Chapter 7

Solvable conjugacy class graph of

groups

Extending the notion of CCC-graph, in 2017 Mohammadian and Erfanian [73] introduced NCC-graph. In this chapter, we further extend the notions of CCC-graph and NCC-graph and introduce the solvable conjugacy class graph (abbreviated as SCC-graph) of G. The SCC-graph of a group G is a simple undirected graph, denoted by $\operatorname{SCC}(G)$, with vertex set $\left\{x^{G}: 1 \neq x \in G\right\}$ and two distinct vertices x^{G} and y^{G} are adjacent if there exist two elements $x^{\prime} \in x^{G}$ and $y^{\prime} \in y^{G}$ such that $\left\langle x^{\prime}, y^{\prime}\right\rangle$ is solvable. It is clear that the NCC-graph is a spanning subgraph of the SCC-graph of G.

In Section 7.1, We shall discuss certain properties regarding connectedness, diameter, domination number and girth of SCC-graph. In Section 7.2, we shall obtain some results on distance between two vertices of SCC-graph for some locally finite groups. In Section 7.3. we shall discuss properties of genus and crosscap of SCC-graph of S_{n} and A_{n} and determine all positive integer n such that $\operatorname{SCC}\left(S_{n}\right)$ and $\mathcal{S C C}\left(A_{n}\right)$ are planar or toroidal. We shall conclude this chapter by obtaining a relation between $\gamma(\mathcal{S C C}(G))$ and $\operatorname{Pr}(G)$. This chapter is based on our paper [17].

7.1 Certain properties of SCC-graph

We begin with a simple observation. Let a and b be two elements of G such that a^{G} and b^{G} are joined in the SCC-graph of G. This means that there exist $a^{\prime} \in a^{G}$ and $b^{\prime} \in b^{G}$ such that $\left\langle a^{\prime}, b^{\prime}\right\rangle$ is solvable. Without loss of generality, we can assume that $a^{\prime}=a$. For suppose
that $\left(a^{\prime}\right)^{h}=a$. Then $\left\langle a^{\prime}, b^{\prime}\right\rangle^{h}=\left\langle a,\left(b^{\prime}\right)^{h}\right\rangle$ is solvable, since it is a conjugate of (and hence isomorphic to) $\left\langle a^{\prime}, b^{\prime}\right\rangle$.

Theorem 7.1.1. Let G be a finite group. Then the SCC-graph of G is complete if and only if G is solvable.

Proof. If G is solvable, $\langle x, y\rangle$ is also solvable for all $x, y \in G$. In particular, if a^{G}, b^{G} are two vertices of $\operatorname{SCC}(G)$ and $x \in a^{G}, y \in b^{G}$ then $\langle x, y\rangle$ is solvable. Therefore, a^{G} and b^{G} are adjacent. Hence, $\operatorname{SCC}(G)$ is a complete graph.

Conversely, suppose that $\operatorname{SCC}(G)$ is complete. Then, by the observation at the end of the last section, for every $a, b \in G$, there is a conjugate b^{\prime} of b such that $\left\langle a, b^{\prime}\right\rangle$ is solvable. By Result 1.2.12, we conclude that G is solvable.

Next we turn to the questions of connectedness and diameter. The girth will be discussed in the next section, but we begin with a simple observation.

Proposition 7.1.2. Let G be a non-solvable group such that it has an element of order pq, where p, q are primes. If $p \neq q$ then $\operatorname{girth}(\mathcal{S C C}(G))=3$ and hence $\operatorname{SCC}(G)$ is not a tree.

Proof. Let $a \in G$ be an element of order $p q$. If $p \neq q$ then $o\left(a^{q}\right)=p$ and $o\left(a^{p}\right)=q$. Also, $\left\langle a, a^{q}\right\rangle,\left\langle a^{q}, a^{p}\right\rangle$ and $\left\langle a^{p}, a\right\rangle$ are abelian groups. Since $a^{G},\left(a^{q}\right)^{G}$ and $\left(a^{p}\right)^{G}$ are distinct, we have the following triangle

$$
a \sim a^{q} \sim a^{p} \sim a
$$

in $\operatorname{SCC}(G)$. Therefore, $\operatorname{girth}(\mathcal{S C C}(G))=3$ and hence $\operatorname{SCC}(G)$ is not a tree.
Proposition 7.1.3. Let $x \in G \backslash\{1\}$ and $a, b \in \operatorname{Sol}_{G}(x) \backslash\{1\}$. Then a^{G} and b^{G} are connected and $d\left(a^{G}, b^{G}\right) \leq 2$. In particular, if $\operatorname{Sol}(G) \neq\{1\}$ then $\operatorname{SCC}(G)$ is connected and $\operatorname{diam}(\mathcal{S C C}(G)) \leq 2$.

