
Chapter 1

Introduction and Preliminaries

Over the last four decades, it is observed that graphs are interesting tool for the study of

groups. Properties of a group can be described through the properties of various graphs

defined on it. The first graph defined on a group is the commuting graph which was

originated from a paper of Brauer and Fowler [27] published in the year 1955. In 1976,

Neumann considered non-commuting graph of a finite group,which is the complement of

commuting graph, to solve a problem posed by Erdös [79]. Mathematicians have defined

many graphs on finite groups, following the works in [27, 79]. Some well-studied graphs

defined on finite groups are power graph, enhanced power graph, nilpotent graph, non-

nilpotent graph, solvable graph, non-solvable graph, commuting conjugacy class graph

and nilpotent conjugacy class graph. In Section 1.3 of this chapter we shall recall defini-

tions and useful results of these graphs. In this thesis we consider commuting graphs, solv-

able graphs, non-solvable graphs and commuting conjugacy class graphs of finite groups

and obtain various results including graph realization and characterization of certain finite

groups. We shall also introduce solvable conjugacy class graph of finite groups.

In Chapter 2, we compute genus of commuting graphs of some classes of finite non-

abelian groups and characterize those groups such that their commuting graphs have

genus 4, 5 and 6. In Chapter 3, we consider solvable graph of finite groups and show

that this graph is not a star graph, a tree, an n-partite graph for any positive integer n ≥ 2

and not a regular graph for any non-solvable finite group. We compute the girth of solv-

able graph and derive a lower bound for the clique number of solvable graph. We prove

the non-existence of finite non-solvable groups whose solvable graphs are planar, toroidal,

double-toroidal, triple-toroidal or projective. We also obtain a relation between solvable

graph and solvability degree of finite non-solvable groups. In Chapter 4, we consider

1



Chapter 1. Introduction and Preliminaries

non-solvable graphs of finite groups and obtain results on vertex degree, cardinality of

vertex degree set, graph realization, domination number, vertex connectivity, indepen-

dence number and clique number of non-solvable graph. We derive certain properties of

the groups G and H if their non-solvable graphs are isomorphic. We also show that non-

solvable graph is neither planar, toroidal, double-toroidal, triple-toroidal nor projective.

In Chapter 5, we compute various spectra and energies of commuting conjugacy class

graph (CCC-graph) of the dihedral groups (D2n), the dicyclic group (Q4m), the groups

U(n,m) = ⟨x, y : x2n = ym = 1, x−1yx = y−1⟩, V8n = ⟨a, b : a2n = b4 = 1, b−1ab−1 =

bab = a−1⟩, SD8n = ⟨a, b : a4n = b2 = 1, bab = a2n−1⟩ and G(p,m, n) = ⟨x, y : xp
m

=

yp
n
= [x, y]p = 1, [x, [x, y]] = [y, [x, y]] = 1⟩. Our computations show that CCC-graphs for

these groups are super integral. We compare various energies and show that CCC-graphs

of these groups satisfy E-LE Conjecture (Conjecture 1.1.7) of Gutman et al. [55]. We also

provide negative answer to a question (Question 1.1.8) posed by Dutta et al. [43]. We

conclude Chapter 5 by characterizing the above mentioned groups such that their CCC-

graphs are hyperenergetic, L-hyperenergetic or Q-hyperenergetic. In Chapter 6, we com-

pute the genus of CCC-graphs and determine whether CCC-graphs for the groups con-

sidered in Chapter 5 are planar, toroidal, double-toroidal or triple-toroidal. In Chapter 7,

we introduce solvable conjugacy class graph (SCC-graph) of a group G. We discuss the

connectivity, girth, clique number, and several other properties of SCC-graph. We also

discuss the genus of SCC-graph. We conclude Chapter 7 with a relation between commut-

ing probability and genus of the SCC-graph of a finite non-solvable group with non-trivial

center. In Chapter 8, we conclude the thesis by suggesting some problems for future re-

search.

In this chapter, we recall certain results from Graph Theory and Group Theory that are

useful in the subsequent chapters.

1.1 Notations and Results from Graph Theory

For all the standard notations and basic results we refer to [94]. All the graphs considered

in our study are finite, simple and undirected. We write V (Γ) and e(Γ) to denote the vertex

set and the edge set of a graph Γ respectively. The degree of a vertex x ∈ V (Γ), denoted by

degΓ(x), is defined to be the number of vertices adjacent to x and deg(Γ) = {degΓ(x) : x ∈
V (Γ)} is the vertex degree set of Γ. The neighborhood of a vertex x in a graph Γ, denoted by

NbdΓ(x), is defined to be the set of all vertices adjacent to x and so degΓ(x) = |NbdΓ(x)|.
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For a graph Γ and a subset S of V (Γ) we write NΓ[S] = S∪ ( ∪
x∈S

