
Chapter 2

Genus of commuting graphs of

certain finite groups

In 2015, Afkhami, Farrokhi and Khashyarmanesh [6] and in 2016, Das and Nongsiang

[35] have characterized finite non-abelian groups such that their commuting graphs are

planar or toroidal. Recently, Nongsiang [81] has characterized finite non-abelian groups

whose commuting graphs are double-toroidal or triple-toroidal. In this Chapter, we com-

pute γ(C(G)), the genus of commuting graph of G, for the classes of finite groups such

that their central quotient is isomorphic to Zp × Zp (where p is a prime), D2n = ⟨a, b : an =

b2 = 1, bab−1 = a−1⟩ (where n ≥ 2) or Sz(2) = ⟨a, b : a5 = b4 = 1, b−1ab = a2⟩. We also

find conditions such that γ(C(G)) = 4, 5 or 6 for the above mentioned groups. As a conse-

quence of our results, we characterize groups of order p3, the meta-abelian groups M2nk =

⟨a, b : an = b2k = 1, bab−1 = a−1⟩, D2n, Q4m = ⟨a, b : a2m = 1, b2 = am, bab−1 = a−1⟩ and

U6n = ⟨a, b : a2n = b3 = 1, a−1ba = b−1⟩ such that their commuting graphs have genus 4, 5

or 6. It is worth mentioning that the spectral aspects of commuting graphs of these classes

of groups have been described in [35, 38, 42]. This chapter is based on our paper [20].

2.1 Genus of C(G)

We begin this section by computing genus of C(G) for the groups whose central quotient

is isomorphic to Zp × Zp.

Theorem 2.1.1. If G is a finite group such that G
Z(G)

∼= Zp × Zp (for any prime p) then

γ(C(G)) = 0 or γ(C(G)) = (p+1)
⌈

1
12((p− 1)n− 3)((p− 1)n− 4)

⌉
according as (p−1)n ≤ 2
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or (p− 1)n ≥ 3, where n = |Z(G)|.

Proof. By Result 1.3.1 we have C(G) = (p+ 1)K(p−1)n. If (p− 1)n ≤ 2 then γ(C(G)) = 0.

If (p − 1)n ≥ 3 then, by (1.1.b) and Result 1.1.4, γ(C(G)) = (p + 1)γ(K(p−1)n) = (p +

1)
⌈

1
12((p− 1)n− 3)((p− 1)n− 4)

⌉
.

Corollary 2.1.2. If G is a non-abelian group of order p3 (for any prime p) then γ(C(G)) = 0

or γ(C(G)) = (p+ 1)
⌈

1
12((p− 1)p− 3)((p− 1)p− 4)

⌉
according as p = 2 or p ≥ 3.

Proof. We have |Z(G)| = p and G
Z(G)

∼= Zp × Zp. Therefore, p(p − 1) = 2 or p(p − 1) ≥ 6

according as p = 2 or p ≥ 3. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.3. If G is a finite 4-centralizer group then γ(C(G)) = 0 or

γ(C(G)) = 3

⌈
1

12
(n− 3)(n− 4)

⌉
according as n ≤ 2 or n ≥ 3, where n = |Z(G)|.

Proof. If G is a 4-centralizer group then by Result 1.2.1 we have G
Z(G)

∼= Z2 × Z2. Hence,

the result follows from Theorem 2.1.1.

Corollary 2.1.4. If G is a finite (p+2)-centralizer p-group (for any prime p) then γ(C(G)) =
0 or γ(C(G)) = (p + 1)

⌈
1
12((p− 1)n− 3)((p− 1)n− 4)

⌉
according as (p − 1)n ≤ 2 or

(p− 1)n ≥ 3, where n = |Z(G)|.

Proof. If G is a finite (p+ 2)-centralizer p-group (for any prime p) then by Result 1.2.3 we

have G
Z(G)

∼= Zp × Zp. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.5. If G is a finite 5-centralizer group then γ(C(G)) = 0 or

γ(C(G)) = 4

⌈
1

12
(2n− 3)(2n− 4)

⌉
according as n = 1 or n ≥ 2, where n = |Z(G)|.

Proof. If G is a finite 5-centralizer group then by Result 1.2.2 we have G
Z(G)

∼= Z3 × Z3.

Therefore, (p − 1)n = 2 or (p − 1)n ≥ 4 according as n = 1 or n ≥ 2. Hence, the result

follows from Theorem 2.1.1.