Proof. Since $a, b \in \operatorname{Sol}_{G}(x) \backslash\{1\},\langle a, x\rangle$ and $\langle x, b\rangle$ are solvable. Therefore, $d\left(a^{G}, x^{G}\right) \leq 1$ and $d\left(x^{G}, b^{G}\right) \leq 1$. Hence, the result follows.

If $\operatorname{Sol}(G) \neq\{1\}$ then there exists an element $z \in G$ such that $z \neq 1$ and $z \in \operatorname{Sol}(G)$. Therefore, $z \in \operatorname{Sol}_{G}(w)$ for all $w \in G \backslash\{1\}$. Let u^{G} and v^{G} be any two vertices of $\operatorname{SCC}(G)$. Then $u, v \in \operatorname{Sol}_{G}(z) \backslash\{1\}$. Therefore, by the first part it follows that $d\left(u^{G}, v^{G}\right) \leq 2$. Hence, $\operatorname{diam}(\mathcal{S C C}(G)) \leq 2$.

Remark 7.1.4. For any two distinct vertices $x^{G}, y^{G} \in V(\mathcal{S C C}(G)), x^{G} \sim y^{G}$ if and only if $\operatorname{Sol}_{G}\left(g x g^{-1}\right) \cap y^{G} \neq \emptyset$ for all $g \in G$. Also, x^{G} is an isolated vertex if and only if $\operatorname{Sol}_{G}\left(g x g^{-1}\right) \subseteq x^{G} \cup\{1\}$ for all $g \in G$.

Theorem 7.1.5. If G, H are arbitrary non-trivial groups then the graph $\operatorname{SCC}(G \times H)$ is connected and $\operatorname{diam}(\mathcal{S C C}(G \times H)) \leq 3$. In particular, $\operatorname{SCC}(G \times G)$ is connected and $\operatorname{diam}(\mathcal{S C C}(G \times G)) \leq 3$. Further, $\operatorname{diam}(\mathcal{S C C}(G \times G))=3$ if and only if either $\operatorname{SCC}(G)$ is disconnected or $\operatorname{SCC}(G)$ is connected with $\operatorname{diam}(\mathcal{S C C}(G)) \geq 3$.

Proof. Let (x, y) and (u, v) be two non-trivial elements of $G \times H$. Without any loss we may assume that $x \neq 1_{G}$ and $v \neq 1_{H}$, where 1_{G} and 1_{H} are identity elements of G and H respectively, then

$$
(x, y)^{G \times H} \sim\left(x, 1_{H}\right)^{G \times H} \sim\left(1_{G}, v\right)^{G \times H} \sim(u, v)^{G \times H} .
$$

This shows that $\operatorname{SCC}(G \times H)$ is connected and $\operatorname{diam}(\mathcal{S C C}(G \times H)) \leq 3$. Putting $H=G$, it follows that $\operatorname{SCC}(G \times G)$ is connected and $\operatorname{diam}(\mathcal{S C C}(G \times G)) \leq 3$.

Let $\operatorname{diam}(\mathcal{S C C}(G \times G))=3$. Suppose that $\operatorname{SCC}(G)$ is connected and $\operatorname{diam}(\mathcal{S C C}(G)) \leq 2$ (on the contrary). Let $(x, y),(u, v)$ be two vertices in $\operatorname{SCC}(G \times G)$. Without any loss we may assume that $x, u \neq 1_{G}$. Since $\operatorname{SCC}(G)$ is connected and $\operatorname{diam}(\mathcal{S C C}(G)) \leq 2$, there exist $a \in G \backslash\left\{1_{G}\right\}$ such that $x^{G} \sim a^{G} \sim u^{G}$. Therefore, $\left\langle x^{f}, a^{g}\right\rangle$ and $\left\langle a^{h}, u^{w}\right\rangle$ are solvable for some $f, g, h, w \in G$. We have $\left\langle(x, y)^{(f, c)},\left(a, 1_{G}\right)^{(g, d)}\right\rangle=\left\langle x^{f}, a^{g}\right\rangle \times\left\langle y^{c}\right\rangle$, where $c, d \in G$. Since $\left\langle x^{f}, a^{g}\right\rangle$ and $\left\langle y^{c}\right\rangle$ are solvable, $(x, y)^{G \times G} \sim\left(a, 1_{G}\right)^{G \times G}$. Similarly, $(u, v)^{G \times G} \sim\left(a, 1_{G}\right)^{G \times G}$. Thus we get the following path

$$
(x, y)^{G \times G} \sim\left(a, 1_{G}\right)^{G \times G} \sim(u, v)^{G \times G} .
$$

Therefore, $\operatorname{diam}(\mathcal{S}(G \times G)) \leq 2$, which is a contradiction. Hence, $\operatorname{SCC}(G)$ is disconnected or $\operatorname{SCC}(G)$ is connected with $\operatorname{diam}(\mathcal{S C C}(G)) \geq 3$.