NbdΓ(x)). If NΓ[S] = V (Γ)

then S is said to be a dominating set of Γ. The domination number of Γ, denoted by λ(Γ), is the

minimum cardinality of dominating sets of Γ. A subset X of V (Γ) is called an independent

set if the induced subgraph on X has no edges. The maximum size of the independent

sets in a graph Γ is called the independence number of Γ and it is denoted by α(Γ). For

any subset S of V (Γ), we write Γ[S] to denote the induced subgraph of Γ on S. For any non-

empty subset S of V (Γ),we also write Γ\S to denote Γ[V (Γ)\S]. A subset of V (Γ) is called

a clique of Γ if it consists entirely of pairwise adjacent vertices. The least upper bound of

the sizes of all the cliques of Γ is called the clique number of Γ, and it is denoted by ω(Γ).

Note that ω(Γ̃) ≤ ω(Γ) for any subgraph Γ̃ of Γ. The girth of Γ is the minimum of the

lengths of all cycles in Γ, and it is denoted by girth(Γ). The distance between two vertices

u and v of Γ is denoted by d(u, v). The diameter of a graph Γ, denoted by diam(Γ), is the

maximum distance between the pair of vertices. The vertex connectivity of a connected

graph Γ, denoted by κ(Γ), is the smallest number of vertices whose removal disconnects

Γ. A subset S of V (Γ) of a connected graph Γ is called a vertex cut set, if Γ \ S is not a

connected graph. The chromatic number of a graph Γ, denoted by χ(Γ), is the minimum

number of colors needed to label the vertices so that adjacent vertices receive different

colors.

Result 1.1.1. [24, Theorem 4.3] If Γ is a simple graph with |V (Γ)| > 3 and δ > |V (Γ)|
2 ,

where δ = min{degΓ(v) : v ∈ V (Γ)}, then Γ is Hamiltonian.

Result 1.1.2. [95, Corollary 6–14] If Γ is connected and |V (Γ)| > 3 then

γ(Γ) ≥ |e(Γ)|
6

− |V (Γ)|
2

+ 1.

The equality holds if and only if a triangular imbedding can be found for Γ.

The smallest non-negative integer k is called the genus of a graph Γ if Γ can be embed-

ded on the surface obtained by attaching k handles to a sphere. We write γ(Γ) to denote

the genus of Γ. If Γ0 is a subgraph of Γ then it can be easily visualized that

γ(Γ) ≥ γ(Γ0). (1.1.a)

Let Kn be the complete graph on n vertices and mKn the disjoint union of m copies of Kn.

The following results are useful in computing genus of certain graphs.

Result 1.1.3. [15, Corollary 2] If Γ is the disjoint union of Km and Kn then γ(Γ) =

γ(Km) + γ(Kn).
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By using Result 1.1.3, we have the following result.

Result 1.1.4. If G = m1Kn1 ⊔m2Kn2 then γ(G) = m1γ(Kn1) +m2γ(Kn2).

It is well-known that γ(Kn) = 0 if n = 1, 2. If n ≥ 3 then by [95, Theorem 6-38], we have

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
. (1.1.b)

Also, if m,n ≥ 2 then

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
and γ(Km,m,m) =

(m− 2)(m− 1)

2
,

where Km,n and Km,m,m are complete bipartite and tripartite graphs respectively. A graph

Γ is called planar, toroidal, double-toroidal and triple-toroidal if γ(Γ) = 0, 1, 2 and 3 respec-

tively.

Result 1.1.5. [94, Theorem 6.3.25](Heawood’s Formula) If Γ is a simple graph and γ(Γ) =

m then

χ(γ) ≤
⌊
7 +

√
1 + 48m

2

⌋
.

A compact surfaceNk is a connected sum of k projective planes. A simple graph which

can be embedded in Nk but not in Nk−1, is called a graph of crosscap k. We write γ̄(Γ) to

denote the crosscap of a graph Γ. It is easy to see that γ̄(Γ0) ≤ γ̄(Γ) for any subgraph Γ0 of

Γ. It was shown in [25] that

γ̄(Kn) =


⌈16(n− 3)(n− 4)⌉, if n ≥ 3 and n ̸= 7

3, if n = 7.

(1.1.c)

A graph Γ is called projective if γ̄(Γ) = 1. It is worth mentioning that 2K5 is not a projective

graph (see [49]).

