Chapter 2

Genus of commuting graphs of
 certain finite groups

In 2015, Afkhami, Farrokhi and Khashyarmanesh [6] and in 2016, Das and Nongsiang [35] have characterized finite non-abelian groups such that their commuting graphs are planar or toroidal. Recently, Nongsiang [81] has characterized finite non-abelian groups whose commuting graphs are double-toroidal or triple-toroidal. In this Chapter, we compute $\gamma(\mathcal{C}(G))$, the genus of commuting graph of G, for the classes of finite groups such that their central quotient is isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ (where p is a prime), $D_{2 n}=\left\langle a, b: a^{n}=\right.$ $\left.b^{2}=1, b a b^{-1}=a^{-1}\right\rangle($ where $n \geq 2)$ or $S z(2)=\left\langle a, b: a^{5}=b^{4}=1, b^{-1} a b=a^{2}\right\rangle$. We also find conditions such that $\gamma(\mathcal{C}(G))=4,5$ or 6 for the above mentioned groups. As a consequence of our results, we characterize groups of order p^{3}, the meta-abelian groups $M_{2 n k}=$ $\left\langle a, b: a^{n}=b^{2 k}=1, b a b^{-1}=a^{-1}\right\rangle, D_{2 n}, Q_{4 m}=\left\langle a, b: a^{2 m}=1, b^{2}=a^{m}, b a b^{-1}=a^{-1}\right\rangle$ and $U_{6 n}=\left\langle a, b: a^{2 n}=b^{3}=1, a^{-1} b a=b^{-1}\right\rangle$ such that their commuting graphs have genus 4,5 or 6 . It is worth mentioning that the spectral aspects of commuting graphs of these classes of groups have been described in [35,38, 42]. This chapter is based on our paper [20].

2.1 Genus of $\mathcal{C}(G)$

We begin this section by computing genus of $\mathcal{C}(G)$ for the groups whose central quotient is isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Theorem 2.1.1. If G is a finite group such that $\frac{G}{Z(G)} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ (for any prime p) then $\gamma(\mathcal{C}(G))=0$ or $\gamma(\mathcal{C}(G))=(p+1)\left\lceil\frac{1}{12}((p-1) n-3)((p-1) n-4)\right\rceil$ according as $(p-1) n \leq 2$
or $(p-1) n \geq 3$, where $n=|Z(G)|$.
Proof. By Result 1.3 .1 we have $\mathcal{C}(G)=(p+1) K_{(p-1) n}$. If $(p-1) n \leq 2$ then $\gamma(\mathcal{C}(G))=0$. If $(p-1) n \geq 3$ then, by (1.1.b) and Result 1.1.4, $\gamma(\mathcal{C}(G))=(p+1) \gamma\left(K_{(p-1) n}\right)=(p+$ 1) $\left\lceil\frac{1}{12}((p-1) n-3)((p-1) n-4)\right\rceil$.

Corollary 2.1.2. If G is a non-abelian group of order p^{3} (for any prime p) then $\gamma(\mathcal{C}(G))=0$ or $\gamma(\mathcal{C}(G))=(p+1)\left\lceil\frac{1}{12}((p-1) p-3)((p-1) p-4)\right\rceil$ according as $p=2$ or $p \geq 3$.
Proof. We have $|Z(G)|=p$ and $\frac{G}{Z(G)} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Therefore, $p(p-1)=2$ or $p(p-1) \geq 6$ according as $p=2$ or $p \geq 3$. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.3. If G is a finite 4 -centralizer group then $\gamma(\mathcal{C}(G))=0$ or

$$
\gamma(\mathcal{C}(G))=3\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil
$$

according as $n \leq 2$ or $n \geq 3$, where $n=|Z(G)|$.
Proof. If G is a 4 -centralizer group then by Result 1.2 .1 we have $\frac{G}{Z(G)} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.4. If G is a finite ($p+2$)-centralizer p-group (for any prime p) then $\gamma(\mathcal{C}(G))=$ 0 or $\gamma(\mathcal{C}(G))=(p+1)\left\lceil\frac{1}{12}((p-1) n-3)((p-1) n-4)\right\rceil$ according as $(p-1) n \leq 2$ or $(p-1) n \geq 3$, where $n=|Z(G)|$.

Proof. If G is a finite $(p+2)$-centralizer p-group (for any prime p) then by Result 1.2 .3 we have $\frac{G}{Z(G)} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.5. If G is a finite 5 -centralizer group then $\gamma(\mathcal{C}(G))=0$ or

$$
\gamma(\mathcal{C}(G))=4\left\lceil\frac{1}{12}(2 n-3)(2 n-4)\right\rceil
$$

according as $n=1$ or $n \geq 2$, where $n=|Z(G)|$.
Proof. If G is a finite 5 -centralizer group then by Result 1.2 .2 we have $\frac{G}{Z(G)} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Therefore, $(p-1) n=2$ or $(p-1) n \geq 4$ according as $n=1$ or $n \geq 2$. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.6. If G is a finite group and $\operatorname{Pr}(G)=\frac{p^{2}+p-1}{p^{3}}$, where p is the smallest prime divisor of the order of G, then $\gamma(\mathcal{C}(G))=0$ or

$$
\gamma(\mathcal{C}(G))=(p+1)\left\lceil\frac{1}{12}((p-1) n-3)((p-1) n-4)\right\rceil
$$

according as $(p-1) n \leq 2$ or $(p-1) n \geq 3$, where $n=|Z(G)|$.