Suppose that either $\operatorname{SCC}(G)$ is disconnected or it is connected with $\operatorname{diam}(\mathcal{S}(G)) \geq 3$. Then there exist two distinct elements $x, y \in G \backslash\left\{1_{G}\right\}$ such that either x^{G}, y^{G} are not connected or $d\left(x^{G}, y^{G}\right) \geq 3$. We are to show that $\operatorname{diam}(\mathcal{S C C}(G \times G))=3$. Suppose that $\operatorname{diam}(\operatorname{SCC}(G \times G)) \leq 2$. Consider the following two cases.
Case 1. $\operatorname{SCC}(G)$ is disconnected.
Let u^{G} and v^{G} be any two distinct vertices in $\operatorname{SCC}(G)$. Then $d\left(\left(u, 1_{G}\right)^{G \times G},\left(v, 1_{G}\right)^{G \times G}\right)=$ 1 or 2 . If $d\left(\left(u, 1_{G}\right)^{G \times G},\left(v, 1_{G}\right)^{G \times G}\right)=1$ then $\left(u, 1_{G}\right)^{G \times G} \sim\left(v, 1_{G}\right)^{G \times G}$. Therefore, $\left\langle u^{f}, v^{w}\right\rangle$ is solvable for some $f, w \in G$. Therefore, $u^{G} \sim v^{G}$ and so $d\left(u^{G}, v^{G}\right)=1$; a contradiction. If $d\left(\left(u, 1_{G}\right)^{G \times G},\left(v, 1_{G}\right)^{G \times G}\right)=2$ then there exists a non-identity element $(a, b) \in G \times G$ such that

$$
\left(u, 1_{G}\right)^{G \times G} \sim(a, b)^{G \times G} \sim\left(v, 1_{G}\right)^{G \times G} .
$$

It follows that $\left\langle u^{f}, a^{g}\right\rangle$ and $\left\langle a^{h}, v^{w}\right\rangle$ are solvable for some $f, g, h, w \in G$ and so

$$
u^{G} \sim a^{G} \sim v^{G} .
$$

Thus u^{G}, v^{G} are connected and $d\left(u^{G}, v^{G}\right) \leq 2$, a contradiction.
Case 2. $\operatorname{SCC}(G)$ is connected with $\operatorname{diam}(\mathcal{S C C}(G)) \geq 3$.
Proceeding as in Case 1, we get $d\left(u^{G}, v^{G}\right) \leq 2$ for any two distinct vertices u^{G} and v^{G} in $\operatorname{SCC}(G)$. Therefore, $\operatorname{diam}(\mathcal{S C C}(G))=2$; a contradiction.

Thus, from Case 1 and Case 2, we get $\operatorname{diam}(\mathcal{S C C}(G \times G)) \geq 3$. Hence, $\operatorname{SCC}(G \times G)=$ 3.

Proposition 7.1.6. Let G be a non-solvable group. Then the domination number of SCCgraph, $\lambda(\mathcal{S C C}(G))=1$ if $|\operatorname{Sol}(G)| \neq 1$.

Proof. Let x be a non-trivial element in $\operatorname{Sol}(G)$. Then $x^{G} \in V(\mathcal{S C C}(G))$. Let $y^{G} \in$ $V(\mathcal{S C C}(G)) \backslash\left\{x^{G}\right\}$ be an arbitrary vertex. Then $\langle x, y\rangle$ is solvable. Therefore, x^{G} and y^{G} are adjacent. Hence, $\left\{x^{G}\right\}$ is a dominating set of $\operatorname{SCC}(G)$ and so $\lambda(\mathcal{S C C}(G))=1$.

Theorem 7.1.7. Let G be a finite group. If G has an element of order $n=\Pi_{i=1}^{m} p_{i}^{k_{i}}$, where p_{i} 's are distinct primes. Then $\operatorname{SCC}(G)$ has a clique of size $\Pi_{i=1}^{m}\left(k_{i}+1\right)-1$.

Proof. Let $x \in G$ be an element of order n. Then $\left(x^{r}\right)^{G} \sim\left(x^{s}\right)^{G}$ for all proper divisors r, s of n. Since total number of proper divisors of $n=\Pi_{i=1}^{m} p_{i}^{k_{i}}$ is $\Pi_{i=1}^{m}\left(k_{i}+1\right)-1$, we get a clique in $\operatorname{SCC}(G)$ of size $\Pi_{i=1}^{m}\left(k_{i}+1\right)-1$.

We conclude this section with the following result.
Theorem 7.1.8. With the exception of the cyclic groups of orders 1, 2 and 3 and the symmetric group of degree 3, every finite group G has the property that $\operatorname{SCC}(G)$ contains a triangle (that is, has girth 3).