Corollary 2.1.6. If G is a finite group and Pr(G) = p2+p−1
p3

, where p is the smallest prime

divisor of the order of G, then γ(C(G)) = 0 or

γ(C(G)) = (p+ 1)

⌈
1

12
((p− 1)n− 3)((p− 1)n− 4)

⌉
according as (p− 1)n ≤ 2 or (p− 1)n ≥ 3, where n = |Z(G)|.
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Proof. If Pr(G) = p2+p−1
p3

then by Result 1.2.17, we have G
Z(G) is isomorphic to Zp × Zp.

Hence, the result follows from Theorem 2.1.1.

Theorem 2.1.7. Let G be a finite group such that G
Z(G)

∼= D2n (n ≥ 2). Then

γ(C(G)) =


0, if k = 1, n = 2, 3 and k = n = 2

⌈ 1
12((n− 1)k − 3)((n− 1)k − 4)⌉, if k = 1, n ≥ 4 and k = 2, n ≥ 3

⌈ 1
12((n− 1)k − 3)((n− 1)k − 4)⌉+ n

⌈
1
12(k − 3)(k − 4)

⌉
, if k ≥ 3, n ≥ 2 ,

where k = |Z(G)|.

Proof. By Result 1.3.2 we have C(G) = K(n−1)k ⊔ nKk. Therefore,

C(G) =


K1 ⊔ 2K1, if k = 1 and n = 2

K2 ⊔ 3K1, if k = 1 and n = 3

K2 ⊔ 2K2, if k = n = 2

and so γ(C(G)) = 0 in these cases. We also have

C(G) =


Kn−1 ⊔ nK1, if k = 1 and n ≥ 4

K2(n−1) ⊔ nK2, if k = 2 and n ≥ 3.

In these cases, (n− 1)k ≥ 3 and so by Result 1.1.4 and (1.1.b) we get

γ(C(G)) = ⌈ 1

12
((n− 1)k − 3)((n− 1)k − 4)⌉.

If k ≥ 3 and n ≥ 2 then (n − 1)k ≥ 3. Therefore, by Result 1.1.4 and (1.1.b) we get the

required expression for γ(C(G)).

Corollary 2.1.8. Let G =M2nk, where n > 2 and k ≥ 1. If n is odd then

γ(C(G)) =



0, if k = 1, n = 3⌈
1
12((n− 1)k − 3)((n− 1)k − 4)

⌉
, if k = 1, n ≥ 5

or k = 2, n ≥ 3⌈
1
12((n− 1)k − 3)((n− 1)k − 4)

⌉
+ n

⌈
1
12(k − 3)(k − 4)

⌉
, if k ≥ 3, n ≥ 3.
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If n is even then

γ(C(G)) =


0, if k = 1, n = 4⌈

1
12((n− 2)k − 3)((n− 2)k − 4)

⌉
, if k = 1, n ≥ 6⌈

1
12((n− 2)k − 3)((n− 2)k − 4)

⌉
+ n

2

⌈
1
12(2k − 3)(2k − 4)

⌉
, if k ≥ 2, n ≥ 4

Proof. We have M2nk
Z(M2nk)

∼= D2n or Dn depending on n is odd or even respectively. Also,

|Z(M2nk)| = k or 2k for n odd or even respectively. Therefore, if n is odd then the result

follows from Theorem 2.1.7. If n is even then replacing n by n
2 and k by 2k in Theorem

2.1.7 we get the required result.

Corollary 2.1.9. Let G = D2n (n ≥ 3). Then

γ(C(G)) =


0, if n = 3, 4⌈

1
12(n− 4)(n− 5)

⌉
, if n is odd and n ≥ 5⌈

1
12(n− 5)(n− 6)

⌉
, if n is even and n ≥ 6.

Proof. We have M2nk = D2n if k = 1. Hence, the result follows from Corollary 2.1.8.

Corollary 2.1.10. Let G = Q4m (m ≥ 3). Then

γ(C(G)) =


0, if m = 2⌈

1
12(2m− 5)(2m− 6)

⌉
, if m ≥ 3.

Proof. We have |Z(Q4m)| = 2 and Q4m

Z(Q4m)
∼= D2m. Hence, the result follows from Theorem

2.1.7.

Corollary 2.1.11. Let G = U6n. Then

γ(C(G)) =


0, if n = 1, 2

3
⌈

1
12(n− 3)(n− 4)

⌉
+
⌈

1
12(2n− 3)(2n− 4)

⌉
, if n ≥ 3.

