapter 3), where we 

have developed an efficient and environmentally friendly conversion method of cellulose 

to glucose with the readily available commercial enzyme Cellulase (from Aspergillus 

niger). The effects of the experimental parameters (enzyme loading, substrate 

concentration, surfactant concentration, and incubation time) were studied employing 

RSM. The findings of RSM were then established using ANN and ANFIS as modeling 
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tools and their prediction abilities were compared in order to obtain the optimal conditions 

for maximum production of glucose. 

4.2. Materials and methods 

4.2.1. Materials and chemicals 

Tween-80, sodium citrate (Na3C6H5O7), and citric acid (C₆H₈O₇) were purchased from 

Merck Pvt. Ltd., India. A commercial Aspergillus niger cellulase procured from Merck 

Pvt. Ltd., India was used for enzymatic conversions. Cellulose isolated from S. 

spontaneum and banana peduncle as discussed in Chapter 3 has been used as the substrate 

material for the reactions.  

4.2.2. Enzymatic hydrolysis 

Enzymatic hydrolysis of cellulose isolated from S. spontaneum and banana peduncle (as 

discussed in Chapter 3 [29, 38]) was carried out using commercial Aspergillus niger 

cellulase enzyme under different conditions. Cellulase enzyme activity was estimated to 

be 50 FPU/g (filter paper units per gram of enzymatic solution) using the NREL protocol 

[39]. The quantity of enzyme required to release 1µmol of glucose/min during the 

hydrolysis reaction has been specified as one international filter paper unit (FPU).  

The enzymatic hydrolysis was conducted in a 2 mL screw-cap tube containing 

cellulose, cellulase enzyme powder, Tween-80 surfactant, and 1.5 mL of 0.05 M citric 

acid/ citric sodium buffer (pH 4.8). The tubes were incubated at 50°C in a rotary shaker 

(ORBITEK range, Scigenics Biotech Pvt. Ltd., India) at 150 rpm. Different enzymatic 

hydrolysis conditions were tested according to response surface methodology (RSM) of 

central composite design (CCD). According to the experimental design, samples (1 mL) 

were taken from the hydrolysis solution at different time intervals. The hydrolysis was 

terminated by heating immediately for 5 min on a boiling water bath at a temperature of 

95°C and the solution was filtered through a 0.22 µm syringe filter before analysis. The 

glucose concentrations in the supernatants were quantified via high-performance liquid 

chromatography (HPLC). The predicted values of RSM were then validated using ANN 

and ANFIS models. A schematic representation of the complete experimental procedure 

is provided in Fig. 4.1.  



Chapter 4 

 

Page | 4.4  
 

 

Fig. 4.1. Schematic representation of the complete enzymatic hydrolysis procedure. 

 

4.2.3. Optimizing enzymatic hydrolysis variables using RSM 

 RSM statistical technique was employed to optimize the independent experimental 

variables influencing cellulase activity and simultaneously achieve the best device output 

[40, 41]. For this, the effects of univariate and multivariate interactions between the 

hydrolysis parameters (enzyme loading, substrate concentration, surfactant concentration, 

and incubation time) on glucose production were studied through RSM. A Central 

Composite Design (CCD) was used to achieve the fewest possible differences in the four 

parameters listed above and to analyze the experimental results for each of two different 

celluloses obtained from S. spontaneum and banana peduncle. For the quadratic model 

with four factors and five levels, a total of 30 experimentations were considered and the 

values of the response were obtained as a mean of the triplicate runs. The boundary 

conditions for each parameter were designed based on the preliminary studies and are 

depicted in Table 4.1. The analysis of variance (ANOVA), regression analysis, design of 

experiment, and graphical analysis were performed using the statistical software tool, 

Design-Expert 7.0 (Stat-Ease Inc., USA). To represent the association between prediction 

response and experimental components the hydrolysis data was modeled utilizing the 

second-degree polynomial equation shown below [29]: 

                        𝑌 = 𝑏0 +  ∑ 𝑏𝑖𝑋𝑖
𝑛
𝑖=1 + ∑ 𝑏𝑖𝑖

𝑛
𝑖=1 𝑋𝑖

2 + ∑ ∑ 𝑏𝑖𝑗
𝑛
𝑖>𝑗

𝑛
𝑖=1 𝑋𝑖𝑋𝑗                        (1) 
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where n is the total number of variables, Xi and Xj are the coded values, b0 is the model 

constant, Y is the predictive response, bii is the interaction coefficients, bi is the linear 

coefficient, and bij is the quadratic coefficient.  

In addition, Pareto analysis was used to determine the sensitivity of each individual 

parameter to the response variable inside a design model. To determine the relative impact 

of individual factors, the following equation was utilized for Pareto computation. 

                                                  𝑃𝑖 = (
𝛽𝑖

2

∑ 𝛽𝑖
2)  × 100 (𝑖 ≠ 0)                                                     (2) 

where Pi is the percentage effect of individual factors on the response [42]. 

Table 4.1. Coded levels of variables for CCD. 

Variables Units 
Coded Levels 

-α -1 0 1 +α 

(A) Enzyme loading FPU/g 10 20 30 40 50 

(B) Substrate loading mg/mL 20 35 50 65 80 

(C) Surfactant 

Concentration 
mg/mL 2 3.5 5 6.5 8 

(D) Incubation time h 24 42 60 78 96 

 

4.2.4. Optimizing enzymatic hydrolysis variables using ANN 

For neural network modeling of the process parameters for the enzymatic hydrolysis 

reactions, a three-layer feed-forward Multi-Layered- Perceptron (MLP) based artificial 

neural network (ANN) developed using the MATLAB R2013a computing suite 

(MathWorks USA) was implemented to predict the impact of multivariate associations 

among the different hydrolysis parameters on the glucose yield. The network contains an 

input layer with four neurons (enzyme loading, substrate concentration, surfactant 

concentration, and incubation time), an output layer with one neuron (glucose yield), and 

a hidden layer (Fig. 4.2 a). The neural system was accomplished by a Levenberg Marquardt 

(LM) back-propagation learning algorithm with tan sigmoid function (tansig) and a linear 

transfer function (purelin) in the hidden and output layer, respectively which were used to 

express the activation function defined by the following equations. The number of hidden 

neurons was set iteratively by testing a variety of neural networks until the output's mean 

square error (MSE) was reduced. To avoid overtraining and over parameterization, the 
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experimental data was divided into three sections training (70%), testing (15%), and 

validation (15%) [43]. 