Proof. If G is solvable then $k(G)=\omega(\mathcal{S C C}(G))+1$ (the extra 1 coming from the identity of G), so G has at most three conjugacy classes. The groups listed in the theorem are all those having this property.

So we may assume that G is non-solvable. If G has an element whose order is not a prime power then some power (say g) of this element has order $p q$, where p and q are distinct primes. Then $\mathcal{S C C}(G)$ contains a clique of size 3 , by Theorem 7.1.7.

So we may further assume that every element of G has prime power order.

These groups were first studied by Higman [63] in 1957; Suzuki [89] determined the simple groups with this property in 1965. Subsequently all such groups have been classified $[26,61]$. The story is somewhat tangled, perhaps due to the lack of a common name for the class. Subsequently two names were proposed; a group with this property is called a CP group by some authors, and an EPPO group by others. These groups have arisen in connection with other graphs defined on groups, including the Gruenberg-Kegel graph (or prime graph) and the power graph: see [30]. The result we require is that a non-solvable group in which every element has prime power order satisfies one of the following:
(a) G is one of $A_{6}, \operatorname{PSL}(2,7), \operatorname{PSL}(2,17), M_{10}$ or $\operatorname{PSL}(3,4)$;
(b) G has a nornal subgroup N such that G / N is $\operatorname{PSL}(2,4), \operatorname{PSL}(2,8), \mathrm{Sz}(8)$ or $\mathrm{Sz}(32)$, and N is a direct sum of copies of the natural G / N-module over its field of definition.

Suppose first that we are in case (b). If we can find a triangle in the solvable conjugacy class group of G / N then it lifts to a triangle in $\operatorname{SCC}(G)$. So it is enough to add the four possibilities for G / N to the list of groups in case (a).

In $\mathrm{Sz}(8)$, there are three conjugacy classes of elements of order 13, all represented in a cyclic subgroup of order 13, giving us a triangle. Similar arguments apply to $\mathrm{Sz}(32)$ (using an element of order 41), $\operatorname{PSL}(2,8)$ (order 7), and $\operatorname{PSL}(2,17)$ (order 3 and two classes of order 9$)$. In PSL $(2,4)$, a dihedral subgroup of order 10 meets two conjugacy classes of elements of order 5 and one class of involutions. A similar argument applies to A_{6} (using a dihedral group of order 10) $\operatorname{,~} \operatorname{PSL}(2,7)$ (using a non-abelian group of order 21) $\operatorname{PSL}(3,4)$ (a non-abelian group of order 21) and M_{10} (a quaternion group of order 8 meets two conjugacy classes of elements of order 4 and one class of involutions). All this information is easily obtained from the ATLAS of Finite Groups [32].

7.2 Distance in SCC-Graph for locally finite group

A locally finite group is a group for which every finitely generated subgroup is finite. An element of a group is said to be a p-element if the order of the element is a power of p, where p is a prime. In this section we obtain some results on distance between two vertices of $\operatorname{SCC}(G)$ for some locally finite groups, analogous to the Results 1.3.24-1.3.29.

Proposition 7.2.1. Let G be a locally finite group. If $x, y \in G \backslash\{1\}$ are p-elements, where p is a prime, then $d\left(x^{G}, y^{G}\right) \leq 1$.

Proof. Since G is a locally finite group and $x, y \in G \backslash\{1\}$ are p-elements, the subgroup $\langle x, y\rangle$ is finite. Let P be a Sylow p-subgroup of $\langle x, y\rangle$ containing x. Then $y^{g}=g y g^{-1} \in P$ for some $g \in G$ since all the Sylow p-subgroups are conjugate. Therefore, $\left\langle x, y^{g}\right\rangle$ is solvable and so $d\left(x^{G}, y^{G}\right) \leq 1$.

Proposition 7.2.2. Let G be a locally finite group. If $x, y \in G$ are of non-coprime orders then $d\left(x^{G}, y^{G}\right) \leq 3$. If either x or y is of prime order then $d\left(x^{G}, y^{G}\right) \leq 2$.

Proof. Let $o(x)=p m$ and $o(y)=p n$, where p is a prime and m, n are positive integers. Then x^{m} and y^{n} are non-trivial p-elements of G. Therefore, by Proposition 7.2.1, we have

$$
d\left(\left(x^{m}\right)^{G},\left(y^{n}\right)^{G}\right) \leq 1
$$

Clearly, $d\left(x^{G},\left(x^{m}\right)^{G}\right) \leq 1$ and $d\left(\left(y^{n}\right)^{G}, y^{G}\right) \leq 1$. Therefore, if $x^{G} \neq y^{G}$ then $x^{G} \sim\left(x^{m}\right)^{G} \sim$ $\left(y^{n}\right)^{G} \sim y^{G}$ is a path from x^{G} to y^{G}. Hence, $d\left(x^{G}, y^{G}\right) \leq 3$.