Proof. We have Z(U6n) = ⟨a2⟩ and U6n
Z(U6n)

∼= D6. Hence, the result follows from Theorem

2.1.7 considering m = 3.

Corollary 2.1.12. If G is a finite group such that Pr(G) ∈ { 5
14 ,

2
5 ,

11
27 ,

1
2 ,

5
8 ,

7
16} then γ(C(G)) ∈

{0, 1, 2, 6, ⌈12(2n− 1)(3n− 2)⌉+ 7⌈ 1
12(n− 3)(n− 4)⌉, ⌈13(n− 1)(4n− 3)⌉+ 5⌈ 1

12(n− 3)(n−
4)⌉, ⌈14(n−1)(3n−4)⌉+4⌈ 1

12(n−3)(n−4)⌉, ⌈16(n−2)(2n−3)⌉+3⌈ 1
12(n−3)(n−4)⌉, 3⌈ 1

12(n−
3)(n− 4)⌉, 4⌈16(n− 2)(2n− 3)⌉}, where n = |Z(G)| ≥ 3.
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Proof. If Pr(G) ∈ { 5
14 ,

2
5 ,

11
27 ,

1
2 ,

5
8 ,

7
16} then as given in Result 1.2.16, we have G

Z(G) is iso-

morphic to one of the groups in {D14, D10, D8, D6,Z2 × Z2,Z3 × Z3}. Let n = |Z(G)|.
If G

Z(G)
∼= D14 then considering m = 7 in Theorem 2.1.7, we get

γ(C(G)) =
⌈
1

12
(6n− 3)(6n− 4)

⌉
if n = 1, 2. Therefore, γ(C(G)) = 1 or 6 according as n = 1 or 2. If n ≥ 3 then we get

γ(C(G)) =
⌈
1

2
(2n− 1)(3n− 2)

⌉
+ 7

⌈
1

12
(n− 3)(n− 4)

⌉
.

If G
Z(G)

∼= D10 then considering m = 5 in Theorem 2.1.7, we get

γ(C(G)) =
⌈
1

12
(4n− 3)(4n− 4)

⌉
if n = 1, 2. Therefore, γ(C(G)) = 0 or 2 according as n = 1 or 2. If n ≥ 3 then we get

γ(C(G)) =
⌈
1

3
(4n− 3)(n− 1)

⌉
+ 5

⌈
1

12
(n− 3)(n− 4)

⌉
.

If G
Z(G)

∼= D8 then considering m = 4 in Theorem 2.1.7, we get

γ(C(G)) =
⌈
1

12
(3n− 3)(3n− 4)

⌉
if n = 1, 2. Therefore, γ(C(G)) = 0 or 1 according as n = 1 or 2. If n ≥ 3 then we get

γ(C(G)) =
⌈
1

4
(n− 1)(3n− 4)

⌉
+ 4

⌈
1

12
(n− 3)(n− 4)

⌉
.

If G
Z(G)

∼= D6 then considering m = 3 in Theorem 2.1.7, we get γ(C(G)) = 0 if n = 1. If

n = 2 then γ(C(G)) =
⌈
1
6(2n− 3)(n− 2)

⌉
= 0. If n ≥ 3 then we get

γ(C(G)) =
⌈
1

6
(2n− 3)(n− 2)

⌉
+ 3

⌈
1

12
(n− 3)(n− 4)

⌉
.

If G
Z(G)

∼= Z2 × Z2 then considering p = 2 in Theorem 2.1.1 we get γ(C(G)) = 0 if

n = 1, 2. If n ≥ 3 we get

γ(C(G)) = 3

⌈
1

12
(n− 3)(n− 4)

⌉
.

If G
Z(G)

∼= Z3 × Z3 then considering p = 3 in Theorem 2.1.1 we get γ(C(G)) = 0 if n = 1

or 2. If n ≥ 3 we get

γ(C(G)) = 4

⌈
1

6
(2n− 3)(n− 2)

⌉
.
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Theorem 2.1.13. If G is a finite group such that G
Z(G)

∼= Sz(2) then

γ(C(G)) =
⌈
1

3
(n− 1)(4n− 3)

⌉
+ 5

⌈
1

4
(n− 1)(3n− 4)

⌉
,

where n = |Z(G)|.