Recall that the spectrum of a graph Γ, denoted by Spec(Γ), is the set {λk11 , λ
k2
2 , . . . , λ

kn
n },

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix A(Γ) of Γ and the ex-

ponents k1, k2, . . . , kn are the multiplicities of λ1, λ2, . . . , λn respectively. A graph Γ is

called integral if Spec(Γ) contains only integers. Harary and Schwenk [60] introduced

the concept of integral graphs in 1974. It is well-known that Kn is integral. Moreover,

if Γ = mKn then also Γ is integral. Laplacian and signless Laplacian matrices of a graph Γ,

denoted by L(Γ) and Q(Γ), are defined as L(Γ) = D(Γ) − A(Γ) and Q(Γ) = D(Γ) + A(Γ)

respectively, where D(Γ) is the degree matrix of Γ. The Laplacian and signless Lapla-

cian spectrum of Γ are defined by L-spec(Γ) := {µq11 , µ
q2
2 , . . . , µ

qm
m } and Q-spec(Γ) :=
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{νr11 , ν
r2
2 , . . . , ν

rn
n } respectively, where µ1, µ2, . . . , µm are the eigenvalues of L(Γ) with mul-

tiplicities q1, q2, . . . , qm and ν1, ν2, . . . , νn are the eigenvalues of Q(Γ) with multiplicities

r1, r2, . . . , rn. A graph Γ is called L-integral and Q-integral respectively if L-spec(Γ) and

Q-spec(Γ) contain only integers. Several results on these graphs can be found in [5, 13,

33, 66, 69, 87]. A graph Γ is called super integral if it is integral, L-integral and Q-integral

(see [40]). The following result is useful in computing various spectra of disjoint union of

complete graphs.

Result 1.1.6. If G = l1Km1 ⊔ l2Km2 ⊔ l3Km3 then

Spec(G) =
{
(−1)

∑3
i=1 li(mi−1), (m1 − 1)l1 , (m2 − 1)l2 , (m3 − 1)l3

}
,

L-spec(G) =
{
0l1+l2++l3 ,m

l1(m1−1)
1 ,m

l2(m2−1)
2 ,m

l3(m3−1)
3

}
and

Q-spec(G) =
{
(2m1 − 2)l1 , (m1 − 2)l1(m1−1), (2m2 − 2)l2 , (m2 − 2)l2(m2−1),

(2m3 − 2)l3 , (m3 − 2)l3(m3−1)
}
.

Depending on various spectra of a graph, there are various energies called energy,

Laplacian energy and signless Laplacian energy denoted by E(Γ), LE(Γ) and LE+(Γ) re-

spectively. These energies are defined as follows:

E(Γ) =
∑

λ∈Spec(Γ)

|λ|, (1.1.d)

LE(Γ) =
∑

µ∈L-spec(Γ)

∣∣∣∣µ− 2|e(Γ)|
|V (Γ)|

∣∣∣∣ , (1.1.e)

LE+(Γ) =
∑

ν∈Q-spec(Γ)

∣∣∣∣ν − 2|e(Γ)|
|V (Γ)|

∣∣∣∣ . (1.1.f )

The concept of energy of a graph was introduced by Gutman [58] in the year 1978. Later

on, Gutman with his collaborators introduced Laplacian and signless Laplacian energies

of a graph in [56] and [4] respectively. In 2008, Gutman et al. [55] posed the following

conjecture comparing E(Γ) and LE(Γ).

Conjecture 1.1.7. (E-LE Conjecture) E(Γ) ≤ LE(Γ) for any graph Γ.

However, in the same year, Stevanović et al. [88] disproved Conjecture 1.1.7. In 2009,

Liu and Lin [67] also disproved Conjecture 1.1.7 by providing some counter examples.

Following Gutman et al. [55], recently Dutta et al. [43] have posed the following question

comparing Laplacian and singless Laplacian energies of graphs.
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Question 1.1.8. Is LE(Γ) ≤ LE+(Γ) for all graphs Γ?

It is well-known that

E(Kn) = LE(Kn) = LE+(Kn) = 2(n− 1). (1.1.g)

A graph Γ with n vertices is called hyperenergetic, L-hyperenergetic or Q-hyperenergetic

according as E(Kn) < E(Γ), LE(Kn) < LE(Γ) or LE+(Kn) < LE+(Γ). Also, Γ is

called borderenergetic, L-borderenergetic and Q-borderenergetic ifE(Kn) = E(Γ), LE(Kn) =

LE(Γ) and LE+(Kn) = LE+(Γ) respectively. These graphs were considered in [45, 50, 57,

93, 97].

1.2 Notations and Results from Group Theory

In this section, we fix some notations and recall certain results from Group Theory which

will be referred in the subsequent chapters. However, for all the standard notations and

basic results we refer to [83, 84].

The centralizer of an element x in a group G, denoted by CG(x), is defined as the set

{y ∈ G : ⟨x, y⟩ is abelian} which is clearly a subgroup of G. For any subset S of G, we

write CG(S) = ∩
x∈S

CG(x). If S = G then CG(G) = Z(G), the centre of the group G. In other

words, Z(G) = {x ∈ G : ⟨x, y⟩ is abelian for all y ∈ G}. Note that Z(G) = G if and only if

G is abelian. A groupG is called an n-centralizer group if the number of distinct centralizers

of G is n. The following characterization of finite n-centralizer groups for n = 4, 5 are due

to Belcastro and Sherman [16].