Suppose that $o(x)=p m$ and $o(y)=p$. Then x^{m} and y are non-trivial p-elements of G. Therefore, by Proposition 7.2.1, we have

$$
d\left(\left(x^{m}\right)^{G}, y^{G}\right) \leq 1
$$

Thus $x^{G} \sim\left(x^{m}\right)^{G} \sim y^{G}$ is a path from x^{G} to y^{G}. Hence, $d\left(x^{G}, y^{G}\right) \leq 2$.
Proposition 7.2.3. Let G be a locally finite group and $x, y \in G$. Suppose p and q are prime divisors of $o(x)$ and $o(y)$, respectively, and that G has an element of order $p q$. Then
(a) $d\left(x^{G}, y^{G}\right) \leq 5$, and moreover $d\left(x^{G}, y^{G}\right) \leq 4$ if either x or y is of prime power order.
(b) If either a Sylow p-subgroup or a Sylow q-subgroup of G is a cyclic or generalized quaternion finite group then $d\left(x^{G}, y^{G}\right) \leq 4$. Moreover, $d\left(x^{G}, y^{G}\right) \leq 3$ if either x or y is of prime order.
(c) If both Sylow p-subgroup and Sylow q-subgroup of G are either cyclic or generalized quaternion finite groups then $d\left(x^{G}, y^{G}\right) \leq 3$. Moreover, $d\left(x^{G}, y^{G}\right) \leq 2$ if either x or y is of prime order.

Proof. Let $o(x)=p m$ and $o(y)=q n$ for some positive integers m, n. Let $a \in G$ be an element of order $p q$. Then $o\left(a^{q}\right)=p$ and $o\left(a^{p}\right)=q$. Also, a^{p} commutes with a^{q}.
(a) We have

$$
d\left(x^{G},\left(x^{m}\right)^{G}\right) \leq 1, d\left(\left(a^{q}\right)^{G},\left(a^{p}\right)^{G}\right)=1, \text { and } d\left(\left(y^{n}\right)^{G}, y^{G}\right) \leq 1 .
$$

Since $o\left(x^{m}\right)=o\left(a^{q}\right)=o\left(y^{n}\right)=p$, by Proposition 7.2.1. we have

$$
d\left(\left(x^{m}\right)^{G},\left(a^{q}\right)^{G}\right) \leq 1 \text { and } d\left(\left(a^{p}\right)^{G},\left(y^{n}\right)^{G}\right) \leq 1 .
$$

Therefore, $d\left(x^{G}, y^{G}\right) \leq 5$.
If $o(x)=p^{s}$ for some positive integer s then, by Proposition 7.2.1, we have $d\left(x^{G},\left(a^{q}\right)^{G}\right)$ ≤ 1. Similarly, if $o(y)=q^{t}$ for some positive integer t then $d\left(y^{G},\left(a^{p}\right)^{G}\right) \leq 1$. Therefore, $d\left(x^{G}, y^{G}\right) \leq 4$.
(b) Without any loss of generality assume that Sylow p-subgroup of G is either a cyclic group or a generalized quaternion finite group. Let P and Q be two Sylow p-subgroups of G containing x^{m} and a^{q} respectively. Since P is finite, by Result 1.2.5, Q is also finite and $P=g Q g^{-1}$ for some $g \in G$ and so $g a^{q} g^{-1} \in P$. Therefore, $\left\langle x^{m}\right\rangle$ and $\left\langle g a^{q} g^{-1}\right\rangle$ are subgroups of P having order p. Since P is cyclic or a generalized quaternion group, by Result 1.2.6, we have $\left\langle x^{m}\right\rangle=\left\langle g a^{q} g^{-1}\right\rangle$. Therefore, $g a^{q} g^{-1}=\left(x^{m}\right)^{i}$ for some integer i and so $\left\langle x, g a^{q} g^{-1}\right\rangle=\left\langle x,\left(x^{m}\right)^{i}\right\rangle=\langle x\rangle$. Hence $d\left(x^{G},\left(a^{q}\right)^{G}\right) \leq 1$. We also have

$$
d\left(\left(a^{q}\right)^{G},\left(a^{p}\right)^{G}\right)=1, d\left(\left(a^{p}\right)^{G},\left(y^{n}\right)^{G}\right) \leq 1, \text { and } d\left(\left(y^{n}\right)^{G}, y^{G}\right) \leq 1 .
$$