Proof. If $\operatorname{Pr}(G)=\frac{p^{2}+p-1}{p^{3}}$ then by Result 1.2.17, we have $\frac{G}{Z(G)}$ is isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Hence, the result follows from Theorem 2.1.1.

Theorem 2.1.7. Let G be a finite group such that $\frac{G}{Z(G)} \cong D_{2 n}(n \geq 2)$. Then

$$
\gamma(\mathcal{C}(G))=\left\{\begin{array}{lr}
0, & \text { if } k=1, n=2,3 \text { and } k=n=2 \\
\left\lceil\frac{1}{12}((n-1) k-3)((n-1) k-4)\right\rceil, & \text { if } k=1, n \geq 4 \text { and } k=2, n \geq 3 \\
\left\lceil\frac{1}{12}((n-1) k-3)((n-1) k-4)\right\rceil+n\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil, & \text { if } k \geq 3, n \geq 2
\end{array}\right.
$$

where $k=|Z(G)|$.
Proof. By Result 1.3.2 we have $\mathcal{C}(G)=K_{(n-1) k} \sqcup n K_{k}$. Therefore,

$$
\mathcal{C}(G)= \begin{cases}K_{1} \sqcup 2 K_{1}, & \text { if } k=1 \text { and } n=2 \\ K_{2} \sqcup 3 K_{1}, & \text { if } k=1 \text { and } n=3 \\ K_{2} \sqcup 2 K_{2}, & \text { if } k=n=2\end{cases}
$$

and so $\gamma(\mathcal{C}(G))=0$ in these cases. We also have

$$
\mathcal{C}(G)= \begin{cases}K_{n-1} \sqcup n K_{1}, & \text { if } k=1 \text { and } n \geq 4 \\ K_{2(n-1)} \sqcup n K_{2}, & \text { if } k=2 \text { and } n \geq 3 .\end{cases}
$$

In these cases, $(n-1) k \geq 3$ and so by Result 1.1.4 and (1.1.b) we get

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}((n-1) k-3)((n-1) k-4)\right\rceil .
$$

If $k \geq 3$ and $n \geq 2$ then $(n-1) k \geq 3$. Therefore, by Result 1.1.4 and (1.1.b) we get the required expression for $\gamma(\mathcal{C}(G))$.

Corollary 2.1.8. Let $G=M_{2 n k}$, where $n>2$ and $k \geq 1$. If n is odd then

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } k=1, n=3 \\ \left\lceil\frac{1}{12}((n-1) k-3)((n-1) k-4)\right\rceil, & \text { if } k=1, n \geq 5 \\ & \text { or } k=2, n \geq 3 \\ \left\lceil\frac{1}{12}((n-1) k-3)((n-1) k-4)\right\rceil+n\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil, & \text { if } k \geq 3, n \geq 3 .\end{cases}
$$

If n is even then

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } k=1, n=4 \\ \left\lceil\frac{1}{12}((n-2) k-3)((n-2) k-4)\right\rceil, & \text { if } k=1, n \geq 6 \\ \left\lceil\frac{1}{12}((n-2) k-3)((n-2) k-4)\right\rceil+\frac{n}{2}\left\lceil\frac{1}{12}(2 k-3)(2 k-4)\right\rceil, & \text { if } k \geq 2, n \geq 4\end{cases}
$$

Proof. We have $\frac{M_{2 n k}}{Z\left(M_{2 n k}\right)} \cong D_{2 n}$ or D_{n} depending on n is odd or even respectively. Also, $\left|Z\left(M_{2 n k}\right)\right|=k$ or $2 k$ for n odd or even respectively. Therefore, if n is odd then the result follows from Theorem 2.1.7. If n is even then replacing n by $\frac{n}{2}$ and k by $2 k$ in Theorem 2.1.7 we get the required result.

Corollary 2.1.9. Let $G=D_{2 n}(n \geq 3)$. Then

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } n=3,4 \\ \left\lceil\frac{1}{12}(n-4)(n-5)\right\rceil, & \text { if } n \text { is odd and } n \geq 5 \\ \left\lceil\frac{1}{12}(n-5)(n-6)\right\rceil, & \text { if } n \text { is even and } n \geq 6\end{cases}
$$

Proof. We have $M_{2 n k}=D_{2 n}$ if $k=1$. Hence, the result follows from Corollary 2.1.8.
Corollary 2.1.10. Let $G=Q_{4 m}(m \geq 3)$. Then

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } m=2 \\ \left\lceil\frac{1}{12}(2 m-5)(2 m-6)\right\rceil, & \text { if } m \geq 3\end{cases}
$$

Proof. We have $\left|Z\left(Q_{4 m}\right)\right|=2$ and $\frac{Q_{4 m}}{Z\left(Q_{4 m}\right)} \cong D_{2 m}$. Hence, the result follows from Theorem 2.1.7.

Corollary 2.1.11. Let $G=U_{6 n}$. Then

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } n=1,2 \\ 3\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil+\left\lceil\frac{1}{12}(2 n-3)(2 n-4)\right\rceil, & \text { if } n \geq 3\end{cases}
$$

Proof. We have $Z\left(U_{6 n}\right)=\left\langle a^{2}\right\rangle$ and $\frac{U_{6 n}}{Z\left(U_{6 n}\right)} \cong D_{6}$. Hence, the result follows from Theorem 2.1.7 considering $m=3$.