Result 1.2.1. [16, Theorem 2] A finite group G is 4-centralizer if and only if G
Z(G)

∼= Z2×Z2.

Result 1.2.2. [16, Theorem 4] A finite group G is 5-centralizer if and only if G
Z(G)

∼= Z3×Z3

or G
Z(G)

∼= S3, where S3 is the symmetric group on three symbols.

In [12], Ashrafi obtained the following characterization of (p + 2)-centralizer finite p-

groups, where p is any prime number.

Result 1.2.3. [12, Lemma 2.7] If G is a finite non-abelian p-group then G is a (p + 2)-

centralizer group if and only if G
Z(G)

∼= Zp × Zp.

A groupG is said to be a p-group if the order of every element inG is a power of a prime

number p. For any prime number p, a Sylow p-subgroup of G is a maximal p-subgroup of

G. A p-subgroup is a subgroup of a group which is also a p-group. We list some results on

Sylow p-subgroup which will be used later.
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Result 1.2.4. [36, Lemma 3.4] Let G be a finite group.

(a) If |G| = 7m and the Sylow 7-subgroup is normal in G then G has an abelian subgroup

of order at least 14 or |G| ≤ 42.

(b) If |G| = 9m, where 3 ∤ m and the Sylow 3-subgroup is normal in G then G has an

abelian subgroup of order at least 18 or |G| ≤ 72.

Result 1.2.5. [83, Theorem 14.3.4] Let G be a locally finite group and suppose that P is

a finite Sylow p-subgroup of G. Then all Sylow p-subgroups of G are finite and conjugate.

Result 1.2.6. [83, Theorem 5.3.6] A finite p-group has exactly one subgroup of order p if

and only if it is cyclic or a generalized quaternion group.

The nilpotentizer of an element x in a group G, denoted by NilG(x), is defined as the

set {y ∈ G : ⟨x, y⟩ is nilpotent}. The motivation of defining nilpotentizers comes from

the definition of centralizers. For any subset S of G, we write NilG(S) = ∩
x∈S

NilG(x). If

S = G then we write Nil(G) to denote NilG(G). In other words, Nil(G) = {x ∈ G :

⟨x, y⟩ is nilpotent for all y ∈ G}. Also Nil(G) = G, ifG is nilpotent. Note that nilpotentizers

of elements of G are not necessarily subgroups. In fact it is not known whether Nil(G) is

a subgroup of G. A group G is said to be an n-group if NilG(x) is a subgroup of G for all

x ∈ G (see [2]).

The solvabilizer of x ∈ G, denoted by SolG(x), is the set given by {y ∈ G : ⟨x, y⟩ is

solvable}. Note that SolG(x) is not a subgroup of G in general. A group G is called an

S-group if SolG(x) is a subgroup of G for all x ∈ G. We write Sol(G) = ∩
x∈G

SolG(x) . In

other words, Sol(G) = {x ∈ G : ⟨x, y⟩ is solvable for all y ∈ G} which is also known as

solvable radical of G. It may be mentioned here that Sol(G) is a subgroup of G if G is finite

(see [53]). Following are some useful results on solvabilizers and solvable groups.

Result 1.2.7. [59, Proposition 2.13] LetG be a finite group. Then |CG(x)| divides | SolG(x)|
for all x ∈ G.

Result 1.2.8. [59, Proposition 2.22] Let G be a finite group. Then G is solvable if and

only if G is an S-group.

Result 1.2.9. [59, Lemma 2.11] Let N be a normal subgroup of a finite group G such that

N ⊆ Sol(G) and x, y, g ∈ G. Then we have

(a) SolG(x) = SolG(y) if ⟨x⟩ = ⟨y⟩.
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(b) SolG(gxg
−1) = g SolG(x)g

−1.

(c) SolG/N (xN) = SolG(x)/N .

Result 1.2.10. [59, Proposition 2.16] LetG be a finite group. Then |G| divides
∑
x∈G

|SolG(x)|.

Result 1.2.11. [53, Theorem 6.4] Let G be a finite non-solvable group and x, y ∈ G\Sol(G).
Then there exists s ∈ G \ Sol(G) such that ⟨x, s⟩ and ⟨y, s⟩ are not solvable.

Result 1.2.12. [37, Theorem A] Let G be a finite group. Then the following statements

are equivalent:

(a) G is solvable.

(b) For all x, y ∈ G, there exists an element g ∈ G for which ⟨x, yg⟩ is solvable.

(c) For all x, y ∈ G of prime power order, there exists an element g ∈ G for which ⟨x, yg⟩
is solvable.

Result 1.2.13. [83, Results 8.5.3] If G is a finite group of order paqb, where p, q are prime

numbers and a, b are non-negative integers, then G is solvable.

We also have the following result on finite solvable groups.

Result 1.2.14. [37, Section 1] A finite group is solvable if and only if every pair of its

elements generates a solvable group.