                                                     𝑋𝑗= ∑ 𝑌𝑖𝑤𝑗𝑖
𝑖𝑛𝑃

𝑖=1  + 𝑏𝑗
𝑖𝑛                                                           (3) 

                                                     f(x) = transig(x) = 
1−𝑒−𝑥

1+𝑒−𝑥
                                                       (4) 

where Xj is the net input to the node j in the hidden layer, Yi is the input to a neuron, 𝑤𝑗𝑖
𝑖𝑛 

is the weight associated with each input connection from ith to jth neuron in the hidden 

layer and bin
j is the bias of the jth neuron in the hidden layer. 

4.2.5. Optimizing enzymatic hydrolysis variables using ANFIS 

ANFIS is a powerful technique for high-speed modeling of complex nonlinear systems 

that consists mostly of artificial neural networks (ANN) augmented by fuzzy logic [44]. In 

our study, the ANFIS model was stimulated using a five-layer Sugeno model that 

employed the fuzzy IF-THEN principle. Assuming that the fuzzy inference system (FIS) 

consists of two inputs (x1, x2) and one output (y), the IF-THEN rule applies as follows 

[23]: 

Rule 1: IF x1 is P1 and x2 is Q1, THEN y1=a1x1 + b1x2 + c1 

Rule 2: IF x1 is P2 and x2 is Q2, THEN y2=a2x1 + b2x2 +c2 

where P1, P2, and Q1, Q2 are the fuzzy sets, y1, y2 are the system outputs, while a1, a2, b1, 

b2, and c1, c2 are adjustable parameters. 

Fig. 4.2 b depicts the architecture of the proposed ANFIS model, with the first and 

last layers indicating the input variables (enzyme loading, substrate loading, surfactant 

concentration, and incubation time) and the response or output variable (glucose yield) 

respectively. The model matched to first-order Sugeno inference systems in the second 

layer, which fuzzified input parameters (fuzzification) into membership values using 

membership functions (MF). Following that, in the fourth layer, output membership 

functions were used to defuzzify the inference output to actual output values [26]. The fifth 

layer only had one node, which presented the overall output, which was the percentage of 

glucose yield, as the sum of all incoming signals. 
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Fig. 4.2. Architectures for the glucose yield prediction model by ANN (a) and ANFIS (b).  

 

4.2.6.  Model performance indices 

The ANFIS, ANN, and RSM modeling predictions were exposed to performance indices 

to provide a ranking that highlighted the model with the best predictive capability with 

respect to the experimental data. Seven high-performance statistical error functions are 

used in the analysis, which are listed in Table 4.2. The appraisal indices that were chosen 

were based on the characteristics of the data set that was employed [45]. A comparison 

parity plot was also created, which indicated specific deviation points between RSM, 

ANN, and ANFIS model predictions based on the experimental data.  
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Table 4.2. Statistical error functions. 

Error function Equation Reference 

Root mean 

square error 
RMSE = √

1

𝑁
∑ (

𝑃𝑅,exp (𝑖)−𝑃𝑅,𝑐𝑎𝑙 (𝑖)

𝑃𝑅,exp(𝑖)
)

2
𝑁
𝑖=1  [46] 

Hybrid 

fractional 

error function 

HYBRID (%) =  
1

𝑁−𝑃
∑ [

(𝑃𝑅,𝑖,𝑒𝑥𝑝−𝑃𝑅,𝑖,𝑐𝑎𝑙)
2

𝑃𝑅,𝑖,𝑒𝑥𝑝
] 100 [47] 

Average relative 

error 
ARE (%) =  

100

𝑁
∑

|𝑃𝑅,𝑖,𝑒𝑥𝑝−𝑃𝑅,𝑖,𝑐𝑎𝑙|

𝑃𝑅,𝑖,𝑒𝑥𝑝

𝑁
𝑖−1  [46] 

Absolute average 

relative error 
AARE =  

1

𝑁
∑ (|

𝑃𝑅,exp (𝑖)−𝑃𝑅,𝑐𝑎𝑙(𝑖)

𝑃𝑅,exp (𝑖)
|)𝑁

𝑖=1  [47] 

Marquardt’s 

percent standard 

error deviation 

MPSED (%) =  
√∑(

𝑃𝑅,𝑒𝑥𝑝−𝑃𝑅,𝑐𝑎𝑙

𝑃𝑅,𝑒𝑥𝑝
)

2

𝑁−𝑃
× 100 

[46] 

Correlation 

coefficient 
R2 = 

∑ (𝑃𝑅,𝑖,𝑐𝑎𝑙−𝑃𝑅,𝑒𝑥𝑝,𝑎𝑣𝑒)
2𝑁

𝑖=1

∑ (𝑃𝑅,𝑖,𝑐𝑎𝑙−𝑃𝑅,𝑒𝑥𝑝,𝑎𝑣𝑒)
2𝑁

𝑖=1 +∑ (𝑃𝑅,𝑖,𝑐𝑎𝑙−𝑃𝑅,𝑖,𝑒𝑥𝑝)
2𝑁

𝑖=1

 [48] 

Adjusted R2 Adj R2 = 1− [(1 − 𝑅2) ×
𝑁−1

𝑁−𝑃−2
] [46] 

 

where N is the number of experimental runs; PR,exp(i), PR,i,exp are the experimental values 

of the ith experiment; PR,cal(i), PR,i,cal are the model predictions of the ith experiment;  PR,exp,ave 

is the experimentally determined average value,  N  is the number of experimental runs 

while  P  is the number of factors.  
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4.2.7.  Product analysis 

Glucose concentrations in the hydrolysis solution were analyzed using high-performance 

liquid chromatography (HPLC, Thermoscientific) equipped with an Accucore Hilic 

Amide column (150 X 4.6 mm) and a RI detector. The samples were injected into the 

column under the conditions: column temperature of 65°C, 0.5 mM of H2SO4 as mobile 

phase at a flow rate of 0.6 mL per minute, and an injection volume of 20 µl. The glucose 

concentration was calculated using calibration curves obtained from standard glucose 

solutions run under similar experimental conditions.  

