DEDICATED TO MAA AND PAPA

DECLARATION

The thesis entitled "Quality Profiling and Valorization of Tamarillo (*Solanum betaceum*) of North East India" is being submitted to the Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in *Food Engineering and Technology* is a record of bonafide research work accomplished by me under the supervision of Prof. Charu Lata Mahanta.

All assistance received from various sources have been appropriately acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree

Date:

Place: Tezpur

(Shubham Rohilla)

Department of Food Engineering and Technology School of Engineering Tezpur University Assam, India

Prof. Charu Lata Mahanta Department of Food Engineering and Technology

CERTIFICATE OF THE SUPERVISIOR

This is to certify that the thesis entitled "Quality Profiling and Valorization of *Tamarillo (Solanum betaceum) of North East India*" submitted to the School of Engineering, Tezpur University in partial fulfilment for the award of the degree of **Doctor of Philosophy** in Food Engineering and Technology, is a record of research work carried out by Shubham Rohilla under my supervision and guidance.

All assistance received by him from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree.

Date:

Place: Tezpur, Assam

Prof. Charu Lata Mahanta (Supervisor)

Department of Food Engineering and Technology School of Engineering Tezpur University Assam, India

Acknowledgement

I am incredibly content to complete the thesis as an outcome of the past few years of my dedicated academic research work, fulfilling the requirement for my Ph.D. As this Ph.D. journey approaches completion, I would like to thank the people closely involved in the work, without whom the realization of the thesis would not have been possible. To begin with, I am totally indebted to my supervisor Prof. Charu Lata Mahanta, for her flawless guidance, expertise and knowledge of the field and constant support throughout the work in all possible ways and manners. I am extremely grateful to her for having faith in me and for patiently teaching me several things. This study owes so much to her.

I want to express my sincere thanks to my DC members, Prof. L. S. Badwaik Tezpur University and Dr. Rupak Mukhopadhyay, Department of Molecular Biology and Biotechnology, for their timely evaluation of the progress made in the tenure. I am also grateful to all the faculty members of the Department of Food Engineering and Technology, Tezpur University, for extending help and valuable advice.

I would like to acknowledge Dr. Sidhartha Singha, Center for Rural Development, Indian Institute of Technology, Guwahati, for selecting me to work under the "Opportunities for Networking and Collaborative Research" scheme supported through NECBH.

I am thankful to the technical staff for their help and support whenever required. I would like to thank all my lab seniors, friends and juniors particularly Dr. D. Kalita, Dr. Manoj Mondal, Dr. N. Kr. Mahnot, Dr. G. Gautam, Dr. K. Gupta, Dr. V. Marboh, Mr. J. Bora, Ms. Maino, Mr. H. Chutia, Ms. F. Begum, Ms. B. Basumatary for their help and moral support in completing my research work. I would also like to thank all my dear friends especially Avinash, Pinky, Maanas, Arun, Baby, Urvashi, Muzamil, Swapnil, Sangita, Thoithoi from Tezpur University and Sagnik De and Shashi Kumar C from IIT Guwahati for their help and support in completing my research work.

I would like to acknowledge the financial support given by the UGC-NFOBC during my research work. I also acknowledge Tezpur University for providing grant under "Research and Innovation" scheme. I would like to acknowledge UGC-SAP, Tezpur University for providing the equipment facilities for research. I also acknowledge financial support given by the Ministry of Food Processing Industries, New Delhi for carrying out research activities.

I also acknowledge the help of IPR Cell, Tezpur University for facilitating transfer of two technologies on tamarillo processing to M/S Tsuipu Food Products, Dimapur, Nagaland.

Last, but not least, I am deeply indebted to my ever-supporting parents for standing with me by their unconditional support and sacrifices. I am grateful to my sisters Alpana and Anupama for being the wind beneath my wings. I am also thankful to my brother-in-law, niece and other relatives who are concerned about my research. Their encouragement, affection and moral support have made this journey much bearable.