1.2.1 Commuting probability and solvability degree

We write Pr(G) to denote the commuting probability of a finite group G which is defined as

the probability that a pair of elements in G, chosen at random, commute with each other.

Thus

Pr(G) :=
|{(u, v) ∈ G×G : ⟨u, v⟩ is abelian}|

|G|2
.

In terms of centralizer, Pr(G) can be written as

Pr(G) =
1

|G|2
∑
u∈G

|CG(u)|. (1.2.a)

The study of commuting probability of a finite group G was initiated by Erdös and

Turán [44] in the year 1968. We recall some results on commuting probability of finite

groups.
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Result 1.2.15. [54, pp. 1032] Let k(G) be the number of conjugacy classes of a finite group

G. Then Pr(G) = k(G)
|G| .

Result 1.2.16. ([85, pp. 246] and [77, pp. 451]) If Pr(G) ∈ { 5
14 ,

2
5 ,

11
27 ,

1
2 ,

5
8 ,

7
16} then

G/Z(G) is isomorphic to one of the groups in {D14, D10, D8, D6,Z2 × Z2,Z3 × Z3}.

Result 1.2.17. [68, Theorem 3] If G is a non-abelian finite group and p is the least prime

number which divides |G| then Pr(G) ≤ p2+p−1
p3

. Moreover, equality holds if and only if

G/Z(G) is isomorphic to Zp × Zp.

Result 1.2.18. [76, Theorem 1] If G is a finite group then

Pr(G) ≥ 1

|G′|

(
1 +

|G′| − 1

|G : Z(G)|

)
,

where G′ is the commutator subgroup of G. In particular, if G is non-abelian then

Pr(G) >
1

|G′|
.

The solvability degree of a finite group G is defined by the following ratio

Ps(G) :=
|{(u, v) ∈ G×G : ⟨u, v⟩ is solvable}|

|G|2
. (1.2.b)

In view of Result 1.2.14, it follows that a finite groupG is solvable if and only if Ps(G) =

1. It was shown in [52, Theorem A] that Ps(G) ≤ 11
30 for any finite non-solvable group G.

It is worth mentioning that solvability degree of a finite group was introduced in [52] and

several properties of Ps(G), including some bounds, are studied in [52, 96]. We shall also

consider solvability degree of a finite group in Chapter 3 and Chapter 4 and obtain more

results.

1.3 Graphs defined on Groups

In this section we recall various graphs defined on groups. Commuting graph is the first

such graph originated from the works of Brauer and Fowler [27]. Some extensions of

commuting graph are nilpotent graph, solvable graph, commuting conjugacy class graph

and nilpotent conjugacy class graph.
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1.3.1 Commuting and non-commuting graph

Let G be a finite non-abelian group with centre Z(G). The commuting graph of G, denoted

by C(G), is a simple undirected graph whose vertex set isG\Z(G) and two distinct vertices

x and y are adjacent whenever xy = yx. Various graph theoretic properties, including con-

nectivity and diameter, of C(G) are studied in [10, 65, 75, 82]. Properties of C(G) defined on

symmetric groups and finite simple groups can be found in [10] and [64]. The complement

of C(G), known as non-commuting graph of G, is denoted by NC(G). Properties of NC(G)
defined on various families of finite non-abelian groups can be found in [1, 34, 72, 90, 92].

The genus of C(G) and NC(G), for various families of finite non-abelian groups, are com-

puted in [6, 35] and characterized all finite groups (upto isomorphism) such that C(G)
and NC(G) are planar or toroidal. Spectral aspects of C(G) and NC(G) are studied in

[3, 38, 39, 40, 41, 42, 43, 47, 48, 78]. It was shown in [43] that Conjecture 1.1.7 holds for

commuting graphs of some families of finite non-abelian groups while the inequality in

Question 1.1.8 does not hold for commuting graphs of finite non-abelian groups.

In [38], Dutta and Nath have found the commuting graph of the group G when G
Z(G)

∼=
Zp × Zp (p is prime) or D2n = ⟨x, y : xn = y2 = 1, yxy = x−1⟩, the dihedral group. In

particular, we have the following results.

Result 1.3.1. [38, Theorem 2.1] If G is a finite group such that G
Z(G)

∼= Zp × Zp, where p

is a prime, then C(G) ∼= (p+ 1)K(p−1)n, where |Z(G)| = n.

Result 1.3.2. [38, Theorem 2.5] If G is a finite group such that G
Z(G)

∼= D2n then C(G) ∼=
K(n−1)k ⊔ nKk, where |Z(G)| = k.

Consequently we have C(Q4m) = K2m−2 ⊔ mK2 and C(U6n) = K2n ⊔ 3Kn, where

Q4m = ⟨x, y : x2m = 1, xm = y2, y−1xy = x−1⟩, the dicyclic group, and U6n = ⟨a, b : a2n =

b3 = 1, a−1ba = b−1⟩. We also have the following result.

