
Chapter 7

Solvable conjugacy class graph of

groups

Extending the notion of CCC-graph, in 2017 Mohammadian and Erfanian [73] introduced

NCC-graph. In this chapter, we further extend the notions of CCC-graph and NCC-graph

and introduce the solvable conjugacy class graph (abbreviated as SCC-graph) of G. The

SCC-graph of a group G is a simple undirected graph, denoted by SCC(G), with vertex

set {xG : 1 ̸= x ∈ G} and two distinct vertices xG and yG are adjacent if there exist two

elements x′ ∈ xG and y′ ∈ yG such that ⟨x′, y′⟩ is solvable. It is clear that the NCC-graph is

a spanning subgraph of the SCC-graph of G.

In Section 7.1, We shall discuss certain properties regarding connectedness, diameter,

domination number and girth of SCC-graph. In Section 7.2, we shall obtain some results

on distance between two vertices of SCC-graph for some locally finite groups. In Section

7.3, we shall discuss properties of genus and crosscap of SCC-graph of Sn and An and

determine all positive integer n such that SCC(Sn) and SCC(An) are planar or toroidal. We

shall conclude this chapter by obtaining a relation between γ(SCC(G)) and Pr(G). This

chapter is based on our paper [17].

7.1 Certain properties of SCC-graph

We begin with a simple observation. Let a and b be two elements of G such that aG and

bG are joined in the SCC-graph of G. This means that there exist a′ ∈ aG and b′ ∈ bG such

that ⟨a′, b′⟩ is solvable. Without loss of generality, we can assume that a′ = a. For suppose
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Chapter 7. Solvable conjugacy class graph of groups

that (a′)h = a. Then ⟨a′, b′⟩h = ⟨a, (b′)h⟩ is solvable, since it is a conjugate of (and hence

isomorphic to) ⟨a′, b′⟩.

Theorem 7.1.1. Let G be a finite group. Then the SCC-graph of G is complete if and only

if G is solvable.

Proof. If G is solvable, ⟨x, y⟩ is also solvable for all x, y ∈ G. In particular, if aG, bG are

two vertices of SCC(G) and x ∈ aG, y ∈ bG then ⟨x, y⟩ is solvable. Therefore, aG and bG

are adjacent. Hence, SCC(G) is a complete graph.

Conversely, suppose that SCC(G) is complete. Then, by the observation at the end of

the last section, for every a, b ∈ G, there is a conjugate b′ of b such that ⟨a, b′⟩ is solvable.
By Result 1.2.12, we conclude that G is solvable.

Next we turn to the questions of connectedness and diameter. The girth will be dis-

cussed in the next section, but we begin with a simple observation.

Proposition 7.1.2. Let G be a non-solvable group such that it has an element of order pq,

where p, q are primes. If p ̸= q then girth(SCC(G)) = 3 and hence SCC(G) is not a tree.

Proof. Let a ∈ G be an element of order pq. If p ̸= q then o(aq) = p and o(ap) = q. Also,

⟨a, aq⟩, ⟨aq, ap⟩ and ⟨ap, a⟩ are abelian groups. Since aG, (aq)G and (ap)G are distinct, we

have the following triangle

a ∼ aq ∼ ap ∼ a

in SCC(G). Therefore, girth(SCC(G)) = 3 and hence SCC(G) is not a tree.

Proposition 7.1.3. Let x ∈ G \ {1} and a, b ∈ SolG(x) \ {1}. Then aG and bG are

connected and d(aG, bG) ≤ 2. In particular, if Sol(G) ̸= {1} then SCC(G) is connected and

diam(SCC(G)) ≤ 2.

Proof. Since a, b ∈ SolG(x) \ {1}, ⟨a, x⟩ and ⟨x, b⟩ are solvable. Therefore, d(aG, xG) ≤ 1

and d(xG, bG) ≤ 1. Hence, the result follows.

If Sol(G) ̸= {1} then there exists an element z ∈ G such that z ̸= 1 and z ∈ Sol(G).

Therefore, z ∈ SolG(w) for all w ∈ G \ {1}. Let uG and vG be any two vertices of SCC(G).
Then u, v ∈ SolG(z) \ {1}. Therefore, by the first part it follows that d(uG, vG) ≤ 2. Hence,

diam(SCC(G)) ≤ 2.