Proof. By Result 1.3.4 we have C(G) = K4n ⊔ 5K3n. Therefore by (1.1.b) and Result 1.1.4,

γ(C(G)) = γ(K4n) + 5γ(K3n)

=

⌈
1

12
(4n− 3)(4n− 4)

⌉
+ 5

⌈
1

12
(3n− 3)(3n− 4)

⌉
=

⌈
1

3
(n− 1)(4n− 3)

⌉
+ 5

⌈
1

4
(n− 1)(3n− 4)

⌉
.

Corollary 2.1.14. If G = Sz(2) then γ(C(G)) = 0.

Proof. If G = Sz(2) then we have |Z(G)| = 1. Hence, the result follows from Theorem

2.1.13.

Theorem 2.1.15. If G = V8n = ⟨a, b : a2n = b4 = 1, b−1ab−1 = bab = a−1⟩ then

γ(C(G)) =


0, if n = 1, 2⌈
1
6(2n− 3)(4n− 5)

⌉
, if n ≥ 3 and n is odd⌈

1
3(n− 2)(4n− 7)

⌉
, if n ≥ 4 and n is even.

Proof. If n is odd then by Result 1.3.5 we have C(G) = K2(2n−1) ⊔ 2nK2. If n = 1 then

2(2n− 1) = 2 and so γ(C(G)) = 0. If n ≥ 3 then by (1.1.b) and Result 1.1.4, we get

γ(C(G)) = γ(K2(2n−1)) + 2nγ(K2) =

⌈
1

6
(2n− 3)(4n− 5)

⌉
.

If n is even then by Result 1.3.5 we have C(G) = K4(n−1)⊔nK4. If n = 2 then 4(n−1) = 4

and so γ(C(G)) = 0. If n ≥ 4 then by (1.1.b) and Result 1.1.4, we get

γ(C(G)) = γ(K4(n−1)) + nγ(K4) =

⌈
1

3
(n− 2)(4n− 7)

⌉
.

Theorem 2.1.16. If G = QD2n = ⟨a, b : a2n−1
= b2 = 1, bab−1 = a2

n−2−1⟩, where n ≥ 4,

then γ(C(G)) =
⌈

1
12(2

n−1 − 5)(2n−1 − 6)
⌉
.
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Proof. By Result 1.3.7 we have C(G) = K2n−1−2 ⊔ 2n−2K2. Therefore by (1.1.b) and Result

1.1.4,

γ(C(G)) = γ(K2n−1−2) + 2n−2γ(K2)

=

⌈
1

12
(2n−1 − 5)(2n−1 − 6)

⌉
.

Theorem 2.1.17. If G = SD8n then

γ(C(G)) =


0, if n = 1⌈
1
3(n− 2)(4n− 7)

⌉
, if n is odd and n ≥ 3⌈

1
6(2n− 3)(4n− 5)

⌉
, if n is even and n ≥ 2.

Proof. If n is odd then by Result 1.3.6, we have C(G) = K4(n−1) ⊔ nK4. If n = 1 then

4(n− 1) = 0. Therefore γ(C(G)) = 0. If n ≥ 3 then by (1.1.b) and Result 1.1.4,

γ(C(G)) = γ(K4(n−1)) + nγ(K4) =

⌈
1

3
(n− 2)(4n− 7)

⌉
.

If n is even then by Result 1.3.6, we have C(G) = K2(2n−1) ⊔ 2nK2. Therefore by (1.1.b)

and Result 1.1.4,

γ(C(G)) = γ(K2(2n−1)) + 2nγ(K2) =

⌈
1

6
(2n− 3)(4n− 5)

⌉
.

2.2 Some consequences

Using the results on γ(C(G)) obtained in Section 2.1, in this section we derive necessary

and sufficient conditions such that γ(C(G)) = 4, 5 and 6 respectively.

Theorem 2.2.1. If G is a finite group such that G
Z(G)

∼= Zp × Zp (for any prime p) then

(a) γ(C(G)) = 4 if and only if p = 3 and |Z(G)| = 3.

(b) γ(C(G)) ̸= 5.

(c) γ(C(G)) = 6 if and only if p = 2 and |Z(G)| = 8.

(d) γ(C(G)) ≥ 7 for p = 2, |Z(G)| ≥ 9; p = 3, |Z(G)| ≥ 4; or p ≥ 5, |Z(G)| ≥ 1.
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Proof. By Theorem 2.1.1, we have

γ(C(G)) = (p+ 1)

⌈
1

12
((p− 1)n− 3)((p− 1)n− 4)

⌉
,

for (p− 1)n ≥ 3, where |Z(G)| = n.