Corollary 2.1.12. If G is a finite group such that $\operatorname{Pr}(G) \in\left\{\frac{5}{14}, \frac{2}{5}, \frac{11}{27}, \frac{1}{2}, \frac{5}{8}, \frac{7}{16}\right\}$ then $\gamma(\mathcal{C}(G)) \in$ $\left\{0,1,2,6,\left\lceil\frac{1}{2}(2 n-1)(3 n-2)\right\rceil+7\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil,\left\lceil\frac{1}{3}(n-1)(4 n-3)\right\rceil+5\left\lceil\frac{1}{12}(n-3)(n-\right.\right.$ 4) $\rceil,\left\lceil\frac{1}{4}(n-1)(3 n-4)\right\rceil+4\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil$, $\left\lceil\frac{1}{6}(n-2)(2 n-3)\right\rceil+3\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil, 3\left\lceil\frac{1}{12}(n-\right.$ 3) $\left.(n-4)\rceil, 4\left\lceil\frac{1}{6}(n-2)(2 n-3)\right\rceil\right\}$, where $n=|Z(G)| \geq 3$.

Proof. If $\operatorname{Pr}(G) \in\left\{\frac{5}{14}, \frac{2}{5}, \frac{11}{27}, \frac{1}{2}, \frac{5}{8}, \frac{7}{16}\right\}$ then as given in Result 1.2.16, we have $\frac{G}{Z(G)}$ is isomorphic to one of the groups in $\left\{D_{14}, D_{10}, D_{8}, D_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right\}$. Let $n=|Z(G)|$.

If $\frac{G}{Z(G)} \cong D_{14}$ then considering $m=7$ in Theorem 2.1.7, we get

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(6 n-3)(6 n-4)\right\rceil
$$

if $n=1,2$. Therefore, $\gamma(\mathcal{C}(G))=1$ or 6 according as $n=1$ or 2 . If $n \geq 3$ then we get

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{2}(2 n-1)(3 n-2)\right\rceil+7\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil .
$$

If $\frac{G}{Z(G)} \cong D_{10}$ then considering $m=5$ in Theorem 2.1.7, we get

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(4 n-3)(4 n-4)\right\rceil
$$

if $n=1,2$. Therefore, $\gamma(\mathcal{C}(G))=0$ or 2 according as $n=1$ or 2 . If $n \geq 3$ then we get

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{3}(4 n-3)(n-1)\right\rceil+5\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil .
$$

If $\frac{G}{Z(G)} \cong D_{8}$ then considering $m=4$ in Theorem 2.1.7. we get

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(3 n-3)(3 n-4)\right\rceil
$$

if $n=1,2$. Therefore, $\gamma(\mathcal{C}(G))=0$ or 1 according as $n=1$ or 2 . If $n \geq 3$ then we get

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{4}(n-1)(3 n-4)\right\rceil+4\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil .
$$

If $\frac{G}{Z(G)} \cong D_{6}$ then considering $m=3$ in Theorem 2.1.7. we get $\gamma(\mathcal{C}(G))=0$ if $n=1$. If $n=2$ then $\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{6}(2 n-3)(n-2)\right\rceil=0$. If $n \geq 3$ then we get

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{6}(2 n-3)(n-2)\right\rceil+3\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil .
$$

If $\frac{G}{Z(G)} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ then considering $p=2$ in Theorem 2.1.1 we get $\gamma(\mathcal{C}(G))=0$ if $n=1,2$. If $n \geq 3$ we get

$$
\gamma(\mathcal{C}(G))=3\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil .
$$

If $\frac{G}{Z(G)} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ then considering $p=3$ in Theorem 2.1.1 we get $\gamma(\mathcal{C}(G))=0$ if $n=1$ or 2 . If $n \geq 3$ we get

$$
\gamma(\mathcal{C}(G))=4\left\lceil\frac{1}{6}(2 n-3)(n-2)\right\rceil .
$$

Theorem 2.1.13. If G is a finite group such that $\frac{G}{Z(G)} \cong S z(2)$ then

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{3}(n-1)(4 n-3)\right\rceil+5\left\lceil\frac{1}{4}(n-1)(3 n-4)\right\rceil
$$

where $n=|Z(G)|$.
Proof. By Result 1.3.4 we have $\mathcal{C}(G)=K_{4 n} \sqcup 5 K_{3 n}$. Therefore by (1.1.b) and Result 1.1.4,

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\gamma\left(K_{4 n}\right)+5 \gamma\left(K_{3 n}\right) \\
& =\left\lceil\frac{1}{12}(4 n-3)(4 n-4)\right\rceil+5\left\lceil\frac{1}{12}(3 n-3)(3 n-4)\right\rceil \\
& =\left\lceil\frac{1}{3}(n-1)(4 n-3)\right\rceil+5\left\lceil\frac{1}{4}(n-1)(3 n-4)\right\rceil
\end{aligned}
$$

Corollary 2.1.14. If $G=S z(2)$ then $\gamma(\mathcal{C}(G))=0$.
Proof. If $G=S z(2)$ then we have $|Z(G)|=1$. Hence, the result follows from Theorem 2.1.13.