Thus $d\left(x^{G}, y^{G}\right) \leq 4$.
If $o(x)=p$ then $\langle x\rangle=\left\langle g a^{q} g^{-1}\right\rangle$. Therefore, $x=g a^{q t} g^{-1}$ for some integer t. We have $x^{G}=\left(a^{q t}\right)^{G}$ and so $\left\langle a^{q t}, a^{p}\right\rangle$ is abelian. Hence, $d\left(x^{G},\left(a^{p}\right)^{G}\right) \leq 1$ and so $d\left(x^{G}, y^{G}\right) \leq 3$.
(c) If both Sylow p-subgroup and Sylow q-subgroup of G are either cyclic or generalized quaternion finite groups then proceeding as part (b) we get

$$
d\left(x^{G},\left(a^{q}\right)^{G}\right) \leq 1, d\left(\left(a^{q}\right)^{G},\left(a^{p}\right)^{G}\right)=1, \text { and } d\left(\left(a^{p}\right)^{G}, y^{G}\right) \leq 1 .
$$

Therefore, $d\left(x^{G}, y^{G}\right) \leq 3$.
If $o(x)=p$ then proceeding as in part (b), we have $d\left(x^{G},\left(a^{p}\right)^{G}\right) \leq 1$ and so $d\left(x^{G}, y^{G}\right) \leq$ 2.

We conclude this section with the following consequence.

Theorem 7.2.4. Let G be a finite group. Let H and K be two subgroups of G such that H is normal in $G, G=H K$ and $\operatorname{SCC}(H), \mathcal{S C C}(K)$ are connected. If there exist two elements $h \in H \backslash\{1\}$ and $x \in G \backslash H$ such that h^{G} and x^{G} are connected in $\operatorname{SCC}(G)$ then $\operatorname{SCC}(G)$ is connected.

Proof. Let $a, b \in G$ such that a^{G} and b^{G} are two distinct vertices in $\operatorname{SCC}(G)$.
If $a, b \in H$ then there exists a path from a^{H} to b^{H}, since $\operatorname{SCC}(H)$ is connected. Hence, a^{G} and b^{G} are connected. Let $a \notin H$ and $o(a)=n$. Let $f: G / H \rightarrow K /(H \cap K)$ be an isomorphism and $f(a H)=x(H \cap K)$, where $x \in K$. Then $x^{n}(H \cap K)=f\left(a^{n} H\right)=H \cap K$ and so $x^{n} \in H \cap K$. Let $d=\operatorname{gcd}(o(a),|K|)$. Then there exist integers r, s such that

$$
x^{d}=x^{n r+|K| s}=\left(x^{n}\right)^{r} .\left(x^{|K|}\right)^{s} \in H \cap K .
$$

Therefore, $d>1$. Let p be a prime divisor of d. Then there exists an element $k_{1} \in K$ such that $\operatorname{gcd}\left(o(a), o\left(k_{1}\right)\right) \neq 1$. Therefore, by Proposition 7.2.2, there is a path from a^{G} to k_{1}^{G}. Similarly, if $b \notin H$ then there exists an element $k_{2} \in K$ such that there is a path from k_{2}^{G} to b^{G}. We have $k_{1}^{G}=k_{2}^{G}$ or there is a path from k_{1}^{K} to k_{2}^{K}, since $\mathcal{S C C}(K)$ is connected. Therefore, $k_{1}^{G}=k_{2}^{G}$ or there is a path from k_{1}^{G} to k_{2}^{G}. Thus a^{G} and b^{G} are connected. If $b \in H$ then, by given conditions, there exist two elements $h \in H \backslash\{1\}$ and $x \in G \backslash H$ such that there is a path from x^{G} to h^{G} and a path from h^{G} to b^{G} (since $\operatorname{SCC}(H)$ is connected). Since $x \notin H$, proceeding as above we get a path from x^{G} to k_{3}^{G} for some $k_{3} \in K$ and hence a path from a^{G} to x^{G}. Thus we get a path from a^{G} to b^{G}. Hence, $\operatorname{SCC}(G)$ is connected.

7.3 Genus of SCC-graph

In this section, we discuss certain properties of genus and crosscap of $\operatorname{SCC}(G)$ for the groups S_{n} and A_{n}. In particular, we determine all positive integers n such that $\operatorname{SCC}\left(S_{n}\right)$ and $\operatorname{SCC}\left(A_{n}\right)$ are planar or toroidal. We shall also obtain a lower bound for $\gamma(\mathcal{S C C}(G))$ in terms of order of the center and number of conjugacy classes for certain groups. As a consequence, we shall derive a relation between $\gamma(\mathcal{S C C}(G))$ and commuting probability of certain finite non-solvable group.

The groups S_{3}, S_{4}, A_{3} and A_{4} are solvable, with respectively $3,5,3$ and 4 conjugacy classes; so their SCC-graphs are complete graphs on 2, 4, 2 and 3 vertices respectively. All these graphs are planar. The SCC-graphs of other small symmetric and alternating groups are shown in the following figures, where a vertex is labelled with a representative of its conjugacy class.