Result 1.3.3. [38, Proposition 2.8] If G = M2nk = ⟨a, b : an = b2k = 1, bab−1 = a−1⟩,
where n > 2 then

C(G) =


K(n−1)k ⊔ nKk, if n is odd

K(n
2
−1)2k ⊔ n

2K2k, if n is even

and hence

C(D2n) =


Kn−1 ⊔ nK1, if n is odd

Kn−2 ⊔ n
2K2, if n is even.
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In [42], Dutta and Nath have found the commuting graph of the group G if G
Z(G)

∼=
Sz(2), where Sz(2) is the Suzuki group defined as ⟨a, b : a5 = b4 = 1, b−1ab = a2⟩.

Result 1.3.4. [42, Theorem 2.2] If G is a finite group such that G
Z(G)

∼= Sz(2) then C(G) =
K4|Z(G)| ⊔ 5K3|Z(G)| and hence C(Sz(2)) = K4 ⊔ 5K3.

In [70], Mirzargar et al. and in [46], Fasfous et al. have derived the commuting graphs

of the groups V8n and SD8n respectively.

Result 1.3.5. [70, Example 2.4] If G = V8n then

C(G) =


K2(2n−1) ⊔ 2nK2, if n is odd

K4(n−1) ⊔ nK4, if n is even.

Result 1.3.6. [46, Theorem 4.2] If G = SD8n then

C(G) =


K4(n−1) ⊔ nK4, if n is odd

K2(2n−1) ⊔ 2nK2, if n is even.

In [35], Das and Nongsiang have given the structure of the commuting graph of the group

QD2n = ⟨a, b : a2n−1
= b2 = 1, bab−1 = a2

n−2−1⟩, where n ≥ 4.

Result 1.3.7. [35, Proposition 4.3] If G = QD2n , where n ≥ 4, then C(G) = K2n−1−2 ⊔
2n−2K2.

We have the following characterizations of finite non-abelian groups such that C(G) is

either planar or toroidal.

Result 1.3.8. Let G be a finite non-abelian group. Then

(a) [35, Theorem 5.7] C(G) is planar if and only if G is isomorphic to either S3, D10, A4,

Sz(2), S4, A5, D8, Q8, D12, Q12, SL(2, 3), Z2 × D8, Z2 × Q8, SG(16, 3), Z4 ⋊ Z4,

D8 ∗ Z4 or M16.

(b) [42, Theorem 3.3] C(G) is toroidal if and only if C(G) is projective if and only if G is

isomorphic to either D14, Z7 ⋊ Z3, Z2 ×A4, Z3 × S3, D16, Q16 or SD16.

In 2006, Abdollahi, Akbari and Maimani [1] asked the following question.

Question 1.3.9. [1, Question 2.10] Let G be a group such that NC(G) has no infinite

independent sets. Is it true that the independence number, α(NC(G)) is finite?

11
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Abdollahi et al. [1] also answered Question 1.3.9 affirmatively for some classes of

groups.

Result 1.3.10. [1, Theorem 2.11] Let G be a group such that NC(G) has no infinite

independent sets. If G is an Engel group, a locally finite group, a locally solvable group, a

linear group or a 2-group then G is a finite. In particular, α(NC(G)) is finite.

We also have the following characterizations of finite non-abelian groups such that

NC(G) is either planar, toroidal or double-toroidal.

Result 1.3.11. Let G be a finite non-abelian group. Then

(a) [1, Proposition 2.3] NC(G) is planar if and only if G ∼= S3, D8 or Q8.

(b) [6, Theorem 3.2] NC(G) is not toroidal.

(c) [80, Proposition 5.5] NC(G) is double-toroidal if and only if G ∼= D10, Q12 or D12.

(d) [6, Theorem 3.3] NC(G) is not projective.

1.3.2 Nilpotent and non-nilpotent graph

The nilpotent graph of a finite non-nilpotent group G, denoted by N (G), is a simple undi-

rected graph whose vertex set is G \ Nil(G) and two distinct vertices x and y are adjacent

if ⟨x, y⟩ is nilpotent. The complement of N (G) is known as non-nilpotent graph of G and it

is denoted by NN (G). In 2010, Abdollahi and Zarrin [2] have introduced and studied this

graph. Several results on N (G) and NN (G) can be found in [2, 36, 80]. Nongsiang and

Saikia [80] asked the following question similar to Question 1.3.9 for NN (G).

Question 1.3.12. [80, Question 3.17] Let G be a group such that NN (G) has no infinite

independent sets. Is it true that the independence number, α(NN (G)) is finite?

Nongsiang and Saikia [80] also answered Question 1.3.12 affirmatively for some classes

of finite groups. However, in general the answer is no (see [80, page 86]).