If p = 2 and n ≥ 3 then

γ(C(G)) = 3

⌈
1

12
(n− 3)(n− 4)

⌉
.

For 3 ≤ n ≤ 7, it can be seen that γ(C(G)) ≤ 3. For n = 8, we have γ(C(G)) = 6 . If n ≥ 9

then
1

12
(n− 3)(n− 4) =

1

12
(n(n− 9) + 2n+ 12) > 2.

Hence γ(C(G)) = 3
⌈

1
12(n− 3)(n− 4)

⌉
> 6.

If p = 3 and n ≥ 2 then

γ(C(G)) = 4

⌈
1

12
(2n− 3)(2n− 4)

⌉
= 4

⌈
1

6
(n− 2)(2n− 3)

⌉
.

If n = 1 then (p− 1)n = 2. Therefore by Theorem 2.1.1, γ(C(G)) = 0. For n = 2, we have

γ(C(G)) = 0. For n = 3, we have γ(C(G)) = 4. If n ≥ 4 then

1

6
(2n− 3)(n− 2) =

1

6
(2n(n− 4) + n+ 6) > 1.

Hence γ(C(G)) = 4
⌈
1
6(2n− 3)(n− 2)

⌉
≥ 8.

If p = 5 then by Result 1.3.1 we have C(G) = 6K4n. For n = 1, we have γ(C(G)) = 0.

If n ≥ 2 then 6K4n has a subgraph 6K8. Since γ(6K8) ≥ 7, by (1.1.a), γ(C(G)) ≥ 7.

If p ≥ 7 then by Result 1.3.1 we have C(G) = (p+1)K6n which has a subgraph 8K6 for

n ≥ 1. Since γ(8K6) ≥ 7, by (1.1.a), γ(C(G)) ≥ 7.

Corollary 2.2.2. If G is a non-abelian group of order p3 (for any prime p) then

(a) γ(C(G)) = 4 if and only if p = 3.

(b) γ(C(G)) ≥ 7 for any prime p ≥ 5.

Corollary 2.2.2 can be proved by using Theorem 2.2.1 noting the fact that if G is a non-

abelian group of order p3 then |Z(G)| = p and G
Z(G)

∼= Zp × Zp.

Theorem 2.2.3. If G is a finite group such that G
Z(G)

∼= D2n, where n ≥ 2, then

(a) γ(C(G)) = 4 if and only if n = 6, |Z(G)| = 2; or n = 11, |Z(G)| = 1.
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(b) γ(C(G)) ̸= 5.

(c) γ(C(G)) = 6 if and only if n = 2, |Z(G)| = 8;n = 4, |Z(G)| = 4;n = 5, |Z(G)| =
3;n = 7, |Z(G)| = 2; or n = 13, |Z(G)| = 1.

(d) γ(C(G)) ≥ 7 for n = 2, |Z(G)| ≥ 9;n = 3, |Z(G)| ≥ 5;n = 4, |Z(G)| ≥ 5;n =

5, |Z(G)| ≥ 4;n = 6, |Z(G)| ≥ 3;n = 7, |Z(G)| ≥ 3;n = 8, |Z(G)| ≥ 2;n = 9, |Z(G)| ≥
2;n = 10, |Z(G)| ≥ 2;n = 11, |Z(G)| ≥ 2;n = 12, |Z(G)| ≥ 2;n = 13, |Z(G)| ≥ 2; or

n ≥ 14, |Z(G)| ≥ 1.

Proof. By Theorem 2.1.7 we have

γ(C(G)) =


0, if k = 1, n = 2, 3 and k = n = 2

⌈ 1
12((n− 1)k − 3)((n− 1)k − 4)⌉, if k = 1, n ≥ 4 and k = 2, n ≥ 3

⌈ 1
12((n− 1)k − 3)((n− 1)k − 4)⌉+ n

⌈
1
12(k − 3)(k − 4)

⌉
, if k ≥ 3, n ≥ 2 ,

where k = |Z(G)|. We consider the following cases.

Case 1. If n = 2 then we have γ(C(G)) = 0 for k = 1 and k = 2. For k ≥ 3

γ(C(G)) =
⌈
1

12
(k − 3)(k − 4)

⌉
+ 2

⌈
1

12
(k − 3)(k − 4)

⌉
= 3

⌈
1

12
(k − 3)(k − 4)

⌉
.