Remark 7.1.4. For any two distinct vertices xG, yG ∈ V (SCC(G)), xG ∼ yG if and only

if SolG(gxg
−1) ∩ yG ̸= ∅ for all g ∈ G. Also, xG is an isolated vertex if and only if

SolG(gxg
−1) ⊆ xG ∪ {1} for all g ∈ G.
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Theorem 7.1.5. If G,H are arbitrary non-trivial groups then the graph SCC(G × H)

is connected and diam(SCC(G × H)) ≤ 3. In particular, SCC(G × G) is connected and

diam(SCC(G × G)) ≤ 3. Further, diam(SCC(G × G)) = 3 if and only if either SCC(G) is

disconnected or SCC(G) is connected with diam(SCC(G)) ≥ 3.

Proof. Let (x, y) and (u, v) be two non-trivial elements of G × H. Without any loss we

may assume that x ̸= 1G and v ̸= 1H , where 1G and 1H are identity elements of G and H

respectively, then

(x, y)G×H ∼ (x, 1H)G×H ∼ (1G, v)
G×H ∼ (u, v)G×H .

This shows that SCC(G×H) is connected and diam(SCC(G×H)) ≤ 3. Putting H = G, it

follows that SCC(G×G) is connected and diam(SCC(G×G)) ≤ 3.

Let diam(SCC(G×G)) = 3. Suppose that SCC(G) is connected and diam(SCC(G)) ≤ 2

(on the contrary). Let (x, y), (u, v) be two vertices in SCC(G × G). Without any loss we

may assume that x, u ̸= 1G. Since SCC(G) is connected and diam(SCC(G)) ≤ 2, there exist

a ∈ G \ {1G} such that xG ∼ aG ∼ uG. Therefore, ⟨xf , ag⟩ and ⟨ah, uw⟩ are solvable for

some f, g, h, w ∈ G. We have ⟨(x, y)(f,c), (a, 1G)(g,d)⟩ = ⟨xf , ag⟩×⟨yc⟩, where c, d ∈ G. Since

⟨xf , ag⟩ and ⟨yc⟩ are solvable, (x, y)G×G ∼ (a, 1G)
G×G. Similarly, (u, v)G×G ∼ (a, 1G)

G×G.

Thus we get the following path

(x, y)G×G ∼ (a, 1G)
G×G ∼ (u, v)G×G.

Therefore, diam(S(G × G)) ≤ 2, which is a contradiction. Hence, SCC(G) is disconnected

or SCC(G) is connected with diam(SCC(G)) ≥ 3.

Suppose that either SCC(G) is disconnected or it is connected with diam(S(G)) ≥ 3.

Then there exist two distinct elements x, y ∈ G \ {1G} such that either xG, yG are not

connected or d(xG, yG) ≥ 3. We are to show that diam(SCC(G × G)) = 3. Suppose that

diam(SCC(G×G)) ≤ 2. Consider the following two cases.

Case 1. SCC(G) is disconnected.
Let uG and vG be any two distinct vertices in SCC(G). Then d((u, 1G)G×G, (v, 1G)

G×G) =

1 or 2. If d((u, 1G)
G×G, (v, 1G)

G×G) = 1 then (u, 1G)
G×G ∼ (v, 1G)

G×G. Therefore, ⟨uf , vw⟩
is solvable for some f, w ∈ G. Therefore, uG ∼ vG and so d(uG, vG) = 1; a contradiction. If

d((u, 1G)
G×G, (v, 1G)

G×G) = 2 then there exists a non-identity element (a, b) ∈ G×G such

that

(u, 1G)
G×G ∼ (a, b)G×G ∼ (v, 1G)

G×G.
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It follows that ⟨uf , ag⟩ and ⟨ah, vw⟩ are solvable for some f, g, h, w ∈ G and so

uG ∼ aG ∼ vG.

Thus uG, vG are connected and d(uG, vG) ≤ 2, a contradiction.

Case 2. SCC(G) is connected with diam(SCC(G)) ≥ 3.

Proceeding as in Case 1, we get d(uG, vG) ≤ 2 for any two distinct vertices uG and vG

in SCC(G). Therefore, diam(SCC(G)) = 2; a contradiction.