Shubham Rohilla

February 2023

List of Tables

Table No.	Table Title	Page no.
Table 2.1.	Physical characteristics of tamarillo varieties cultivated in different	12
	regions.	
Table 2.2.	The biochemical and nutritional profile of tamarillo on wet basis.	13
Table 2.3.	Phenolic compounds in tamarillo.	17
Table 2.4.	Concentration of anthocyanins in red and yellow varieties of tamarillo.	19
Table 2.5.	Carotenoids content in tamarillo.	
Table 3.1.	Proximate composition of the pulp of three different tamarillo varieties.	49
Table 3.2.	Biochemical analysis of tamarillo varieties.	50
Table 3.3.	Effect of HPH and US treatment on total anthocyanins and total	52
	carotenoids present in tamarillo varieties.	
Table 3.4.	Phenolic acids, anthocyanins and carotenoids in HPH and US treated	64
	tamarillo varieties quantified by HPLC.	
Table 3.5.	In-vitro bioaccessibility of control, HPH and US treated tamarillo	65
	varieties	
Table 4.1.1.	Experimental data and their response in Box-Behnken design for	82
	yellow and red tamarillo pulp	
Table 4.1.2.	Optimized response polynomial equations fitted in quadratic model for	84
	yellow and red tamarillo pulp extract	
Table 4.1.3.	Predicted and experimental values using optimized conditions for	84
	maximum TPC, TFC and antioxidant activity	
Table 4.2.1.	Extraction limits selected for independent variables to extract total	94
	phenolic and total monomeric anthocyanins from purple tamarillo peel	
	using SCFE and UAE	
Table 4.2.2.	Adequacy of model tested using SCFE for optimization of response	102
Table 4.2.3.	Anova table of extraction of total phenolic content and total	103
	monomeric anthocyanin content by SCFE	
Table 4.2.4.	Experimental data of the responses for SCFE and UAE in BOX-	106
	Behnken design	
Table 4.2.5.	Anova table of extraction by UAE	108

- **Table 4.2.6.**Adequacy of model tested using UAE for optimization of response109
- Table 4.2.7.
 Optimized conditions for SCFE and UAE with predicted and 110 experimental values
- **Table 4.2.8.** Phenolic acids and anthocyanins content present in optimized extract111of SCFE and UAE extracts of purple tamarillo
- **Table 5.1.1.** Effect of thermal processing and addition of oil on TSS and pH of124tamarillo puree
- Table 5.1.2.
 Effect of thermal processing and addition of oil on phenolic,
 127

 flavonoids, in-vitro antioxidant and carotenoids content of tamarillo
 puree
- Table 5.1.3.
 Effect of thermal processing and addition of oil on colour parameters
 128

 of tamarillo puree
 128
- **Table 5.2.1.** Effect on particle size, colour, TPC, in vitro antioxidant and TCC of145HPH treated tamarillo puree
- Table 5.2.2.
 Phenolic acid and carotenoids concentration in the HPH treated
 150

 tamarillo puree and HPH processed thermally treated bottled tamarillo
 puree
- **Table 5.2.3**Phenolic acid and carotenoids concentration present in *in-vitro*150digestion of HPH processed thermally treated bottled tamarillo puree
- Table 5.2.4.
 Calculation of D values of different microbes evaluated in tamarillo
 151

 puree
 151
- **Table 5.2.5.** Effect on biochemical, polyphenols, carotenoids content and *in-vitro*159antioxidant properties of tamarillo puree during storage (25°C)
- **Table 6.1.**Different drying models with their equation expressions170
- **Table 6.2.**Classification for flowability in terms of Carr Index171
- **Table 6.3.**Classification for cohesiveness in terms of Hausner ratio172
- **Table 6.4.**Phenolic and total carotenoids found in tamarillo powder at different176temperature
- **Table 6.5.**Physicochemical analysis of the foam177
- Table 6.6.Regression analysis of the drying models180Table 6.7.Arrhenius equation data of different drying models181
- **Table 6.8.**Powder characteristics of foam mat dried powder184**Table 6.8.**Diagonal dried powder184
- **Table 6.9.**Phenolic, flavonoids, in-vitro antioxidant values of the foam mat dried188