Theorem 2.1.15. If $G=V_{8 n}=\left\langle a, b: a^{2 n}=b^{4}=1, b^{-1} a b^{-1}=b a b=a^{-1}\right\rangle$ then

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } n=1,2 \\ \left\lceil\frac{1}{6}(2 n-3)(4 n-5)\right\rceil, & \text { if } n \geq 3 \text { and } n \text { is odd } \\ \left\lceil\frac{1}{3}(n-2)(4 n-7)\right\rceil, & \text { if } n \geq 4 \text { and } n \text { is even } .\end{cases}
$$

Proof. If n is odd then by Result 1.3 .5 we have $\mathcal{C}(G)=K_{2(2 n-1)} \sqcup 2 n K_{2}$. If $n=1$ then $2(2 n-1)=2$ and so $\gamma(\mathcal{C}(G))=0$. If $n \geq 3$ then by (1.1.b) and Result 1.1.4, we get

$$
\gamma(\mathcal{C}(G))=\gamma\left(K_{2(2 n-1)}\right)+2 n \gamma\left(K_{2}\right)=\left\lceil\frac{1}{6}(2 n-3)(4 n-5)\right\rceil
$$

If n is even then by Result 1.3 .5 we have $\mathcal{C}(G)=K_{4(n-1)} \sqcup n K_{4}$. If $n=2$ then $4(n-1)=4$ and so $\gamma(\mathcal{C}(G))=0$. If $n \geq 4$ then by (1.1.b) and Result 1.1.4, we get

$$
\gamma(\mathcal{C}(G))=\gamma\left(K_{4(n-1)}\right)+n \gamma\left(K_{4}\right)=\left\lceil\frac{1}{3}(n-2)(4 n-7)\right\rceil
$$

Theorem 2.1.16. If $G=Q D_{2^{n}}=\left\langle a, b: a^{2^{n-1}}=b^{2}=1, b a b^{-1}=a^{2^{n-2}-1}\right\rangle$, where $n \geq 4$, then $\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}\left(2^{n-1}-5\right)\left(2^{n-1}-6\right)\right\rceil$.

Proof. By Result 1.3 .7 we have $\mathcal{C}(G)=K_{2^{n-1}-2} \sqcup 2^{n-2} K_{2}$. Therefore by (1.1.b) and Result 1.1.4,

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\gamma\left(K_{2^{n-1}-2}\right)+2^{n-2} \gamma\left(K_{2}\right) \\
& =\left\lceil\frac{1}{12}\left(2^{n-1}-5\right)\left(2^{n-1}-6\right)\right\rceil .
\end{aligned}
$$

Theorem 2.1.17. If $G=S D_{8 n}$ then

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } n=1 \\ \left\lceil\frac{1}{3}(n-2)(4 n-7)\right\rceil, & \text { if } n \text { is odd and } n \geq 3 \\ \left\lceil\frac{1}{6}(2 n-3)(4 n-5)\right\rceil, & \text { if } n \text { is even and } n \geq 2\end{cases}
$$

Proof. If n is odd then by Result 1.3.6, we have $\mathcal{C}(G)=K_{4(n-1)} \sqcup n K_{4}$. If $n=1$ then $4(n-1)=0$. Therefore $\gamma(\mathcal{C}(G))=0$. If $n \geq 3$ then by (1.1.b) and Result 1.1.4,

$$
\gamma(\mathcal{C}(G))=\gamma\left(K_{4(n-1)}\right)+n \gamma\left(K_{4}\right)=\left\lceil\frac{1}{3}(n-2)(4 n-7)\right\rceil .
$$

If n is even then by Result 1.3.6, we have $\mathcal{C}(G)=K_{2(2 n-1)} \sqcup 2 n K_{2}$. Therefore by (1.1.b) and Result 1.1.4,

$$
\gamma(\mathcal{C}(G))=\gamma\left(K_{2(2 n-1)}\right)+2 n \gamma\left(K_{2}\right)=\left\lceil\frac{1}{6}(2 n-3)(4 n-5)\right\rceil .
$$

2.2 Some consequences

Using the results on $\gamma(\mathcal{C}(G))$ obtained in Section 2.1, in this section we derive necessary and sufficient conditions such that $\gamma(\mathcal{C}(G))=4,5$ and 6 respectively.

Theorem 2.2.1. If G is a finite group such that $\frac{G}{Z(G)} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ (for any prime p) then
(a) $\gamma(\mathcal{C}(G))=4$ if and only if $p=3$ and $|Z(G)|=3$.
(b) $\gamma(\mathcal{C}(G)) \neq 5$.
(c) $\gamma(\mathcal{C}(G))=6$ if and only if $p=2$ and $|Z(G)|=8$.
(d) $\gamma(\mathcal{C}(G)) \geq 7$ for $p=2,|Z(G)| \geq 9 ; p=3,|Z(G)| \geq 4$; or $p \geq 5,|Z(G)| \geq 1$.

Proof. By Theorem 2.1.1, we have

$$
\gamma(\mathcal{C}(G))=(p+1)\left\lceil\frac{1}{12}((p-1) n-3)((p-1) n-4)\right\rceil
$$

for $(p-1) n \geq 3$, where $|Z(G)|=n$.
If $p=2$ and $n \geq 3$ then

$$
\gamma(\mathcal{C}(G))=3\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil
$$

For $3 \leq n \leq 7$, it can be seen that $\gamma(\mathcal{C}(G)) \leq 3$. For $n=8$, we have $\gamma(\mathcal{C}(G))=6$. If $n \geq 9$ then

$$
\frac{1}{12}(n-3)(n-4)=\frac{1}{12}(n(n-9)+2 n+12)>2
$$

Hence $\gamma(\mathcal{C}(G))=3\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil>6$.
If $p=3$ and $n \geq 2$ then

$$
\gamma(\mathcal{C}(G))=4\left\lceil\frac{1}{12}(2 n-3)(2 n-4)\right\rceil=4\left\lceil\frac{1}{6}(n-2)(2 n-3)\right\rceil .
$$