Thus, from Case 1 and Case 2, we get diam(SCC(G ×G)) ≥ 3. Hence, SCC(G ×G) =

3.

Proposition 7.1.6. Let G be a non-solvable group. Then the domination number of SCC-

graph, λ(SCC(G)) = 1 if |Sol(G)| ≠ 1.

Proof. Let x be a non-trivial element in Sol(G). Then xG ∈ V (SCC(G)). Let yG ∈
V (SCC(G)) \ {xG} be an arbitrary vertex. Then ⟨x, y⟩ is solvable. Therefore, xG and

yG are adjacent. Hence, {xG} is a dominating set of SCC(G) and so λ(SCC(G)) = 1.

Theorem 7.1.7. Let G be a finite group. If G has an element of order n = Πm
i=1p

ki
i , where

pi’s are distinct primes. Then SCC(G) has a clique of size Πm
i=1(ki + 1)− 1.

Proof. Let x ∈ G be an element of order n. Then (xr)G ∼ (xs)G for all proper divisors r, s

of n. Since total number of proper divisors of n = Πm
i=1p

ki
i is Πm

i=1(ki + 1) − 1, we get a

clique in SCC(G) of size Πm
i=1(ki + 1)− 1.

We conclude this section with the following result.

Theorem 7.1.8. With the exception of the cyclic groups of orders 1, 2 and 3 and the

symmetric group of degree 3, every finite group G has the property that SCC(G) contains a

triangle (that is, has girth 3).

Proof. If G is solvable then k(G) = ω(SCC(G)) + 1 (the extra 1 coming from the identity

of G), so G has at most three conjugacy classes. The groups listed in the theorem are all

those having this property.

So we may assume that G is non-solvable. If G has an element whose order is not a

prime power then some power (say g) of this element has order pq, where p and q are distinct

primes. Then SCC(G) contains a clique of size 3, by Theorem 7.1.7.

So we may further assume that every element of G has prime power order.
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These groups were first studied by Higman [63] in 1957; Suzuki [89] determined the

simple groups with this property in 1965. Subsequently all such groups have been classi-

fied [26, 61]. The story is somewhat tangled, perhaps due to the lack of a common name

for the class. Subsequently two names were proposed; a group with this property is called

a CP group by some authors, and an EPPO group by others. These groups have arisen in

connection with other graphs defined on groups, including the Gruenberg–Kegel graph (or

prime graph) and the power graph: see [30]. The result we require is that a non-solvable

group in which every element has prime power order satisfies one of the following:

(a) G is one of A6, PSL(2, 7), PSL(2, 17), M10 or PSL(3, 4);

(b) G has a nornal subgroup N such that G/N is PSL(2, 4), PSL(2, 8), Sz(8) or Sz(32),

and N is a direct sum of copies of the natural G/N -module over its field of definition.

Suppose first that we are in case (b). If we can find a triangle in the solvable conjugacy

class group of G/N then it lifts to a triangle in SCC(G). So it is enough to add the four

possibilities for G/N to the list of groups in case (a).

In Sz(8), there are three conjugacy classes of elements of order 13, all represented in a

cyclic subgroup of order 13, giving us a triangle. Similar arguments apply to Sz(32) (using

an element of order 41), PSL(2, 8) (order 7), and PSL(2, 17) (order 3 and two classes of

order 9). In PSL(2, 4), a dihedral subgroup of order 10 meets two conjugacy classes of

elements of order 5 and one class of involutions. A similar argument applies to A6 (using a

dihedral group of order 10), PSL(2, 7) (using a non-abelian group of order 21) PSL(3, 4) (a

non-abelian group of order 21) andM10 (a quaternion group of order 8 meets two conjugacy

classes of elements of order 4 and one class of involutions). All this information is easily

obtained from the ATLAS of Finite Groups [32].

7.2 Distance in SCC-Graph for locally finite group

A locally finite group is a group for which every finitely generated subgroup is finite. An

element of a group is said to be a p-element if the order of the element is a power of p,

where p is a prime. In this section we obtain some results on distance between two vertices

of SCC(G) for some locally finite groups, analogous to the Results 1.3.24 - 1.3.29.