Figure 7.1: $\mathcal{S C C}\left(S_{5}\right)$

Figure 7.2: $\mathcal{S C C}\left(S_{6}\right)$

Figure 7.3: $\mathcal{S C C}\left(A_{5}\right)$

Figure 7.4: $\mathcal{S C C}\left(A_{6}\right)$

Figure 7.5: $\operatorname{SCC}\left(A_{7}\right)$

The symmetric and alternating groups whose SCC-graphs have small genus or are projective are given in the following results.

Figure 7.6: $\operatorname{SCC}\left(A_{8}\right)$

Theorem 7.3.1. (a) $\operatorname{SCC}\left(S_{n}\right)$ is planar if and only if $n \leq 5$.
(b) If $n \geq 7$ then $\operatorname{SCC}\left(S_{n}\right)$ is neither planar, toroidal, double-toroidal nor triple-toroidal.
(c) $\operatorname{SCC}\left(S_{6}\right)$ is neither toroidal nor double-toroidal.
(d) If $n \geq 6$ then $\operatorname{SCC}\left(S_{n}\right)$ is not projective.

Proof. (a) If $n \leq 5$ then, from our earlier remarks and Figure 7.1, it follows that $\operatorname{SCC}\left(S_{n}\right)$ is planar. If $n \geq 6$ then it is easy to show that the elements $(1,2),(1,2,3),(1,2)(3,4)$, $(1,2,3,4),(1,2,3)(4,5)$ induce a clique in $\mathcal{S C C}\left(S_{n}\right)$. Hence,

$$
\gamma\left(\mathcal{S C C}\left(S_{n}\right)\right) \geq \gamma\left(K_{5}\right)=1
$$

and so $\operatorname{SCC}\left(S_{n}\right)$ is not planar.
(b) One can show that the ten elements

$$
\begin{gathered}
(1,2),(1,2,3),(1,2)(3,4),(1,2,3,4),(1,2,3)(4,5),(1,2)(3,4)(5,6), \\
(1,2,3,4)(5,6),(1,2,3)(4,5,6),(1,2,3)(4,5)(6,7),(1,2,3,4)(5,6,7)
\end{gathered}
$$

induce a clique in $\mathcal{S C C}\left(S_{n}\right)$. Hence,

$$
\gamma\left(\mathcal{S C C}\left(S_{n}\right)\right) \geq \gamma\left(K_{10}\right)=4
$$

and so $\operatorname{SCC}\left(S_{n}\right)$ is neither planar, toroidal, double-toroidal nor triple-toroidal.
(c) From Figure 7.2, it follows that $\operatorname{SCC}\left(S_{6}\right)$ contains a subgraph isomorphic to K_{9} (which is induced by $V\left(\mathcal{S C C}\left(S_{6}\right)\right) \backslash\left\{(1,2,3,4,5)^{S_{6}}\right\}$). Therefore,

$$
\gamma\left(\mathcal{S C C}\left(S_{6}\right)\right) \geq \gamma\left(K_{9}\right)=3 .
$$

Hence, the result follows from (a) and (b).
(d) In addition to the five permutations listed in the proof of (a), also the elements

$$
(1,2),(1,2)(3,4)(5,6),(1,2,3,4)(5,6),(1,2,3)(4,5,6),(1,2,3,4,5,6)
$$

induce a clique. Consequently, $\mathcal{S C C}\left(S_{n}\right)$ contains two copies of K_{5} which share a single vertex. This subgraph is isomorphic to the graph denoted by A_{1} in [49]. Therefore, $\operatorname{SCC}\left(S_{n}\right)$ is not projective.

Here is the analogous results for alternating groups.
Theorem 7.3.2. (a) $\operatorname{SCC}\left(A_{n}\right)$ is planar if and only if $n \leq 6$.
(b) If $n \geq 9$ then $\operatorname{SCC}\left(A_{n}\right)$ is neither planar, toroidal, double-toroidal nor triple-toroidal.
(c) $\operatorname{SCC}\left(A_{n}\right)$ is toroidal if and only if $n=7$.
(d) If $n \geq 8$ then $\operatorname{SCC}\left(A_{n}\right)$ is not projective.

Proof. (a) If $n \leq 6$ then, as shown in Figures 7.3 and 7.4 , it follows that $\operatorname{SCC}\left(A_{n}\right)$ is planar. If $n \geq 7$ then the permutations

$$
(1,2,3),(1,2)(3,4),(1,2,3,4)(5,6),(1,2,3)(4,5,6),(1,2,3)(4,5)(6,7)
$$

induce a clique in $\operatorname{SCC}\left(A_{n}\right)$ (note that the elements have pairwise distinct cycle types). Therefore,

$$
\gamma\left(\mathcal{S C C}\left(A_{n}\right)\right) \geq \gamma\left(K_{5}\right)=1
$$

and so $\operatorname{SCC}\left(A_{n}\right)$ is not planar.
(b) The ten elements

$$
\begin{array}{r}
(1,2,3),(1,2)(3,4),(1,2,3,4)(5,6),(1,2,3)(4,5,6),(1,2,3)(4,5)(6,7),(1,2)(3,4)(5,6)(7,8), \\
(1,2,3,4,5,6)(7,8),(1,2,3,4)(5,6,7)(8,9),(1,2,3)(4,5,6)(7,8,9),(1,2,3,4,5,6,7,8,9)
\end{array}
$$

induce a clique in $\operatorname{SCC}\left(A_{n}\right)$. Thus, the result follows as in Theorem 7.3.1(b).
(c) The fact that $\operatorname{SCC}\left(A_{7}\right)$ is toroidal follows from Figure 7.5 and part (a).