If $n=1$ then $(p-1) n=2$. Therefore by Theorem 2.1.1. $\gamma(\mathcal{C}(G))=0$. For $n=2$, we have $\gamma(\mathcal{C}(G))=0$. For $n=3$, we have $\gamma(\mathcal{C}(G))=4$. If $n \geq 4$ then

$$
\frac{1}{6}(2 n-3)(n-2)=\frac{1}{6}(2 n(n-4)+n+6)>1 .
$$

Hence $\gamma(\mathcal{C}(G))=4\left\lceil\frac{1}{6}(2 n-3)(n-2)\right\rceil \geq 8$.
If $p=5$ then by Result 1.3.1 we have $\mathcal{C}(G)=6 K_{4 n}$. For $n=1$, we have $\gamma(\mathcal{C}(G))=0$. If $n \geq 2$ then $6 K_{4 n}$ has a subgraph $6 K_{8}$. Since $\gamma\left(6 K_{8}\right) \geq 7$, by (1.1.a), $\gamma(\mathcal{C}(G)) \geq 7$.

If $p \geq 7$ then by Result 1.3 .1 we have $\mathcal{C}(G)=(p+1) K_{6 n}$ which has a subgraph $8 K_{6}$ for $n \geq 1$. Since $\gamma\left(8 K_{6}\right) \geq 7$, by (1.1.a), $\gamma(\mathcal{C}(G)) \geq 7$.

Corollary 2.2.2. If G is a non-abelian group of order p^{3} (for any prime p) then
(a) $\gamma(\mathcal{C}(G))=4$ if and only if $p=3$.
(b) $\gamma(\mathcal{C}(G)) \geq 7$ for any prime $p \geq 5$.

Corollary 2.2.2 can be proved by using Theorem 2.2.1 noting the fact that if G is a nonabelian group of order p^{3} then $|Z(G)|=p$ and $\frac{G}{Z(G)} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
Theorem 2.2.3. If G is a finite group such that $\frac{G}{Z(G)} \cong D_{2 n}$, where $n \geq 2$, then
(a) $\gamma(\mathcal{C}(G))=4$ if and only if $n=6,|Z(G)|=2$; or $n=11,|Z(G)|=1$.
(b) $\gamma(\mathcal{C}(G)) \neq 5$.
(c) $\gamma(\mathcal{C}(G))=6$ if and only if $n=2,|Z(G)|=8 ; n=4,|Z(G)|=4 ; n=5,|Z(G)|=$ $3 ; n=7,|Z(G)|=2$; or $n=13,|Z(G)|=1$.
(d) $\gamma(\mathcal{C}(G)) \geq 7$ for $n=2,|Z(G)| \geq 9 ; n=3,|Z(G)| \geq 5 ; n=4,|Z(G)| \geq 5 ; n=$ $5,|Z(G)| \geq 4 ; n=6,|Z(G)| \geq 3 ; n=7,|Z(G)| \geq 3 ; n=8,|Z(G)| \geq 2 ; n=9,|Z(G)| \geq$ $2 ; n=10,|Z(G)| \geq 2 ; n=11,|Z(G)| \geq 2 ; n=12,|Z(G)| \geq 2 ; n=13,|Z(G)| \geq 2$; or $n \geq 14,|Z(G)| \geq 1$.

Proof. By Theorem 2.1.7 we have

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } k=1, n=2,3 \text { and } k=n=2 \\ \left\lceil\frac{1}{12}((n-1) k-3)((n-1) k-4)\right\rceil, & \text { if } k=1, n \geq 4 \text { and } k=2, n \geq 3 \\ \left\lceil\frac{1}{12}((n-1) k-3)((n-1) k-4)\right\rceil+n\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil, & \text { if } k \geq 3, n \geq 2\end{cases}
$$

where $k=|Z(G)|$. We consider the following cases.
Case 1. If $n=2$ then we have $\gamma(\mathcal{C}(G))=0$ for $k=1$ and $k=2$. For $k \geq 3$

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil+2\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil=3\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil .
$$

For $k \leq 7$, it can be seen that $\gamma(\mathcal{C}(G)) \leq 3$. For $k=8$, we have $\gamma(\mathcal{C}(G))=6$. If $k \geq 9$ then

$$
\frac{1}{12}(k-3)(k-4)=\frac{1}{12}\left(k^{2}-7 k+12\right)=\frac{1}{12}(k(k-9)+2 k+12)>2 .
$$

Hence $\gamma(\mathcal{C}(G))=3\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil>6$.
Case 2. If $n=3$ then we have $\gamma(\mathcal{C}(G))=0$ for $k=1$. For $k=2$, we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}((n-1) k-3)((n-1) k-4)\right\rceil=0
$$

For $k \geq 3$, we have

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\left\lceil\frac{1}{12}(2 k-3)(2 k-4)\right\rceil+3\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil \\
& =\left\lceil\frac{1}{6}(k-2)(2 k-3)\right\rceil+3\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil .
\end{aligned}
$$