4.3. Results and discussion 

4.3.1. Optimization of enzymatic hydrolysis using RSM 

To optimize the reaction conditions for the enzymatic hydrolysis of cellulose (isolated 

from S. spontaneum and banana peduncle), RSM experiments were conducted for the two 

substrates separately. After incorporating the experimental value for the response, i.e., the 

glucose yield, the CCD matrix provided the optimal conditions with four independent 

variables for each of the substrate, in the form of statistically significant fitted models. P 

values in the region of 0.0001 indicated that the fitted models had adequate confidence 

levels. The study was conducted using an α value of 0.05 for both the substrates, which 

corresponds to a 95% confidence level. The P values for the fitted models were found to 

be smaller than the α value, rejecting the null hypothesis and confirming the statistical 

significance of the fitted models for both substrates. In addition, the fitted models had high 

F values, but the values indicating lack of fit were non-significant, confirming the 

goodness of fit [49, 50].  

Saccharum spontaneum cellulose  

For the S. spontaneum cellulose, the variation of incubation time, enzyme concentration, 

substrate concentration, and surfactant concentration, significantly influenced the response 

parameter, in the fitted single factor interactions (Fig. 4.3 a-c). The optimized conditions 

for S. spontaneum cellulose showing the highest glucose yield were obtained for 30 FPU/g 

of enzyme loading, 50 mg/ml of substrate loading, 5 mg/ml of surfactant concentration, 

and 96 h of incubation time (Table 4.3). The quadratic model, which was the best-fitted 

model was subjected to analysis of variance (ANOVA) resulting in a model determination 

coefficient R2=0.97 which suggests that 97% of the total variations of the experimental 
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parameters could be described by the quadratic model. The statistical significance, fit 

adequacy, and competency of the predicted model were all evaluated using analysis of 

variance (ANOVA) (Table 4.4). As a result, the R2 value was considered to have 

substantial goodness of fit. The predicted R2=0.99 was in fair accordance with the adjusted 

R2 indicating the accuracy of the model. The accuracy of the model was demonstrated by 

the variables with a p-value < 0.05 which have a significant effect on the response. 

However, the p-value for lack of fit should be > 0.05 for higher accuracy. From Table 4.4 

it is seen that the lack of fit value for the glucose yield is > 0.05 which confirms the 

accuracy of the predicted model. The variables, substrate concentration, and incubation 

time were found to be significant for the hydrolysis reaction. The quadratic terms AB, BC, 

BD, A2, B2, and D2 were found to have a significant effect on the yield of glucose (Table 

4.4). Single factor interaction plots were used to show the effects of interaction among the 

significant variables (Fig. 4.3 a-c). The significant multi-variate interactions among the 

variables are depicted in 3D plots and their corresponding contour plots in Fig. 4.4 a-c and 

a´-c´, respectively. 

 For the single factor interactions, an increase in the time of incubation results in 

an increase in glucose yield (Fig.4.3 c). On the other hand, an increase in the concentration 

of substrate initially reduces the glucose yield which on further increase in the 

concentration results in an increased yield of glucose (Fig.4.3 b). The enzyme loading 

influences minor variations in glucose yield, when added within the boundary conditions 

(Fig. 4.3 a). For the multivariate interactions, the 3D plots show the influence of substrate 

concentration on the glucose yield, when in conjunction with enzyme loading (Fig. 4.4 a) 

or surfactant concentration (Fig. 4.4 b) or incubation time (Fig. 4.4 c). Interactions between 

substrate concentration and incubation time were also found to be significant where a 

maximum glucose yield of ~88% was observed, using a 65 mg/ml of substrate loading for 

an incubation time of 78 h (Fig. 4.4 c). The corresponding contour plots for the 

aforementioned 3D plots (Fig. 4.4 a-c) are represented in Fig. 4.4 a´-c´. As shown in Fig.2 

a´-c´ the contour plots for the fitted models are elliptical in nature, thereby establishing the 

significant interactions between the variables. Since the elliptical shape denotes that there 

is significant interaction between the two variables [51]. The empirical relations between 

these variables and the glucose yield by the enzymatic hydrolysis can be defined by the 

following second-order equation: 
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Glucose yield  = + 361.14876 - 0.97624 * A - 6.86090 * B - 5.35827 * C - 4.29331 * D  

+ 4.63171E-003 * A * B + 0.015921 * A * C + 1.31642E-003 * A * D + 0.048652 * B * 

C 

+ 0.046542 * B * D + 0.017219  * C * D + 9.73199E-003 * A2 + 0.034915  * B2 + 

0.13454 * C2 + 0.020831 * D2 

 

where, A = Enzyme loading (FPU/g), B = Substrate concentration (mg/mL), C = 

Surfactant concentration (mg/mL) and D = incubation time (h). 