Proposition 7.2.1. Let G be a locally finite group. If x, y ∈ G \ {1} are p-elements, where

p is a prime, then d(xG, yG) ≤ 1.
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Proof. Since G is a locally finite group and x, y ∈ G \ {1} are p-elements, the subgroup

⟨x, y⟩ is finite. Let P be a Sylow p-subgroup of ⟨x, y⟩ containing x. Then yg = gyg−1 ∈ P

for some g ∈ G since all the Sylow p-subgroups are conjugate. Therefore, ⟨x, yg⟩ is solvable
and so d(xG, yG) ≤ 1.

Proposition 7.2.2. Let G be a locally finite group. If x, y ∈ G are of non-coprime orders

then d(xG, yG) ≤ 3. If either x or y is of prime order then d(xG, yG) ≤ 2.

Proof. Let o(x) = pm and o(y) = pn, where p is a prime and m,n are positive integers.

Then xm and yn are non-trivial p-elements of G. Therefore, by Proposition 7.2.1, we have

d((xm)G, (yn)G) ≤ 1.

Clearly, d(xG, (xm)G) ≤ 1 and d((yn)G, yG) ≤ 1. Therefore, if xG ̸= yG then xG ∼ (xm)G ∼
(yn)G ∼ yG is a path from xG to yG. Hence, d(xG, yG) ≤ 3.

Suppose that o(x) = pm and o(y) = p. Then xm and y are non-trivial p-elements of G.

Therefore, by Proposition 7.2.1, we have

d((xm)G, yG) ≤ 1.

Thus xG ∼ (xm)G ∼ yG is a path from xG to yG. Hence, d(xG, yG) ≤ 2.

Proposition 7.2.3. Let G be a locally finite group and x, y ∈ G. Suppose p and q are

prime divisors of o(x) and o(y), respectively, and that G has an element of order pq. Then

(a) d(xG, yG) ≤ 5, and moreover d(xG, yG) ≤ 4 if either x or y is of prime power order.

(b) If either a Sylow p-subgroup or a Sylow q-subgroup of G is a cyclic or generalized

quaternion finite group then d(xG, yG) ≤ 4. Moreover, d(xG, yG) ≤ 3 if either x or y

is of prime order.

(c) If both Sylow p-subgroup and Sylow q-subgroup of G are either cyclic or generalized

quaternion finite groups then d(xG, yG) ≤ 3. Moreover, d(xG, yG) ≤ 2 if either x or y

is of prime order.

Proof. Let o(x) = pm and o(y) = qn for some positive integers m,n. Let a ∈ G be an

element of order pq. Then o(aq) = p and o(ap) = q. Also, ap commutes with aq.

(a) We have

d(xG, (xm)G) ≤ 1, d((aq)G, (ap)G) = 1, and d((yn)G, yG) ≤ 1.
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Since o(xm) = o(aq) = o(yn) = p, by Proposition 7.2.1, we have

d((xm)G, (aq)G) ≤ 1 and d((ap)G, (yn)G) ≤ 1.

Therefore, d(xG, yG) ≤ 5.

If o(x) = ps for some positive integer s then, by Proposition 7.2.1, we have d(xG, (aq)G)

≤ 1. Similarly, if o(y) = qt for some positive integer t then d(yG, (ap)G) ≤ 1. There-

fore, d(xG, yG) ≤ 4.

(b) Without any loss of generality assume that Sylow p-subgroup of G is either a cyclic

group or a generalized quaternion finite group. Let P and Q be two Sylow p-subgroups

ofG containing xm and aq respectively. Since P is finite, by Result 1.2.5, Q is also finite

and P = gQg−1 for some g ∈ G and so gaqg−1 ∈ P . Therefore, ⟨xm⟩ and ⟨gaqg−1⟩ are
subgroups of P having order p. Since P is cyclic or a generalized quaternion group, by

Result 1.2.6, we have ⟨xm⟩ = ⟨gaqg−1⟩. Therefore, gaqg−1 = (xm)i for some integer i

and so ⟨x, gaqg−1⟩ = ⟨x, (xm)i⟩ = ⟨x⟩. Hence d(xG, (aq)G) ≤ 1. We also have

d((aq)G, (ap)G) = 1, d((ap)G, (yn)G) ≤ 1, and d((yn)G, yG) ≤ 1.

Thus d(xG, yG) ≤ 4.