powder

Table 6.10.	Phenolic acid and carotenoids concentration identified in foam mat	193
	dried powders	
Table 7.1.1.	Limits for independent extraction of total carotenoids using high shear	205
	disperser	
Table 7.1.2.	Limits for independent extraction of total carotenoids using UAE	205
Table 7.1.3.	Experimental design for extraction of total carotenoids content using	210
	high shear disperser and ultrasound assisted extraction	
Table 7.1.4.	ANOVA table for HSD	212
Table 7.1.5.	ANOVA table for UAE	214
Table 7.1.6.	Predicted and experimental values of extracted total carotenoids using	214
	high shear disperser and ultrasound assisted extraction	
Table 7.1.7.	Total phenolic content, in-vitro antioxidant activity, and colour values	217
	of olive oil extract after high shear treatment and ultrasound assisted	
	extraction.	
Table 7.1.8.	Quantification of identified phenolic acids and carotenoids in olive oil	218
	extract	
Table 7.1.9.	Sensory evaluation of carotenoids enriched and without enriched	219
	mayonnaise	
Table 7.1.10.	In- vitro digestion of identified carotenoids in prepared mayonnaise	221
Table 7.2.1.	Experimental data with their resposne in Box-Behnken design of	232
	carotenoids loaded NE	
Table 7.2.2.	Optimized response polynomial equations fitted in quadratic model of	234
	carotenoids loaded NE	
Table 7.2.3.	Predicted and experimental values using optimized conditions for PSA,	235
	PDI and EE	
Table 7.2.4.	Concentration of carotenoids in <i>in-vitro</i> digestion assessed by HPLC	241

List of Figures

Figure No.	Figure Title	
Fig. 2.1	Different varieties of tamarillo, (1) purple, (2) red, (3) and yellow	9
	tamarillo	
Fig. 3.1.	Effect of HPH and US treatment on (a) TPC, (b) TFC, (c) DPPH	55
	radical scavenging activity, and (d) ABTS radical activity in	
	tamarillo varieties.	
Fig. 3.2.	HPLC chromatograms of phenolics present in purple, yellow and	59
	red tamarillo.	
Fig. 3.3.	HPLC chromatograms of anthocyanins present in purple and red	61
	tamarillo.	
Fig. 3.4.	HPLC chromatograms of carotenoids found in purple, yellow and	62
	red tamarillo.	
Fig. 3.5.	Impact of <i>in-vitro</i> digestion on TPC and DPPH radical scavenging	66
	activity of Control, HPH-750, and US-10 treated tamarillo	
T ! 411	samples.	00
Fig. 4.1.1.	Effect of (a) solvents (I-Distilled water, II: Acetone, III: Ethanol,	80
	IV: Methanol); (b) Acetone concentration; (c) solid to solvent	
	(acetone) ratio; (d) Time; (e) Amplitude on extraction of total	
$\mathbf{Fig}(1 2)$	phenolic content (TPC) using UAE. Response surface plots showing effect of UAE parameters on total	81
Fig. 4.1.2.	phenolic content extraction from yellow tamarillo pulp (A1, A2	01
	and A3) and red tamarillo pulp (X1,X2 and X3).	
Fig. 4.1.3.	Response surface plots showing effect of UAE parameters on total	83
116. 111.	flavonoids content extraction from yellow tamarillo pulp (B1,B2	00
	and B3) and red tamarillo pulp (Y1,Y2 and Y3).	
Fig. 4.1.4.	Response surface plots showing effect of UAE parameters on	86
8	DPPH radical scavenging activity of yellow tamarillo pulp (C1,C2	
	and C3) and red tamarillo pulp (Z1,Z2 and Z3).	
Fig. 4.2.1.	Effect of supercritical fluid extraction parameters (a) extraction	100
	time, (b) temperature, (c) pressure on total phenolic content; effect	
	of ultrasound assisted extraction parameters (x) extraction time,	

(y) temperature, (z) amplitude on total phenolic content.