Table 4.3. Central composite design matrix, ANN, and ANFIS for the four independent 

variables on the glucose yield from S. spontaneum cellulose with the predicted and actual 

response. 
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1 20 35 3.5 42 69.85 69.67 69.67 69.67 69.67 69.67 

2 40 65 6.5 42 34.22 37.27 36.6 37.27 37.27 37.27 

3 20 35 6.5 42 66.04 65.87 65.9 65.87 65.48 65.87 

4 20 65 3.5 42 35.3 35.83 35.66 35.83 35.83 35.83 

5 30 50 5 60 44.49 47.66 45.41 47.66 47.18 47.66 

6 30 50 5 60 47.49 47.95 47.41 47.95 47.59 47.95 

7 50 50 5 60 51.34 50.95 53.9 50.95 50.00 50.95 

8 20 65 6.5 78 81.19 86.2 86.17 86.2 86.12 86.2 

9 40 65 6.5 78 87.48 88.15 88.46 88.15 87.98 88.15 

10 40 65 3.5 78 79.1 84.91 83.92 84.91 84.88 84.91 

11 30 50 5 60 47.49 47.7 47.41 47.7 47.68 47.7 

12 20 65 3.5 78 82.75 83.21 86.13 83.21 83.57 83.21 

13 30 50 8 60 48.49 48.02 48.07 48.02 47.82 48.02 

14 30 50 5 60 47.72 47.7 47.41 47.7 47.67 47.7 

15 40 35 6.5 78 62.61 64.73 63.73 64.73 63.00 64.73 

16 30 50 5 96 97.21 96.07 95.93 96.07 96.1 96.07 

17 40 35 3.5 42 67.46 67.09 67.09 67.09 67.13 67.09 

18 30 50 5 60 47.49 47.6 47.41 47.6 47.6 47.6 

19 30 80 5 60 73.07 72.26 72.15 72.26 72.26 72.26 

20 30 50 5 60 48.49 46.31 47.41 46.31 45.45 46.31 

21 20 35 6.5 78 65.09 65.91 66.22 65.91 65.19 65.91 

22 10 50 5 60 51.42 50.68 47.11 50.68 50.51 50.68 

23 30 50 5 24 50.76 51.77 51.78 51.77 52.11 51.77 
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24 30 20 5 60 80.75 84.43 84.43 84.43 84.58 84.43 

25 40 35 6.5 42 62.61 64.64 63.65 64.64 64.32 64.64 

26 30 50 2 60 48.91 48.24 48.25 48.24 47.99 48.24 

27 40 35 3.5 78 65.6 66.54 66.54 66.54 66.54 66.54 

28 20 35 3.5 78 67.04 67.63 67.63 67.63 68.76 67.63 

29 20 65 6.5 42 35.87 35.42 35.43 35.42 33.25 35.42 

30 40 65 3.5 42 32.69 35.36 33.36 35.36 34.73 35.36 

 

Table 4.4. ANOVA for the fitted quadratic polynomial model for glucose yield of S. 

spontaneum cellulose. 
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Model 8800.756358 14 628.6254541 648.4519512 < 0.0001 significant 

A-Enzyme 

Loading 
0.01102102 1 0.01102102 0.011368617 0.9165  

B-Substrate 

Concentration 
204.7066065 1 204.7066065 211.162939 < 0.0001 significant 

C-Surfactant 

Concentration 
0.2604375 1 0.2604375 0.268651554 0.6118  

D-Incubation 

Time 
3378.290612 1 3378.290612 3484.840019 < 0.0001 significant 

AB 7.722979951 1 7.722979951 7.966558442 0.0129 significant 

AC 0.912550326 1 0.912550326 0.941331655 0.3473  

AD 0.898372231 1 0.898372231 0.926706391 0.3510  

BC 19.17279476 1 19.17279476 19.77749404 0.0005 significant 

BD 2526.562685 1 2526.562685 2606.249067 < 0.0001 significant 

CD 3.458391106 1 3.458391106 3.567466837 0.0784  

A2 25.97804469 1 25.97804469 26.79737776 0.0001 significant 

B2 1692.742197 1 1692.742197 1746.130344 < 0.0001 significant 

C2 2.513603519 1 2.513603519 2.592881175 0.1282  

D2 1249.482482 1 1249.482482 1288.890465 < 0.0001 significant 

Residual 14.54137318 15 0.969424879    

Lack of Fit 12.79963757 10 1.279963757 3.674391644 0.0818 
non-

significant 

Pure Error 1.741735613 5 0.348347123 
 

Cor Total 8815.297731 29  

Std. Dev. = 0.98 Mean = 60.19 Predicted R2 = 0.97 

R2 = 0.98 Adj. R2 = 0.96 Adequate Precision = 90.37 
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Fig. 4.3. Effect of univariate interactions described by the model on the glucose yield for 

S. spontaneum cellulose. 

 

Fig. 4.4. Effect of multivariate interactions: Response surface 3D plots (a-c) and 

response surface contour plots (a´-c´) described by the model on the glucose yield for S. 

spontaneum cellulose. 
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Banana peduncle cellulose  

The optimized conditions for banana peduncle cellulose showing the highest glucose yield 

were obtained for 30 FPU/g of enzyme loading, 50 mg/ml of substrate loading, 5 mg/ml 

of surfactant concentration, and 96 h of incubation time (Table 4.5). The substrate 

concentration, surfactant concentration, and incubation time were observed to be the most 

significant parameters influencing glucose yield response for the banana peduncle 

cellulose (Table 4.6). The expected R2=0.98 remained in good accordance with the 

predicted R2 suggesting that the model was accurate. AC, AD, CD, BD, A2, C2, B2, and 

D2 are quadratic relations that have a substantial impact on the glucose yield (Table 4.6). 

The effect of interaction among the significant variables was visualized using single-factor 

interaction plots (Fig. 4.5 a-d). Relevant multivariate 3D interaction plots and their 

corresponding contour plots are represented in Fig. 4.6 a-d and a´-d´, respectively.  

For single-factor interactions, increasing incubation time results in an 

improvement of the glucose yield (Fig. 4.5 d). While increasing the concentration of 

substrate initially lowers the glucose yield but with an increase in the concentration, the 

glucose yield increases (Fig. 4.5 b). The enzyme loading and surfactant concentrations 

negligibly influence glucose yield, after introduction within the boundary levels (Fig. 4.5 

a, c). The 3D graphs indicate the effect of enzyme loading on glucose yield for multivariate 

interactions, once combined with either surfactant concentration (Fig. 4.6 a) or incubation 

time (Fig. 4.6 b), for multivariate interactions. In contrast, incubation time affected glucose 

yield while conjunction with substrate concentration (Fig. 4.6 c) and surfactant 

concentration (Fig. 4.6 d). As apparent from the single factor interaction plot (Fig. 4.5 d) 

and response surface plot (Fig. 4.6 b, c, d), the incubation time was found to have a 

substantial effect on the hydrolysis and a maximum glucose yield of 97% was observed 

with 30 FPU/g of enzyme loading, 50 mg/ml of substrate loading, 5 mg/ml of surfactant 

concentration and 96 h of incubation time. Fig. 4.6 a´-d´ shows the contour plots for the 

aforesaid 3D plots are elliptical representing significant interactions between the variables. 