It is easy to see in Figure 7.6, that the subgraph induced by the permutations

$$
(1,2,3)(4,5,6),(1,2,3,4,5,6,7),(1,2,3,4,5,6,8),(1,2)(3,4)(5,6)(7,8),(1,2,3,4,5,6)(7,8)
$$

and

$$
(1,2,3,4,5),(1,2,3,4)(5,6),(1,2,3)(4,5)(6,7),(1,2,3,4,5)(6,7,8),(1,2,3,4,5)(6,8,7)
$$

contains a subgraph isomorphic to $K_{5} \sqcup K_{5}$. Therefore,

$$
\gamma\left(\mathcal{S C C}\left(A_{8}\right)\right) \geq \gamma\left(K_{5} \sqcup K_{5}\right)=2
$$

Hence, the result follows from parts (a) and (b).
(d) There are two 5-cliques induced by

$$
(1,2,3),(1,2)(3,4),(1,2,3,4,5),(1,2,3,4)(5,6),(1,2,3)(4,5)(6,7),
$$

$(1,2,3),(1,2,3)(4,5,6),(1,2)(3,4)(5,6)(7,8),(1,2,3,4,5,6)(7,8),(1,2,3,4)(5,6,7,8)$,
which share a single vertex. Thus, the claim follows as in Theorem 7.3.1(d).
Recall that $k(G)$ denotes the number of conjugacy classes of G. The following lemma is useful in obtaining a lower bound for $\gamma(\mathcal{S C C}(G))$ as mentioned above.

Lemma 7.3.3. Let G be a finite non-solvable group with non-trivial center $Z(G)$. Then $\mathcal{S C C}(G)$ has a subgraph isomorphic to $K_{|Z(G)|-1, k(G)-|Z(G)|}$.

Proof. Let $S=\left\{x^{G}: x \in Z(G) \backslash\{1\}\right\}$ and $T=\left\{y^{G}: y \in G \backslash Z(G)\right\}$. We consider the subgraph S_{Γ} of $\mathcal{S C C}(G)$ by removing edges between the vertices of S as well as removing edges between the vertices of T. Then the subgraph thus obtained is isomorphic to $K_{|Z(G)|-1, k(G)-|Z(G)|}$.

Theorem 7.3.4. Let G be a finite non-solvable group with non-trivial center $Z(G)$. Then

$$
4 \gamma(\mathcal{S C C}(G)) \geq(|Z(G)|-3)(k(G)-|Z(G)|-2)
$$

Proof. By Lemma 7.3.3, it follows that $\operatorname{SCC}(G)$ has a subgraph which is isomorphic to $K_{|Z(G)|-1, k(G)-|Z(G)|}$. We have

$$
\gamma(\mathcal{S C C}(G)) \geq \gamma\left(K_{|Z(G)|-1, k(G)-|Z(G)|}\right)
$$

Therefore,

$$
\gamma(\mathcal{S C C}(G)) \geq\left\lceil\frac{(|Z(G)|-3)(k(G)-|Z(G)|-2)}{4}\right\rceil \geq \frac{(|Z(G)|-3)(k(G)-|Z(G)|-2)}{4} .
$$

Hence, the result follows on simplification.
We conclude this chapter with the following relation between commuting probability and genus of SCC-graph of finite non-solvable group with non-trivial center.

Corollary 7.3.5. Let G be a finite non-solvable group and $|Z(G)|>3$. If $\operatorname{Pr}(G)$ is the commuting probability of G then

$$
\operatorname{Pr}(G) \leq \frac{4 \gamma(\mathcal{S C C}(G))+(|Z(G)|-3)(|Z(G)|+2)}{|G|(|Z(G)|-3)}
$$

Proof. The result follows from Theorem 7.3 .4 and the fact that $\operatorname{Pr}(G)=\frac{k(G)}{|G|}$ as given in Result 1.2.15.

It is worth mentioning that many bounds for $\operatorname{Pr}(G)$ have been obtained using various group theoretic notions over the years (see [51, 76]). However, the bound for $\operatorname{Pr}(G)$ obtained in Corollary 7.3.5 is the first of its kind involving genus of certain graph defined on groups though it is difficult to compute genus of $\operatorname{SCC}(G)$ in general.