If o(x) = p then ⟨x⟩ = ⟨gaqg−1⟩. Therefore, x = gaqtg−1 for some integer t. We have

xG = (aqt)G and so ⟨aqt, ap⟩ is abelian. Hence, d(xG, (ap)G) ≤ 1 and so d(xG, yG) ≤ 3.

(c) If both Sylow p-subgroup and Sylow q-subgroup of G are either cyclic or generalized

quaternion finite groups then proceeding as part (b) we get

d(xG, (aq)G) ≤ 1, d((aq)G, (ap)G) = 1, and d((ap)G, yG) ≤ 1.

Therefore, d(xG, yG) ≤ 3.

If o(x) = p then proceeding as in part (b), we have d(xG, (ap)G) ≤ 1 and so d(xG, yG) ≤
2.

We conclude this section with the following consequence.

Theorem 7.2.4. Let G be a finite group. Let H and K be two subgroups of G such that H

is normal in G, G = HK and SCC(H),SCC(K) are connected. If there exist two elements

h ∈ H \ {1} and x ∈ G \H such that hG and xG are connected in SCC(G) then SCC(G) is
connected.
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Proof. Let a, b ∈ G such that aG and bG are two distinct vertices in SCC(G).
If a, b ∈ H then there exists a path from aH to bH , since SCC(H) is connected. Hence,

aG and bG are connected. Let a /∈ H and o(a) = n. Let f : G/H → K/(H ∩ K) be an

isomorphism and f(aH) = x(H ∩K), where x ∈ K. Then xn(H ∩K) = f(anH) = H ∩K
and so xn ∈ H ∩K. Let d = gcd(o(a), |K|). Then there exist integers r, s such that

xd = xnr+|K|s = (xn)r.(x|K|)s ∈ H ∩K.

Therefore, d > 1. Let p be a prime divisor of d. Then there exists an element k1 ∈ K such

that gcd(o(a), o(k1)) ̸= 1. Therefore, by Proposition 7.2.2, there is a path from aG to kG1 .

Similarly, if b /∈ H then there exists an element k2 ∈ K such that there is a path from kG2

to bG. We have kG1 = kG2 or there is a path from kK1 to kK2 , since SCC(K) is connected.

Therefore, kG1 = kG2 or there is a path from kG1 to kG2 . Thus aG and bG are connected. If

b ∈ H then, by given conditions, there exist two elements h ∈ H \ {1} and x ∈ G \H such

that there is a path from xG to hG and a path from hG to bG (since SCC(H) is connected).

Since x /∈ H, proceeding as above we get a path from xG to kG3 for some k3 ∈ K and hence

a path from aG to xG. Thus we get a path from aG to bG. Hence, SCC(G) is connected.

7.3 Genus of SCC-graph

In this section, we discuss certain properties of genus and crosscap of SCC(G) for the

groups Sn and An. In particular, we determine all positive integers n such that SCC(Sn)
and SCC(An) are planar or toroidal. We shall also obtain a lower bound for γ(SCC(G))
in terms of order of the center and number of conjugacy classes for certain groups. As a

consequence, we shall derive a relation between γ(SCC(G)) and commuting probability of

certain finite non-solvable group.

The groups S3, S4, A3 and A4 are solvable, with respectively 3, 5, 3 and 4 conjugacy

classes; so their SCC-graphs are complete graphs on 2, 4, 2 and 3 vertices respectively. All

these graphs are planar. The SCC-graphs of other small symmetric and alternating groups

are shown in the following figures, where a vertex is labelled with a representative of its

conjugacy class.
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(1, 2)

(1, 2, 3) (1, 2, 3)(4, 5)

(1, 2, 3, 4) (1, 2)(3, 4)

(1, 2, 3, 4, 5)

Figure 7.1: SCC(S5)

(1, 2, 3) (1, 2)(3, 4)(5, 6)

(1, 2)

(1, 2)(3, 4)

(1, 2, 3, 4, 5)

(1, 2, 3, 4)(1, 2, 3, 4, 5, 6)

(1, 2, 3, 4)(5, 6)

(1, 2, 3)(4, 5, 6)

(1, 2, 3)(4, 5)

Figure 7.2: SCC(S6)
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(1, 2, 3)

(1, 2)(3, 4)

(1, 2, 3, 4, 5)

(1, 2, 3, 5, 4)