The following second-order equation can be used to describe the empirical relationships 

between these variables and the glucose yield by the enzymatic hydrolysis:  

Glucose yield (%) = + 44.91 + 0.24 * A - 6.16 * B + 2.04 * C + 13.01 * D + 1.27 * A * 

B + 2.09 * A * C - 2.50 * A * D + 0.72 * B * C + 5.55 * B * D - 2.89 * C * D + 2.45 + 

4.39 + 3.02 * C
2
 + 6.73 * D

2 
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where, A = Enzyme loading (FPU/g), B = Substrate concentration (mg/mL), C = 

Surfactant concentration (mg/mL) and D = incubation time (h). 

Table 4.5. Central composite design matrix, ANN, and, ANFIS for the four independent 

variables on the glucose yield from banana peduncle with the predicted and actual 

responses. 

E
x

p
er

im
e
n

ta
l 

r
u

n
s 

E
n

zy
m

e 
lo

a
d

in
g

 

(F
P

U
/g

) 

S
u

b
st

ra
te

 l
o

a
d

in
g

 

(m
g

/m
L

) 

S
u

rf
a

ct
a

n
t 

co
n

ce
n

tr
a

ti
o

n
 

(m
g

/m
L

) 

In
cu

b
a

ti
o

n
 t

im
e 

(h
) Glucose Yield% 

RSM ANN ANFIS 

P
re

d
ic

te
d

 

O
b

se
r
v

ed
 

P
re

d
ic

te
d

 

O
b

se
r
v

ed
 

P
re

d
ic

te
d

 

O
b

se
r
v

ed
 

1 20 35 3.5 42 56.61 56.84 56.19 56.84 56.84 56.84 

2 40 65 6.5 42 45.54 49.79 49.75 49.79 49.79 49.79 

3 20 35 6.5 42 58.85 60.91 60.52 60.91 60.91 60.91 

4 20 65 3.5 42 29.21 30.76 32.36 30.76 30.76 30.74 

5 30 50 5 60 43.91 45.4 45.4 45.4 45.85 44.58 

6 30 50 5 60 44.91 45.14 44.4 45.14 44.85 44.54 

7 50 50 5 60 55.18 54.27 53.17 54.27 54.27 54.02 

8 20 65 6.5 78 72.67 75 75.03 75 75 75.00 

9 40 65 6.5 78 69.89 74.96 74.92 74.96 74.96 74.97 

10 40 65 3.5 78 69.96 72.42 72.89 72.42 72.42 72.00 

11 30 50 5 60 44.91 43.26 43.4 43.26 43.85 44.50 

12 20 65 3.5 78 77.11 76.09 77 76.09 76.09 76.09 

13 30 50 8 60 61.09 59.38 58.32 59.38 59.38 58.32 

14 30 50 5 60 48.91 45.58 44.4 45.58 45.85 44.24 

15 40 35 6.5 78 72.12 72.09 72.03 72.09 72.09 71.91 

16 30 50 5 96 97.87 97.42 93.51 97.42 97.42 96.79 

17 40 35 3.5 42 55.35 54.55 47.73 54.55 54.55 52.65 

18 30 50 5 60 44.91 45.4 44.4 45.4 45.85 43.23 

19 30 80 5 60 50.15 47.76 46.75 47.76 48.09 54.50 

20 30 50 5 60 40.91 44.69 44.4 44.69 44.85 44.00 

21 20 35 6.5 78 74.98 74.77 74.57 74.77 72.64 71.79 

22 10 50 5 60 54.22 53.3 51.62 53.3 54.05 52.54 

23 30 50 5 24 45.82 44.45 44.03 44.45 45.61 46.10 

24 30 20 5 60 74.78 75.34 75.56 75.34 74.9 75.00 

25 40 35 6.5 42 74.97 69.29 70.44 69.29 69.33 69.22 

26 30 50 2 60 52.91 52.79 51.79 52.79 52.43 52.00 

27 40 35 3.5 78 71.07 70.92 70.47 70.92 70.87 68.98 

28 20 35 3.5 78 82.31 82.58 81.85 82.58 82.46 81.67 

29 20 65 6.5 42 33.34 36.8 36.74 36.8 36.74 35.12 

30 40 65 3.5 42 30.04 33.55 32.14 33.55 33.65 33.33 
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Table 4.6. ANOVA for the fitted quadratic polynomial model for glucose yield of banana 

peduncle cellulose. 
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Model 7575.65 14 541.1179 252.9088 < 0.0001 significant 

A-Enzyme 

Loading 
1.382832 1 1.382832 0.646311 0.434 

non-

significant 

B-Substrate 

Concentration 
909.5059 1 909.5059 425.0868 < 0.0001 significant 

C-Surfactant 

Concentration 
100.3379 1 100.3379 46.89615 < 0.0001 significant 

D-Incubation 

Time 
4063.489 1 4063.489 1899.202 < 0.0001 significant 

AB 25.81936 1 25.81936 12.0675 0.0034 
non-

significant 

AC 70.04979 1 70.04979 32.74001 < 0.0001 significant 

AD 99.66877 1 99.66877 46.5834 < 0.0001 significant 

BC 8.312121 1 8.312121 3.884937 0.0675 
non-

significant 

BD 492.8389 1 492.8389 230.3441 < 0.0001 significant 

CD 133.8724 1 133.8724 62.56957 < 0.0001 significant 

A^2 164.2707 1 164.2707 76.7772 < 0.0001 significant 

B^2 528.1971 1 528.1971 246.8699 < 0.0001 significant 

C^2 250.4912 1 250.4912 117.0751 < 0.0001 significant 

D^2 1243.857 1 1243.857 581.3565 < 0.0001 significant 

Residual 32.09366 15 2.139577    

Lack of Fit 28.35623 10 2.835623 3.793544 0.0771 
non-

significant 

Pure Error 3.737432 5 0.747486    

Cor Total 7607.744 29     

Std. Dev. = 1.46 Mean = 58.18 Predicted R2 = 0.97 

R2 = 0.98 Adj. R2 = 0.98 Adequate Precision = 66.38 
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Fig. 4.5. Effect of univariate interactions described by the model on the glucose yield for 

banana peduncle cellulose. 