For $k=3,4$ we have $\gamma(\mathcal{C}(G))=1,2$ respectively. If $k \geq 5$ then

$$
\frac{1}{6}(k-2)(2 k-3)=\frac{1}{6}\left(2 k^{2}-7 k+6\right)=\frac{2 k(k-5)}{6}+\frac{k+2}{2}>3,
$$

also $k-3>0$ and $k-4>0$, which gives $\frac{1}{12}(k-3)(k-4)>0$. Therefore,

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{6}(k-2)(2 k-3)\right\rceil+3\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil>7
$$

Case 3. If $n=4$ then we have $\gamma(\mathcal{C}(G))=0,1$ for $k=1,2$ respectively. For $k \geq 3$ we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(3 k-3)(3 k-4)\right\rceil+4\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil .
$$

For $k=3,4$ we have $\gamma(\mathcal{C}(G))=3,6$ respectively. If $k \geq 5$ then

$$
\gamma(\mathcal{C}(G))>\left\lceil\frac{1}{12}(3 k-3)(3 k-4)\right\rceil=\left\lceil\frac{1}{4}\left(3 k^{2}-7 k+4\right)\right\rceil=\left\lceil\frac{3 k(k-5)}{4}+(2 k+1)\right\rceil \geq 11 .
$$

Case 4. If $n=5$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(4 k-3)(4 k-4)\right\rceil
$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G))=0,2$ for $k=1,2$ respectively. If $k \geq 3$ we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(4 k-3)(4 k-4)\right\rceil+5\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil .
$$

For $k=3$, we have $\gamma(\mathcal{C}(G))=6$. If $k \geq 4$ then

$$
\gamma(\mathcal{C}(G)) \geq\left\lceil\frac{1}{12}(4 k-3)(4 k-4)\right\rceil=\left\lceil\frac{1}{3}\left(4 k^{2}-7 k+3\right)\right\rceil=\left\lceil\frac{4 k(k-4)}{3}+\frac{9 k+3}{3}\right\rceil \geq 13
$$

Case 5. If $n=6$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(5 k-3)(5 k-4)\right\rceil
$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G))=1,4$ for $k=1,2$ respectively. If $k \geq 3$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(5 k-3)(5 k-4)\right\rceil+6\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil .
$$

Now,

$$
\left\lceil\frac{1}{12}(5 k-3)(5 k-4)\right\rceil=\left\lceil\frac{1}{12}\left(25 k^{2}-35 k+12\right)\right\rceil=\left\lceil\frac{25 k(k-3)}{12}+\frac{40 k+12}{12}\right\rceil \geq 11
$$

for $k \geq 3$. Therefore $\gamma(\mathcal{C}(G)) \geq 11$.
Case 6. If $n=7$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(6 k-3)(6 k-4)\right\rceil
$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G))=1,6$ for $k=1,2$ respectively. If $k \geq 3$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(6 k-3)(6 k-4)\right\rceil+7\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil .
$$

Now,

$$
\left\lceil\frac{1}{12}(6 k-3)(6 k-4)\right\rceil=\left\lceil\frac{6 k^{2}-7 k+2}{2}\right\rceil=\left\lceil\frac{6 k(k-3)+11 k+2}{2}\right\rceil \geq 18,
$$

for $k \geq 3$. Therefore $\gamma(\mathcal{C}(G)) \geq 18$.
Case 7. If $n=8$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(7 k-3)(7 k-4)\right\rceil
$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G))=1,10$ for $k=1,2$ respectively. If $k \geq 3$ we have

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\left\lceil\frac{1}{12}(7 k-3)(7 k-4)\right\rceil+8\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil \\
& \geq\left\lceil\frac{1}{12}(7 k-3)(7 k-4)\right\rceil \\
& =\left\lceil\frac{1}{12}\left(49 k^{2}-49 k+12\right)\right\rceil=\left\lceil\frac{1}{12}(49 k(k-3)+(98 k+12)\rceil \geq 26 .\right.
\end{aligned}
$$

Case 8. If $n=9$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(8 k-3)(8 k-4)\right\rceil
$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G))=2,13$ for $k=1,2$ respectively. For $k \geq 3$ then we have

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\left\lceil\frac{1}{12}(8 k-3)(8 k-4)\right\rceil+9\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil \\
& \geq\left\lceil\frac{1}{12}(8 k-3)(8 k-4)\right\rceil \\
& =\left\lceil\frac{1}{12}\left(64 k^{2}-56 k+12\right)\right\rceil=\left\lceil\frac{1}{12}(64 k(k-3)+(136 k+12)\rceil=35,\right.
\end{aligned}
$$

therefore $\gamma(\mathcal{C}(G)) \geq 35$.
Case 9. If $n=10$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(9 k-3)(9 k-4)\right\rceil
$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G))=3,18$ for $k=1,2$ respectively. For $k \geq 3$ we have

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\left\lceil\frac{1}{12}(9 k-3)(9 k-4)\right\rceil+10\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil \\
& \geq\left\lceil\frac{1}{12}(9 k-3)(9 k-4)\right\rceil \\
& =\left\lceil\frac{1}{12}\left(81 k^{2}-63 k+12\right)\right\rceil=\left\lceil\frac{1}{12}(81 k(k-3)+(180 k+12))\right\rceil \geq 46,
\end{aligned}
$$

therefore $\gamma(\mathcal{C}(G)) \geq 46$.
Case 10. If $n=11$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(10 k-3)(10 k-4)\right\rceil
$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G))=4,23$ for $k=1,2$ respectively. For $k \geq 3$