Figure 7.3: SCC(A5)

(1, 2, 3)(4, 5, 6)

(1, 2, 3)

(1, 2, 3, 4)(5, 6)

(1, 2)(3, 4)

(1, 2, 3, 4, 5) (1, 2, 3, 4, 6)

Figure 7.4: SCC(A6)

(1, 2, 3)(4, 5)(6, 7)

(1, 2)(3, 4) (1, 2, 3, 4, 5)

(1, 2, 3, 4)(5, 6)(1, 2, 3)(4, 5, 6)

(1, 2, 3)

(1, 2, 3, 4, 5, 6, 7) (1, 2, 3, 4, 5, 7, 6)

Figure 7.5: SCC(A7)

The symmetric and alternating groups whose SCC-graphs have small genus or are pro-

jective are given in the following results.
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Figure 7.6: SCC(A8)

Theorem 7.3.1. (a) SCC(Sn) is planar if and only if n ≤ 5.

(b) If n ≥ 7 then SCC(Sn) is neither planar, toroidal, double-toroidal nor triple-toroidal.

(c) SCC(S6) is neither toroidal nor double-toroidal.

(d) If n ≥ 6 then SCC(Sn) is not projective.

Proof. (a) If n ≤ 5 then, from our earlier remarks and Figure 7.1, it follows that SCC(Sn)
is planar. If n ≥ 6 then it is easy to show that the elements (1, 2), (1, 2, 3), (1, 2)(3, 4),

(1, 2, 3, 4), (1, 2, 3)(4, 5) induce a clique in SCC(Sn). Hence,

γ(SCC(Sn)) ≥ γ(K5) = 1

and so SCC(Sn) is not planar.
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(b) One can show that the ten elements

(1, 2), (1, 2, 3), (1, 2)(3, 4), (1, 2, 3, 4), (1, 2, 3)(4, 5), (1, 2)(3, 4)(5, 6),

(1, 2, 3, 4)(5, 6), (1, 2, 3)(4, 5, 6), (1, 2, 3)(4, 5)(6, 7), (1, 2, 3, 4)(5, 6, 7)

induce a clique in SCC(Sn). Hence,

γ(SCC(Sn)) ≥ γ(K10) = 4

and so SCC(Sn) is neither planar, toroidal, double-toroidal nor triple-toroidal.

(c) From Figure 7.2, it follows that SCC(S6) contains a subgraph isomorphic to K9

(which is induced by V (SCC(S6)) \ {(1, 2, 3, 4, 5)S6}). Therefore,

γ(SCC(S6)) ≥ γ(K9) = 3.

Hence, the result follows from (a) and (b).

(d) In addition to the five permutations listed in the proof of (a), also the elements

(1, 2), (1, 2)(3, 4)(5, 6), (1, 2, 3, 4)(5, 6), (1, 2, 3)(4, 5, 6), (1, 2, 3, 4, 5, 6)

induce a clique. Consequently, SCC(Sn) contains two copies of K5 which share a single

vertex. This subgraph is isomorphic to the graph denoted by A1 in [49]. Therefore, SCC(Sn)
is not projective.

Here is the analogous results for alternating groups.

Theorem 7.3.2. (a) SCC(An) is planar if and only if n ≤ 6.

(b) If n ≥ 9 then SCC(An) is neither planar, toroidal, double-toroidal nor triple-toroidal.

(c) SCC(An) is toroidal if and only if n = 7.

(d) If n ≥ 8 then SCC(An) is not projective.

Proof. (a) If n ≤ 6 then, as shown in Figures 7.3 and 7.4, it follows that SCC(An) is planar.

If n ≥ 7 then the permutations

(1, 2, 3), (1, 2)(3, 4), (1, 2, 3, 4)(5, 6), (1, 2, 3)(4, 5, 6), (1, 2, 3)(4, 5)(6, 7)

induce a clique in SCC(An) (note that the elements have pairwise distinct cycle types).

Therefore,

γ(SCC(An)) ≥ γ(K5) = 1.
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and so SCC(An) is not planar.