	(y) temperature, (z) amplitude on total phenome content.	
Fig. 4.2.2.	Response surface (3D graphs) for supercritical fluid extraction.	101
Fig. 4.2.3.	Response surface (3D graphs) for ultrasound assisted extraction.	
Fig. 4.2.4.	HPLC profile of phenolic compounds in optimized extract of (a)	111
	SCFE and (b) UAE; A: gallic acid, B: chlorogenic acid, C: caffeic	
	acid, and D: p-coumaric acid	
Fig. 4.2.5.	HPLC profile of anthocyanins in optimized extract of (c) SCFE	112
	and (d) UAE. A: Delphinidin 3-rutinoside, B: Cyanidin-3-O-	
	rutinoside, and C: Pelargonidin 3-O-rutinoside.	
Fig. 4.2.6.	Effect of temperature on extracted anthocyanin from purple	112
	tamarillo using SCFE and UAE technique.	
Fig. 4.2.7.	SEM images of Control, SCFE and UAE treated samples at	113
	different magnifications.	
Fig. 5.2.1.	Light microscopy images of HPH treated tamarillo puree.	142
Fig. 5.2.2.	HPLC analysis of carotenoids present in HPH treated puree.	146
Fig. 5.2.3.	HPLC analysis of the phenolic acids present in HPH treated	149
	tamarillo puree.	
Fig. 5.2.4.	Escherichia coli survival curve after heating in tamarillo puree at	152
	different temperature, a (65°C), b (75°C), c (85°C), and d (95°C).	
Fig. 5.2.5.	Staphylococcus aureus survival curve after heating in tamarillo	153
	puree at different temperature a (65°C), b (75°C), c (85°C), and d	
	(95°C).	
Fig. 5.2.6.	Listeria monocytogenes survival curve after heating in tamarillo	154
	puree at different temperature, a (65°C), b (75°C), c (85°C), and d	
	(95°C).	
Fig. 5.2.7.	Bacillus cereus survival curve after heating tamarillo puree at	155
	different temperatures, a (65°C), b (75°C), c (85°C), and d (95°C).	
Fig. 5.2.8.	In-vitro digestion of the (X1) TPC and (Y1) TCC; X2,X3 and X4	158
	represent the HPLC of phenolic acids in initial, gastric and	
	intesntinal phases (A: gallic acid, B: chlorogenic acid, C: caffeic	
	acid and D: p-coumaric acid) and Y2, Y3 and Y4 represents the	
	concnetration of individiual carotenoids using HPLC in initial,	
	gastric and intestinal phases (A: β -cryptoxanthin and B: β -	

carotene), respectively.