 

 

Fig. 4.6. Effect of multivariate interactions: Response surface 3D plots (a-d) and response 

surface contour plots (a´-d´) described by the model on the glucose yield for banana 

peduncle cellulose. 

The Pareto graphic analysis was carried out to determine the percentage effect of 

the most influential parameters as described by the model equation. The effect of 

incubation time was found to be the most significant parameter for both S. spontaneum 
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and banana peduncle celluloses as illustrated in Fig. 4.7 a and b and is consistent with the 

results obtained (Table 4.4 and Table 4.6). Furthermore, the normal probability plots (Fig. 

4.7 c and d), show the data points are distributed roughly linearly in both cases, forming a 

straight line that is in proper compliance with normally distributed response residuals 

confirming the adequacy of the models. 

 

Fig. 4.7. Pareto graphic analysis and normal probability plot described by the models 

for S. spontaneum cellulose (a, c) and banana peduncle (b, d), respectively. 

 

4.3.2. Optimization of enzymatic hydrolysis using ANN 

The ANN model for predicting glucose yield was built using the dataset derived from the 

RSM model. Table 4.3 and Table 4.5 shows the expected glucose yield from S. 

spontaneum cellulose and banana peduncle cellulose, respectively for all 30 experiments 

using ANN. The experimental data was trained using the LM algorithm applying second-

degree derivatives of mean squared error (MSE). One of the most important exercises in 

developing an ANN is the standardization of the number of neurons and hidden layers of 

the neural network [52]. In this study, the simulation of various topologies with different 

feed-forward networks was used to evaluate the determination of suitable ANN 
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architecture based on minimizing the mean square error (MSE), different algorithms for 

different hidden layers, and the number of neurons. Based on these criteria, the network 

was optimized by varying the number of neurons in the hidden neuronal layer from 5–100 

with a minimum of 10 training runs for each ANN topology [53]. An optimal ANN 

topology was recognized for both S. spontaneum and banana peduncle cellulose using four 

neurons in the input layer, twenty neurons in the hidden layer, and one neuron in the output 

layer (4-10-1) based on minimizing average MSE values in a total of 2850 (95 × 30) 

experimental set-ups. The notably high R2 value of 0.99 indicates that 99% of the total 

variations in the experimental parameters could be explained by these ANN predictive 

models in both cases (Fig. 4.8 a and b, Table 4.4 and 4.6). Furthermore, the ANN 

topologies of 4-10-1 showed the lowest MSE values of 0.007 for S. spontaneum cellulose 

(Fig. 4.8 a) and 7.8023 for banana peduncle cellulose (Fig. 4.8 b) and were used for the 

predictive modeling of enzymatic hydrolysis. The regression plots of the developed 

models are also shown in Fig. 4.8 a and Fig. 4.8 b.  The association attained were 0.9976, 

0.9999, 0.9979, and 0.9975 for training, testing, validation, and overall data respectively 

for S. spontaneum cellulose.  While for banana peduncle glucose these values are 0.9999, 

0.9937, 0.9969, and 0.9962 for training, testing, validation, and overall data 

correspondingly. In all data sets, the correlation coefficients were near one, representing 

that the fit was suitable for all data sets. Additionally, the fit line for the training and overall 

data sets, where the objectives were nearly equivalent to the network outputs, lay on the 

45-degree line. As a result, the glucose yield prediction accuracy of the ANN output 

network response was satisfactory [26]. The complete ANN predicted glucose yield based 

on each experimental run and the assessment with the investigational data set was depicted 

in Table 4.3 and Table 4.5.   
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Fig. 4.8. Selection of the best ANN architecture based on the determination coefficients 

(R2) for S. spontaneum cellulose (a), banana peduncle cellulose (c) and mean squared 

error (MSE) values for S. spontaneum cellulose (b), banana peduncle cellulose (d) for the 

training and validation of the optimum ANN topology. 

 

4.3.3. Optimization of enzymatic hydrolysis using ANFIS 

The datasets derived from the RSM models have been used to construct the ANFIS models. 

Fig. 4.9 a and Fig. 4.9 b show the plots of Gaussian membership functions (MF) for the 

four input variables (enzyme loading, substrate concentration, surfactant concentration, 

and, incubation time) for the S. spontaneum cellulose model and banana peduncle cellulose 

model, respectively. The predicted results of glucose yield given by both the ANFIS 

models are presented in Table 4.3 and Table 4.5. The calculated R, R2, and adjusted R2 of 

the ANFIS model for S. spontaneum were 0.9976, 0.9989, and 0.9928, respectively and 

for banana peduncle these were 0.9969, 0.9991, and 0.9925, respectively (Table 4.7). The 

closeness of R to unity indicates that the experimental and predicted values were in good 
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agreement. Furthermore, the R2 result implies that the model can explain 99.34% (in the 

case of S. spontaneum) and 99.31% (in the case of banana peduncle) of the difference in 

experimental and predicted values. The high R2 value also indicates that the model is fitted 

well [54]. 

 

Fig. 4.9. Membership function plots of input variables for S. spontaneum cellulose model 

(a) and banana peduncle cellulose model (b). 