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\left\lceil\frac{1}{12}(10 k-3)(10 k-4)\right\rceil+11\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil \\
& \geq\left\lceil\frac{1}{12}(10 k-3)(10 k-4)\right\rceil \\
& =\left\lceil\frac{1}{12}\left(100 k^{2}-70 k+12\right)\right\rceil=\left\lceil\frac{1}{12}(100 k(k-3)+(230 k+12))\right\rceil \geq 59
\end{aligned}
$$

therefore $\gamma(\mathcal{C}(G)) \geq 59$.
Case 11. If $n=12$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(11 k-3)(11 k-4)\right\rceil
$$

for $k \leq 2$. Note that $k \neq 1$. Otherwise $G \cong D_{24}$ and so $k=|Z(G)|=2$, a contradiction. If $k=2$ then $\gamma(\mathcal{C}(G))=29$. For $k \geq 3$

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\left\lceil\frac{1}{12}(11 k-3)(11 k-4)\right\rceil+12\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil \\
& \geq\left\lceil\frac{1}{12}(11 k-3)(11 k-4)\right\rceil \\
& =\left\lceil\frac{1}{12}\left(121 k^{2}-77 k+12\right)\right\rceil=\left\lceil\frac{1}{12}(121 k(k-3)+(286 k+12))\right\rceil \geq 73
\end{aligned}
$$

therefore $\gamma(\mathcal{C}(G)) \geq 73$.
Case 12. If $n=13$ then we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}(12 k-3)(12 k-4)\right\rceil
$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G))=6,35$ for $k=1,2$ respectively. For $k \geq 3$

$$
\begin{aligned}
\gamma(\mathcal{C}(G)) & =\left\lceil\frac{1}{12}(12 k-3)(12 k-4)\right\rceil+13\left\lceil\frac{1}{12}(k-3)(k-4)\right\rceil \\
& \geq\left\lceil\frac{1}{12}(12 k-3)(12 k-4)\right\rceil \\
& =\left\lceil 12 k^{2}-7 k+1\right\rceil=\lceil 12 k(k-3)+(29 k+1)\rceil \geq 88
\end{aligned}
$$

therefore $\gamma(\mathcal{C}(G)) \geq 88$.

Case 13. If $n \geq 14$ then by Result 1.3 .2 we have

$$
\mathcal{C}(G)=K_{(n-1) k} \sqcup n K_{k} .
$$

Therefore $K_{13} \sqcup 14 K_{1}$ is a subgraph of $K_{(n-1) k} \sqcup n K_{k}$ for every $k \geq 1$. We know the genus of $K_{13} \sqcup 14 K_{1}$ is equal to 15 . Hence by (1.1.a), $\gamma(\mathcal{C}(G)) \geq 15$.

Corollary 2.2.4. If $G=M_{2 n k}$, where $n>2$, then
(a) $\gamma(\mathcal{C}(G))=4$ if and only if $n=11, k=1$; or $n=12, k=1$.
(b) $\gamma(\mathcal{C}(G)) \neq 5$.
(c) $\gamma(\mathcal{C}(G))=6$ if and only if $n=4, k=4 ; n=5, k=3 ; n=7, k=2 ; n=8, k=2 ; n=$ $13, k=1$; or $n=14, k=1$.
(d) $\gamma(\mathcal{C}(G)) \geq 7$ for $n=3, k \geq 5 ; n=4, k \geq 5 ; n=5, k \geq 4 ; n=6, k \geq 3 ; n=7, k \geq$ $3 ; n=8, k \geq 3 ; n=9, k \geq 2 ; n=10, k \geq 2 ; n=11, k \geq 2 ; n=12, k \geq 2 ; n=13, k \geq$ $2 ; n=14, k \geq 2$; or $n \geq 15, k \geq 1$.

Corollary 2.2.4 can be proved by using Theorem 2.2.3 noting the fact that if $G=M_{2 n k}$ then $\frac{M_{2 n k}}{Z\left(M_{2 n k}\right)} \cong D_{2 n}$ or D_{n} depending on n is odd or even respectively also $\left|Z\left(M_{2 n k}\right)\right|=k$ or $2 k$ for n is odd or even respectively.

Corollary 2.2.5. If $G=D_{2 n}$ then
(a) $\gamma(\mathcal{C}(G))=4$ if and only if $n=11$ or 12 .
(b) $\gamma(\mathcal{C}(G)) \neq 5$.
(c) $\gamma(\mathcal{C}(G))=6$ if and only if $n=13$ or 14 .
(d) $\gamma(\mathcal{C}(G)) \geq 7$ for $n \geq 15$.

Corollary 2.2.5 can be proved by using Corollary 2.2 .4 noting the fact that $M_{2 n k}=D_{2 n}$ if $k=1$.

Corollary 2.2.6. If $G=Q_{4 m}$ then
(a) $\gamma(\mathcal{C}(G))=4$ if and only if $m=6$.
(b) $\gamma(\mathcal{C}(G)) \neq 5$.
(c) $\gamma(\mathcal{C}(G))=6$ if and only if $m=7$.
(d) $\gamma(\mathcal{C}(G)) \geq 7$ for $m \geq 8$.

Corollary 2.2.6 can be proved by using Theorem 2.2.3 noting the fact that if $G=Q_{4 m}$ then $\left|Z\left(Q_{4 m}\right)\right|=2$ and $\frac{Q_{4 m}}{Z\left(Q_{4 m}\right)} \cong D_{2 m}$.