Result 1.3.13. [80, Theorem 3.18] Let G be a non-weakly nilpotent group such that

NN (G) has no infinite independent sets. If Nil(G) is a subgroup and G is an Engel group,

a locally finite group, a locally solvable group, a linear group or a 2-group then G is finite.

In particular, α(NN (G)) is finite.

We have the following characterizations of finite non-nilpotent groups such that N (G)

is either planar or toroidal.

12
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Result 1.3.14. [36, Proposition 5.1] Let G be a finite non-nilpotent group. Then the

following assertions hold:

(a) N (G) is planar if and only if G is isomorphic to S3, D10, D12, Q12, A4, A5, or Sz(2).

(b) N (G) is toroidal if and only if G is isomorphic to SL(2, 3), D14, Z7 ⋊Z3, Z2 ×A4, or

Z3 × S3.

1.3.3 Solvable and non-solvable graph

The solvable graph of a finite non-solvable group G, denoted by S(G), is a simple undi-

rected graph whose vertex set is G \ Sol(G) and two distinct vertices x and y are adjacent

if ⟨x, y⟩ is solvable. The complement of S(G) is known as non-solvable graph of G and it

is denoted by NS(G). This graph was introduced by Hai-Reuvan [59], in 2013. Results

on NS(G) can be found in [8, 59]. Some graph realization results on NS(G) are as given

below.

Result 1.3.15. [59, Corollary 3.17] Let G be a finite non-solvable group. Then NS(G) is
irregular.

Result 1.3.16. [59, Corollary 3.14] NS(G) is not planar for any finite non-solvable group

G.

Result 1.3.17. [59, Proposition 3.16] Let G be a finite non-solvable group. Then

| deg(NS(G))| ≠ 2.

In Chapter 3 and Chapter 4, we shall consider solvable and non-solvable graph and

obtain more results.

1.3.4 Conjugacy class graphs

The conjugacy class of an element x ∈ G, denoted by xG, is the set given by {yxy−1 :

y ∈ G}. Extending the notion of commuting graph, Herzog, Longobardi and Maj [62] in-

troduced commuting conjugacy class graphs of groups in the year 2009. The commuting

conjugacy class graph (or CCC-graph) of a group G, denoted by CCC(G), is a simple undi-

rected graph whose vertex set is {xG : x ∈ G \ Z(G)} and two distinct vertices xG and

yG are adjacent if ⟨x′, y′⟩ is abelian for some x′ ∈ xG and y′ ∈ yG. In 2020, Salahshour

and Ashrafi [86] have obtained the following results on the structures of CCC-graph of

13
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the groups D2n (n ≥ 3), Q4m (m ≥ 2), U(n,m) = ⟨x, y : x2n = ym = 1, x−1yx = y−1⟩ (m ≥
3 and n ≥ 2), V8n, SD8n, G(p,m, n) = ⟨x, y : xp

m
= yp

n
= [x, y]p = 1, [x, [x, y]] = [y, [x, y]] =

1⟩ (where p is any prime, m ≥ 1 and n ≥ 1).

Result 1.3.18. [86, Proposition 2.1] The commuting conjugacy class graph of dihedral

groups are given by

CCC(D2n) =


Kn−1

2
⊔K1, if n is odd

Kn
2
−1 ⊔ 2K1, if n and n

2 are even

Kn
2
−1 ⊔K2, if n is even and n

2 is odd.

Result 1.3.19. [86, Proposition 2.2] The commuting conjugacy class graph of the dicyclic

group Q4m is given by

CCC(Q4m) =


Km−1 ⊔ 2K1, if m is even

Km−1 ⊔K2, if m is odd.

Result 1.3.20. [86, Proposition 2.3] The commuting conjugacy class graph of the group

U(n,m) is given by

CCC(U(n,m)) =


2Kn ⊔Kn(m

2
−1), if m is even

Kn ⊔Kn(m−1
2

), if m is odd.

Result 1.3.21. [86, Proposition 2.4] The commuting conjugacy class graph of the group

V8n is given by

CCC(V8n) =


K2n−2 ⊔ 2K2, if n is even

K2n−1 ⊔ 2K1, if n is odd.

Result 1.3.22. [86, Proposition 2.5] The commuting conjugacy class graph of the semi-

dihedral group SD8n is given by

CCC(SD8n) =


K2n−1 ⊔ 2K1, if n is even

K2n−2 ⊔K4, if n is odd.

Result 1.3.23. [86, Proposition 2.6] The commuting conjugacy class graph of the group

G(p,m, n) is given by

CCC(G(p,m, n)) = (pn − pn−1)Kpm−n(pn−pn−1) ⊔Kpn−1(pm−pm−1) ⊔Kpm−1(pn−pn−1).

14
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We write CCC(G \ {1}) to denote the graph whose vertex set is {xG : x ∈ G \ {1}}
and two distinct vertices xG and yG are adjacent if ⟨x′, y′⟩ is abelian for some x′ ∈ xG and

y′ ∈ yG. Herzog, Longobardi and Maj [62] have obtained the following results on the

distance between two vertices in CCC(G \ {1}).