 

Saccharum spontaneum cellulose  

The interactions among the four process parameters investigated for the glucose yield from 

S. spontaneum cellulose were examined using 3D surface viewer plots. The relationship 

between substrate concentration and enzyme loading on the glucose yield is depicted in 

Fig. 4.10 a. The figure shows that the interaction between the two parameters significantly 

affected the glucose yield. As the substrate concentration increases, the glucose yield 

decreases attaining minimum and then further increases with further increase in substrate 

concentration. On the other hand, increasing the enzyme loading considerably increases 

the glucose yield to attain a maximum and then decreases with further increase in enzyme 

loading. The lowest value is observed at an enzyme loading of 10 FPU/g and 40 mg/ml of 
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substrate concentration. Both parameters are known to have a strong influence on the 

glucose yield. The 3D surface plot of substrate concentration and surfactant concentration 

together with the glucose yield is presented in Fig. 4.10 b. The highest glucose yield was 

also observed at the moderate surfactant concentration and highest substrate concentration. 

Likewise, Fig. 4.10 c shows the 3D surface plot of incubation time and substrate 

concentration with the glucose yield. The surface plot suggests that the glucose value was 

highest at the highest incubation time and moderate substrate concentration. The highest 

value recorded at 96 h incubation time and 50 mg/ml substrate concentration was 96.07% 

and the lowest value was 33.36% at 42 h incubation time and 65 mg/ml substrate 

concentration. The rule viewer plot (Fig. 4.11 a) provides a set of 31 values of responses 

out of 81 total rules by varying the process parameters. 

Banana peduncle cellulose  

The interactions among the four process parameters investigated for the glucose yield from 

banana peduncle cellulose were also examined using 3D surface plots. The relationship 

between enzyme loading and surfactant concentration on the glucose yield is depicted in 

Fig. 4.10 d. The graph demonstrates that the two parameters interacted and had a 

considerable impact on the glucose value. The glucose value increases with an increase in 

enzyme loading and surfactant concentration and attains a maximum. As both the enzyme 

and surfactant loading increase, the glucose yield decreases. The glucose yield decreased 

from over 70% to less than 10%. The lowest glucose yield was observed at 20 FPU/g 

enzyme loading and 2 mg/mL surfactant concentration.  Fig. 4.10 e shows the interaction 

plot between enzyme loading and incubation time on the hydrolysis reaction. The glucose 

yield is highest at the highest incubation time and a moderate enzyme loading. The plot 

suggests that a further increase in enzyme loading with incubation time gradually 

decreases the glucose yield, which also corroborates with the RSM results. The highest 

glucose yield (97%) was recorded at an enzyme loading of 30 FPU/g and 96 h incubation 

time. The 3D surface plot of substrate concentration and incubation time together with 

glucose yield is presented in Fig. 4.10 f. The surface plot is comparable to Fig. 4.10 c and 

suggests that glucose yield increases with an increase in incubation time and substrate 

concentration, accomplished the highest glucose value, and then decreases with a further 

increase in substrate concentration (65 mg/ml). Lastly, the 3D interaction plot between the 

surfactant concentration and incubation time (Fig. 4.10 g) is quite similar to that of Fig. 
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4.10 e. The glucose yield is highest at the highest incubation time (96 h) and has a moderate 

surfactant concentration. The plot suggests that a further increase in surfactant 

concentration with incubation time gradually decreases the glucose yield. Overall, both 

the ANFIS models for S. spontaneum cellulose and banana peduncle cellulose suggest 

incubation time to be the most influential parameter and is in accordance with the findings 

(Table 4.3 and Table 4.5). The rule viewer plot (Fig. 4.11 b) provides a set of 31 values of 

responses out of 81 total rules by varying the process parameters. 

Fig. 4.10. 3D surface plots described by the ANFIS models for S. spontaneum cellulose 

(a-c) and banana peduncle cellulose (d-g) on the glucose yield.  
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Fig. 4.11. ANFIS rule viewer for the effect of process variables on responses for 

enzymatic hydrolysis of S. spontaneum (a) and banana peduncle (b). 

 

4.3.4. Performance assessment of the predictive ability of RSM, ANN, and, ANFIS 

models 

Table 4.3 and Table 4.5 shows the predictive outputs of the three models, as well as the 

experimental findings for S. spontaneum cellulose and banana peduncle cellulose, 

respectively. The outputs of the three models were evaluated using linear correlation plots 

(Fig. 4.12). Usually, the three models were effective and near precise in predicting the 

glucose yield outputs. The results exhibited that the experimental value and the RSM, 

ANN, and ANFIS model estimates were quite close, resulting in low residual values. 

However, based on many insignificant standards in their residues, the ANFIS model 

appears to be more appropriate for estimating the glucose yield.  The comparative plots in 

Fig. 4.12 showed a graphical association between investigational value and model 

calculations by RSM, ANN, and ANFIS models. 
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In addition, seven statistical error functions were applied to the model predictions 

to investigate further the model precision abilities, as shown in Table 4.7. RMSE, 

HYBRID, ARE, AARE, and MPSED error functions were assessed for each model. The 

model's ability to anticipate was demonstrated by the error functions’ low values. The 

result showed that all three models have insignificant error values. Besides, R2 and 

adjusted R2 were also assessed. Adjusted-R2 was used to investigate the overestimation of 

the R2, and the values attained for both models were adequately high, demonstrating their 

significance. The more precise the model predictions, the higher the R2 and adjusted R2 

values.  

 

Fig. 4.12. Comparison of predictive outputs of RSM, ANN, and ANFIS design matrices 

based on determination coefficients for S. spontaneum model (a) and banana peduncle 

model (b). 

 

Although it has been demonstrated that ANN outperforms RSM in terms of 

prediction capability [25], studies on the performance of ANFIS and ANN have been 

conflicting. This is because when one study found ANN to be more accurate than ANFIS 

[55] in terms of prediction capability, another study reported ANFIS to be more accurate 

than ANN [56]. On the other hand, Karimi et al. found that both ANN and ANFIS 

produced comparable results in their study [37]. In the current study, both ANN and 

ANFIS were found to be superior to RSM in terms of prediction accuracy and precision, 

however, though the results from the two models were similar, ANFIS was only 

marginally better than ANN. 
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Table 4.7. Statistical error indices of RSM, ANN, and ANFIS. 