Corollary 2.2.7. If $G=U_{6 n}$ then $\gamma(\mathcal{C}(G)) \neq 4,5,6$ also $\gamma(\mathcal{C}(G)) \geq 7$ for $n \geq 5$.
Corollary 2.2.7 can be proved by using Theorem 2.2.3 noting the fact that if $G=U_{6 n}$ then $\left|Z\left(U_{6 n}\right)\right|=n$ and $\frac{U_{6 n}}{Z\left(U_{6 n}\right)} \cong D_{6}$.
Theorem 2.2.8. If G is a finite group such that $\frac{G}{Z(G)} \cong S z(2)$ then $\gamma(\mathcal{C}(G)) \neq 4,5,6$ also $\gamma(\mathcal{C}(G)) \geq 7$ for $n \geq 2$.

Proof. By Theorem 2.1.13 we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{3}(n-1)(4 n-3)\right\rceil+5\left\lceil\frac{1}{4}(n-1)(3 n-4)\right\rceil
$$

where $|Z(G)|=n$. It can be seen that $\gamma(\mathcal{C}(G))=0$ for $n=1$. If $n \geq 2$ then

$$
\frac{1}{3}(n-1)(4 n-3)=\frac{4 n(n-2)}{3}+\frac{n+3}{3}>1,
$$

also $n-1>0$ and $3 n-4>0$, so $\frac{1}{2}(n-1)(3 n-4)>0$. Therefore

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{3}(n-1)(4 n-3)\right\rceil+5\left\lceil\frac{1}{4}(n-1)(3 n-4)\right\rceil>7
$$

Theorem 2.2.9. If $G=V_{8 n}$ then
(a) $\gamma(\mathcal{C}(G))=4$ if and only if $n=3$.
(b) $\gamma(\mathcal{C}(G)) \neq 5$.
(c) $\gamma(\mathcal{C}(G))=6$ if and only if $n=4$.
(d) $\gamma(\mathcal{C}(G))>18$ for $n \geq 5$.

Proof. By Theorem 2.1.15 we have, $\gamma(\mathcal{C}(G))=0$ for $n=1,2$.
Case 1. n is odd. If $n \geq 3$ then by Theorem 2.1.15 we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{6}(4 n-5)(2 n-3)\right\rceil
$$

Clearly, $\gamma(\mathcal{C}(G))=4$ for $n=3$. If $n \geq 5$ then

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{6}(4 n-5)(2 n-3)\right\rceil=\left\lceil\frac{1}{3}(8 n(n-5)+18 n+15)\right\rceil>18
$$

Case 2. n is even. If $n \geq 4$ then by Theorem 2.1.15 we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{3}(4 n-7)(n-2)\right\rceil .
$$

Clearly, $\gamma(\mathcal{C}(G))=6$ for $n=4$. If $n \geq 6$ then

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{3}(4 n-7)(n-2)\right\rceil=\left\lceil\frac{1}{3}(4 n(n-6)+9 n+14)\right\rceil>22 .
$$

Theorem 2.2.10. If $G=Q D_{2^{n}}$ or $S D_{8 n}$ then $\gamma(\mathcal{C}(G)) \neq 4,5,6$ also $\gamma(\mathcal{C}(G)) \geq 7$ for $n \geq 5$ or $n \geq 4$ respectively.

Proof. If $G=Q D_{2^{n}}$ then by Theorem 2.1.16 we have

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{12}\left(2^{n-1}-5\right)\left(2^{n-1}-6\right)\right\rceil .
$$

If $n=4$ then $\gamma(\mathcal{C}(G))=1$. If $n \geq 5$ then $\left(2^{n-1}-5\right) \geq 11$ and $\left(2^{n-1}-6\right) \geq 10$. So $\frac{1}{12}\left(2^{n-1}-5\right)\left(2^{n-1}-6\right) \geq \frac{110}{12}$. Therefore $\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{6}\left(2^{n-1}-5\right)\left(2^{n-1}-6\right)\right\rceil \geq 10$. Hence the result follows.

If $G=S D_{8 n}$ then by Theorem 2.1.17 we have

$$
\gamma(\mathcal{C}(G))= \begin{cases}0, & \text { if } n=1 \\ \left\lceil\frac{1}{3}(4 n-7)(n-2)\right\rceil, & \text { if } n \text { is odd and } n \geq 3 \\ \left\lceil\frac{1}{6}(4 n-5)(2 n-3)\right\rceil, & \text { if } n \text { is even and } n \geq 2\end{cases}
$$

For $n=3$ we have $\gamma(\mathcal{C}(G))=2$. If $n \geq 5$ and n is odd then

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{3}(4 n-7)(n-2)\right\rceil=\left\lceil\frac{1}{3}(4 n(n-5)+5 n+14)\right\rceil \geq 13 .
$$

If $n=2$ then $\gamma(\mathcal{C}(G))=1$. If n is even and $n \geq 4$ then

$$
\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{6}(4 n-5)(2 n-3)\right\rceil=\left\lceil\frac{1}{6}(8 n(n-4)+10 n+15)\right\rceil>10 .
$$

Hence the result follows.
It is observed that $\gamma(\mathcal{C}(G)) \neq 5$ for all the groups considered in our study. It may be interesting to give examples of groups G such that $\gamma(\mathcal{C}(G))=5$. In general we pose the following question:
"Which positive integers can be realized as genus of commuting graphs of some finite non-abelian groups?"