Result 1.3.24. Let G be a locally finite group.

(a) If x, y ∈ G \ {1} are p-elements, where p is a prime, then xG and yG are connected in

CCC(G \ {1}) and d(xG, yG) ≤ 2 ([62, Lemma 3]).

(b) If x, y ∈ G\{1} are of non-coprime orders then xG and yG are connected in CCC(G\{1})
and d(xG, yG) ≤ 4. If either x or y is of prime power order then d(xG, yG) ≤ 3 in

CCC(G \ {1}) ([62, Lemma 4]).

Result 1.3.25. [62, Lemma 5] Let G be a locally finite group and let x, y ∈ G \ {1}.
Suppose that p | o(x) and q | o(y), where p, q are distinct primes, and that G contains an

element z of order pq. Then the following statements hold:

(a) The classes xG and yG are connected in CCC(G \ {1}) and d(xG, yG) ≤ 7; moreover,

d(xG, yG) ≤ 6 if either x or y is of prime order.

(b) If G is locally solvable then d(xG, yG) ≤ 6 in CCC(G \ {1}); moreover, d(xG, yG) ≤ 5

if either x or y is of prime order.

(c) If either a Sylow p-subgroup or a Sylow q-subgroup of G is a cyclic or generalized

quaternion finite group then d(xG, yG) ≤ 5 in CCC(G \ {1}); moreover, d(xG, yG) ≤ 4

if either x or y is of prime order.

(d) If both a Sylow p-subgroup and a Sylow q-subgroup ofG are either cyclic or generalized

quaternion finite groups then d(xG, yG) ≤ 3 in CCC(G \ {1}); moreover, d(xG, yG) ≤ 2

if either x or y is of prime order.

Result 1.3.26. [62, Proposition 6] Let G be a finite group with a normal subgroup H and a

subgroup S. Suppose that for each h1, h2 ∈ H \ {1} and for each s1, s2 ∈ S \ {1} the classes

hG1 and hG2 are connected in CCC(G \ {1}) and so are the classes sG1 and sG2 . Moreover,

suppose that there exist h ∈ H \ {1} and k ∈ HS \H such that hG and kG are connected

in CCC(G \ {1}). Then for each x, y ∈ HS \ {1}, xG and yG are connected in CCC(G \ {1}).

In 2017, Mohammadian and Erfanian [73] have extended the notion of CCC-graph and

introduced nilpotent conjugacy class graph of a group. The nilpotent conjugacy class graph

15



Chapter 1. Introduction and Preliminaries

(or NCC-graph) of a group G, denoted by NCC(G), is a simple undirected graph whose

vertex set is {xG : x ∈ G \ {1}} and two distinct vertices xG and yG are adjacent if ⟨x′, y′⟩
is nilpotent for some x′ ∈ xG and y′ ∈ yG. We have the following results on the distance

between two vertices in NCC(G).

Result 1.3.27. [73, Lemma 2.1] Let G be a locally finite group and p be a prime number.

Then the following statements hold:

(a) If x, y ∈ G \ {1} are p-elements then d(xG, yG) ≤ 1 in NCC(G).

(b) If x, y ∈ G \ {1} are of non-coprime orders then d(xG, yG) ≤ 3 in NCC(G). Moreover

d(xG, yG) ≤ 2, whenever either x or y is of prime power order.

Result 1.3.28. [73, Lemma 2.2] Let G be a locally finite group and x, y ∈ G\{1}. Suppose
p and q are prime divisors of o(x) and o(y), respectively, and that G has an element of order

pq. Then

(a) d(xG, yG) ≤ 5 in NCC(G), and moreover d(xG, yG) ≤ 4 if either x or y is of prime

power order.

(b) If either a Sylow p-subgroup or a Sylow q-subgroup of G is a cyclic or generalized

quaternion finite group then d(xG, yG) ≤ 4 in NCC(G). Moreover, d(xG, yG) ≤ 3 if

either x or y is of prime order.

(c) If both a Sylow p-subgroup and a Sylow q-subgroup of G are either cyclic or generalized

quaternion finite groups then d(xG, yG) ≤ 3 in NCC(G). Moreover, d(xG, yG) ≤ 2 if

either x or y is of prime order.

Result 1.3.29. [73, Lemma 2.3] Let G = HK be a finite group with a normal subgroup

H and a subgroup K such that NCC(H) and NCC(K) are connected. If there exist two

elements h ∈ H \ {1} and x ∈ G \H such that hG and xG are connected in NCC(G) then
NCC(G) is connected.

Following the notions of CCC-graph and NCC-graph, in Chapter 7, we shall introduce

the notion of solvable conjugacy class graph (or SCC-graph) of a group.
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