Error function 

Results 

S. spontaneum Banana peduncle 

RSM ANN ANFIS RSM ANN ANFIS 

RMSE 0.018 0.0089 0.0082 0.0146 0.0085 0.0076 

HYBRID (%) 0.654 2.691 2.75 0.456 1.986 2.034 

ARE (%) 0.401 1.23 1.04 0.5 1.026 1.001 

AARE 0.0044 0.0189 0.021 0.0064 0.0184 0.0181 

MPSED (%) 0.8886 2.0114 2.1503 0.9857 2.009 2.1212 

R 0.9993 0.9969 0.9976 0.9939 0.9974 0.9969 

R2 0.9891 0.9955 0.9989 0.9803 0.9911 0.9991 

Adj R2 0.9816 0.9918 0.9928 0.9789 0.9894 0.9925 

 

4.3.5. Experimental validation of RSM, ANN, and, ANFIS optimal predictive outputs 

The optimal predictive outputs of RSM, ANN, and ANFIS were further validated 

experimentally by performing the enzymatic hydrolysis reactions at optimized conditions 

(Experimental run 16 of Table 4.3 and Table 4.5). The experimental results showed 

96.66%, 96.43%, and 96.96% in the case of S. spontaneum cellulose and 97.32%, 96.94%, 

and 97.10% of glucose yield in the case of banana peduncle cellulose. The findings are 

close to our predictive results. The glucose peaks in each condition are shown in the HPLC 

chromatogram (Fig. 4.13). A comparative table of validation of optimal conditions 

predicted by RSM and ANN is shown in Table 4.8. 
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Fig. 4.13. Glucose standard curve of HPLC (a); HPLC chromatograms showing the 

glucose peaks at optimal conditions of RSM, ANN, and ANFIS obtained from S. 

spontaneum cellulose (b) and banana peduncle cellulose (c). 

 

Table 4.8. Table of validation of optimal conditions predicted by RSM, ANN, and ANFIS. 
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S. spontaneum 

cellulose 

RSM 30 50 5 96 97.21 96.66 ± 1.12 

ANN 30 50 5 96 95.93 96.43 ± 0.95 

ANFIS 30 50 5 96 96.1 96.96 ± 1.04 

Banana 

peduncle 

cellulose 

RSM 30 50 5 96 97.87 97.32 ± 0.56 

ANN 30 50 5 96 93.51 96.94 ± 1.89 

ANFIS 30 50 5 96 97.42 97.10 ± 1.19 

   * Values are Mean ± SD of triplicate analysis. 
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4.3.6. Comparison between the glucose yield obtained from this work to that of 

previous work  

A comparative table (Table 4.9), exhibiting the glucose yield obtained from different 

lignocellulosic sources using different pretreatment approaches is shown below. It is 

pertinent to note from these studies that the pretreatment procedures of the biomass play a 

crucial role in the enhancement of glucose production. In this context, a high yield of 

glucose by the hydrolysis of cellulose isolated from banana peduncle using an integrated 

methodology of pretreatment has been encouraging. It is apparent from Table 4.9, that 

feedstocks like banana peduncle and corncob having a higher amorphous cellulose content 

but a low overall CrI, post pretreatments would promote higher enzymatic hydrolysis 

mediated glucose production, compared to others [57]. In this context, the removal of the 

non-cellulosic entities and pre-treatment mediated size reduction promote the higher 

enzymatic hydrolysis yields. 

Table 4.9. An assessment of diverse pretreatment and enzymatic hydrolysis procedures to 

obtain glucose with different yields from reported studies. 

Lignocellulosic 

sources 

Pre-treatment 

techniques 
Enzymes used 

Glucose 

yield (%) 
References 

Saccharum 

spontaneum 
Integrated approach 

Cellulase (Aspergillus 

niger) 
96 This study 

Banana peduncle Integrated approach 
Cellulase (Aspergillus 

niger) 
97 This study 

Corncob Fenton 
Cellulase 

(Trichoderma reesei) 
92 [58] 

Alfalfa CO2 explosion Not mentioned 75 [59] 

Biomass 
H2SO4 (above 30%) 

hydrolysis 
Not mentioned 70 [60] 

Sugarcane 

bagasse 
CO2 explosion Cellulase 72.6 [61] 

Cornstalk 
Electron beam 

irradiation 
Cellulase 43 [62] 

Wheat straw 

Combined wet 

oxidation and alkaline 

hydrolysis 

Cellulase (Aspergillus 

niger) 
85 [63] 

Eucalyptus 

urophylla 

Hydrothermal and alkali 

fractionation 

Cellulase and β-

Glucosidase 
66.3 [64] 
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4.4. Conclusion 

The current chapter describes the enzymatic hydrolysis of Saccharum spontaneum and 

banana peduncle-derived celluloses for the production of glucose. To maximize the 

glucose yield values, the hydrolysis process was optimized utilizing three optimization 

techniques, namely, RSM, ANN, and ANFIS, and their prediction efficacies were 

compared. The best conditions were anticipated by all three models with a combination of 

process parameters such as enzyme loading 30 FPU/g, substrate concentration 50 mg/mL, 

surfactant concentration 5 mg/mL, and incubation time 96 h. The optimal condition led to 

a glucose turnover of > 96% from both Saccharum spontaneum and banana peduncle-

derived celluloses. According to the seven statistical error indices, the ANN and ANFIS 

models for glucose yield prediction had a better performance when compared with the 

RSM model, however, ANFIS was marginally better than ANN. This is the first sequential 

study of an economical and environmentally sustainable method for enhanced enzymatic 

hydrolysis for glucose production from the lignocellulosic extracted celluloses (as 

discussed in Chapter 3). The enzymatic approach is efficient, practical and economical, 

and environmentally benign, streamlining the transformation of lignocellulosic biomass to 

glucose.  
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