Fig. 6.1.	Effect of foaming agent and concentration on foam stability.	
Fig. 6.2.	SEM images of foam mat dried powder obtained using different	
	foaming agent and concentration at 2500 magnification.	
Fig. 6.3.	HPLC chromatogram of different foam mat dried tamarillo	190
	powder, A: gallic acid, B: chlorogenic acid, C: caffeic acid and D:	
	p-coumaric acid.	
Fig. 6.4.	HPLC chromatogram of carotenoids present in different foam mat	192
	dried tamarillo powder, A: β -cryptoxanthin, B: β -carotene.	
Fig. 7.1.1.	3D response surface graphs of the extraction by the total	211
	carotenoids using (X1-X3) HSD and (Y1-Y3) UAE.	
Fig. 7.1.2. HPLC chromatogram for phenolic acids present in optimized		218
	and UAE sample, A: gallic acid, B: chlorogenic acid, C: caffeic	
	acid and D: p-coumaric acid.	
Fig. 7.1.3.	HPLC chromatogram for carotenoids present in optimized HSD	219
	and UAE sample, A: zeaxanthin, B: β-cryptoxanthin, C: β-	
	carotene.	
Fig. 7.1.4.	HPLC of in-vitro digestion of carotenoids present in mayonnaise.	221
Fig. 7.2.1.	GC-MS chromatogram of the tamarillo seed oil.	231
Fig. 7.2.2.	Response surface graphs of carotenoids loaded NE for PS (X1, X2	236
	and X3), PDI (Y1, Y2 and Y3) and EE (Z1, Z2 and Z3).	
Fig. 7.2.3.	Effect on PS (A1) in different pH, (B1) ionic strength, (C1)	240
	storage temperature and carotenoids retention (A2) in different	
	pH, (B2) ionic strength, (C2) storage temperature.	
Fig. 7.2.4.	Particle size of <i>in-vitro</i> digested sample	242
Fig. 7.2.5.	HPLC chromatogram of in vitro digestion of carotenoid loaded	243
	NE.	
Fig. 7.2.6	TEM iamges of carotenoids loaded nanomeulsion.	244

List of Abbreviation

ABTS	2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
Adj.	Adjusted
ALB-F	Egg albumin-Foam
ALB-P	Egg albumin-Powder
ANOVA	Analysis of variance
AV	Acid Value
BBD	Box Behnken Design
BC	Bacillus cereus
BHT	Butylated hydroxytoluene
C3G	Cyanindin-3-glucoside
DPPH	2,2-diphenyl-1-picrylhydrazyl
EC	Escherichia coli
EE	Encapsulation Efficiency
GAE	Gallic Acid Equivalent
GEL-F	Gelatin Foam
GEL-P	Gelatin Powder
HPH	High Pressure Homogenization
HPLC	High performance Liquid Chromatography
HSD	High Shear Disperser
LDPE	Low Density Polyethylene
LM	Listeria monocytogenes
NE	Nanoemulsions
PDI	Polydispersity Index
PS	Particle size
PV	Peroxide Value

QE	Quercetin Equivalent
RCCD	Rotatable Central Composite Design
RMSE	Root Mean Square Error
ROS	Reactive oxygen species
RSM	Response Surface Methodology
SA	Staphylococcus aureus
SCFE	Supercritical Fluid Extraction
SEM	Scanning Electron Microscopy
SPC-F	Soy Protein Concentrate Foam
SPC-P	Soy Protein Concentrate Powder
SSE	Error sum of squares
TCC	Total Carotenoids Content
TE	Trolox Equivalent
TEM	Transmission Electron Microscopy
TFC	Total Flavonoids content
TMAC	Total Monomeric Anthocyanin Content
TMC	Total Microbial Count
TPC	Total Phenolic content
TSS	Total Soluble Solids
UAE	Ultrasound Assisted Extraction
US	Ultrasound
UV-Vis	Ultraviolet Visible
WPC-F	Whey Protein Concentrate Foam
WPC-P	Whey Protein Concentrate Powder
β-CE	Beta Carotene Equivalent

List of Symbols and Units

%	percentage
°C	degree Celsius
μl	micro litres
μm	micrometre
L*	Lightness
a*	redness
b*	yellowness
A _o	absorbance of blank
A _s	absorbance of sample
CFU/g	colony forming unit per gram
cm	centimetre
cm^{-1}	per centimetre
dw	dry weight
eq	equation
fw	fresh weight
µg/g	microgram per gram
g	gram
g/g	gram per gram
g/mL	grams per millilitres
h	hour
kg	kilogram
М	molar
min	minutes
mL	millilitres
mm	millimetres

nm	nanometre
R^2	coefficient of determination
rpm	rotation per minute
S	seconds
U/mL	units per millilitre
v/v	volume by volume
w/v	weight per volume
w/w	weight by weight
ζ	Zeta potential
λ	wavelength
CO_2	carbon di oxide
MPa	Mega Pascal
mV	millivolt
ΔE	Total colour difference