(b) The ten elements

(1, 2, 3), (1, 2)(3, 4), (1, 2, 3, 4)(5, 6), (1, 2, 3)(4, 5, 6), (1, 2, 3)(4, 5)(6, 7), (1, 2)(3, 4)(5, 6)(7, 8),

(1, 2, 3, 4, 5, 6)(7, 8), (1, 2, 3, 4)(5, 6, 7)(8, 9), (1, 2, 3)(4, 5, 6)(7, 8, 9), (1, 2, 3, 4, 5, 6, 7, 8, 9)

induce a clique in SCC(An). Thus, the result follows as in Theorem 7.3.1(b).

(c) The fact that SCC(A7) is toroidal follows from Figure 7.5 and part (a).

It is easy to see in Figure 7.6, that the subgraph induced by the permutations

(1, 2, 3)(4, 5, 6), (1, 2, 3, 4, 5, 6, 7), (1, 2, 3, 4, 5, 6, 8), (1, 2)(3, 4)(5, 6)(7, 8), (1, 2, 3, 4, 5, 6)(7, 8)

and

(1, 2, 3, 4, 5), (1, 2, 3, 4)(5, 6), (1, 2, 3)(4, 5)(6, 7), (1, 2, 3, 4, 5)(6, 7, 8), (1, 2, 3, 4, 5)(6, 8, 7)

contains a subgraph isomorphic to K5 ⊔K5. Therefore,

γ(SCC(A8)) ≥ γ(K5 ⊔K5) = 2.

Hence, the result follows from parts (a) and (b).

(d) There are two 5-cliques induced by

(1, 2, 3), (1, 2)(3, 4), (1, 2, 3, 4, 5), (1, 2, 3, 4)(5, 6), (1, 2, 3)(4, 5)(6, 7),

(1, 2, 3), (1, 2, 3)(4, 5, 6), (1, 2)(3, 4)(5, 6)(7, 8), (1, 2, 3, 4, 5, 6)(7, 8), (1, 2, 3, 4)(5, 6, 7, 8),

which share a single vertex. Thus, the claim follows as in Theorem 7.3.1(d).

Recall that k(G) denotes the number of conjugacy classes of G. The following lemma

is useful in obtaining a lower bound for γ(SCC(G)) as mentioned above.

Lemma 7.3.3. Let G be a finite non-solvable group with non-trivial center Z(G). Then

SCC(G) has a subgraph isomorphic to K|Z(G)|−1, k(G)−|Z(G)|.

Proof. Let S = {xG : x ∈ Z(G) \ {1}} and T = {yG : y ∈ G \ Z(G)}. We consider the

subgraph SΓ of SCC(G) by removing edges between the vertices of S as well as remov-

ing edges between the vertices of T . Then the subgraph thus obtained is isomorphic to

K|Z(G)|−1, k(G)−|Z(G)|.
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Theorem 7.3.4. Let G be a finite non-solvable group with non-trivial center Z(G). Then

4γ(SCC(G)) ≥ (|Z(G)| − 3)(k(G)− |Z(G)| − 2).

Proof. By Lemma 7.3.3, it follows that SCC(G) has a subgraph which is isomorphic to

K|Z(G)|−1, k(G)−|Z(G)|. We have

γ(SCC(G)) ≥ γ(K|Z(G)|−1,k(G)−|Z(G)|).

Therefore,

γ(SCC(G)) ≥
⌈
(|Z(G)| − 3)(k(G)− |Z(G)| − 2)

4

⌉
≥ (|Z(G)| − 3)(k(G)− |Z(G)| − 2)

4
.

Hence, the result follows on simplification.

We conclude this chapter with the following relation between commuting probability

and genus of SCC-graph of finite non-solvable group with non-trivial center.

Corollary 7.3.5. Let G be a finite non-solvable group and |Z(G)| > 3. If Pr(G) is the

commuting probability of G then

Pr(G) ≤ 4γ(SCC(G)) + (|Z(G)| − 3)(|Z(G)|+ 2)

|G|(|Z(G)| − 3)
.

Proof. The result follows from Theorem 7.3.4 and the fact that Pr(G) = k(G)
|G| as given in

Result 1.2.15.

It is worth mentioning that many bounds for Pr(G) have been obtained using various

group theoretic notions over the years (see [51, 76]). However, the bound for Pr(G) ob-

tained in Corollary 7.3.5 is the first of its kind involving genus of certain graph defined on

groups though it is difficult to compute genus of SCC(G) in general.
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