For k ≤ 7, it can be seen that γ(C(G)) ≤ 3. For k = 8, we have γ(C(G)) = 6. If k ≥ 9 then

1

12
(k − 3)(k − 4) =

1

12
(k2 − 7k + 12) =

1

12
(k(k − 9) + 2k + 12) > 2.

Hence γ(C(G)) = 3
⌈

1
12(k − 3)(k − 4)

⌉
> 6.

Case 2. If n = 3 then we have γ(C(G)) = 0 for k = 1. For k = 2, we have

γ(C(G)) = ⌈ 1

12
((n− 1)k − 3)((n− 1)k − 4)⌉ = 0.

For k ≥ 3, we have

γ(C(G)) =
⌈
1

12
(2k − 3)(2k − 4)

⌉
+ 3

⌈
1

12
(k − 3)(k − 4)

⌉
=

⌈
1

6
(k − 2)(2k − 3)

⌉
+ 3

⌈
1

12
(k − 3)(k − 4)

⌉
.

For k = 3, 4 we have γ(C(G)) = 1, 2 respectively. If k ≥ 5 then

1

6
(k − 2)(2k − 3) =

1

6
(2k2 − 7k + 6) =

2k(k − 5)

6
+
k + 2

2
> 3,
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also k − 3 > 0 and k − 4 > 0, which gives 1
12(k − 3)(k − 4) > 0. Therefore,

γ(C(G)) =
⌈
1

6
(k − 2)(2k − 3)

⌉
+ 3

⌈
1

12
(k − 3)(k − 4)

⌉
> 7

.

Case 3. If n = 4 then we have γ(C(G)) = 0, 1 for k = 1, 2 respectively. For k ≥ 3 we have

γ(C(G)) =
⌈
1

12
(3k − 3)(3k − 4)

⌉
+ 4

⌈
1

12
(k − 3)(k − 4)

⌉
.

For k = 3, 4 we have γ(C(G)) = 3, 6 respectively. If k ≥ 5 then

γ(C(G)) >
⌈
1

12
(3k − 3)(3k − 4)

⌉
=

⌈
1

4
(3k2 − 7k + 4)

⌉
=

⌈
3k(k − 5)

4
+ (2k + 1)

⌉
≥ 11.

Case 4. If n = 5 then we have

γ(C(G)) =
⌈
1

12
(4k − 3)(4k − 4)

⌉
for k ≤ 2. Therefore γ(C(G)) = 0, 2 for k = 1, 2 respectively. If k ≥ 3 we have

γ(C(G)) =
⌈
1

12
(4k − 3)(4k − 4)

⌉
+ 5

⌈
1

12
(k − 3)(k − 4)

⌉
.

For k = 3, we have γ(C(G)) = 6. If k ≥ 4 then

γ(C(G)) ≥
⌈
1

12
(4k − 3)(4k − 4)

⌉
=

⌈
1

3
(4k2 − 7k + 3)

⌉
=

⌈
4k(k − 4)

3
+

9k + 3

3

⌉
≥ 13.

Case 5. If n = 6 then we have

γ(C(G)) =
⌈
1

12
(5k − 3)(5k − 4)

⌉
for k ≤ 2. Therefore γ(C(G)) = 1, 4 for k = 1, 2 respectively. If k ≥ 3 then we have

γ(C(G)) =
⌈
1

12
(5k − 3)(5k − 4)

⌉
+ 6

⌈
1

12
(k − 3)(k − 4)

⌉
.

Now,⌈
1

12
(5k − 3)(5k − 4)

⌉
=

⌈
1

12
(25k2 − 35k + 12)

⌉
=

⌈
25k(k − 3)

12
+

40k + 12

12

⌉
≥ 11,

for k ≥ 3. Therefore γ(C(G)) ≥ 11.

Case 6. If n = 7 then we have

γ(C(G)) =
⌈
1

12
(6k − 3)(6k − 4)

⌉
26
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for k ≤ 2. Therefore γ(C(G)) = 1, 6 for k = 1, 2 respectively. If k ≥ 3 then we have

γ(C(G)) =
⌈
1

12
(6k − 3)(6k − 4)

⌉
+ 7

⌈
1

12
(k − 3)(k − 4)

⌉
.

Now, ⌈
1

12
(6k − 3)(6k − 4)

⌉
=

⌈
6k2 − 7k + 2

2

⌉
=

⌈
6k(k − 3) + 11k + 2

2

⌉
≥ 18,

for k ≥ 3. Therefore γ(C(G)) ≥ 18.

Case 7. If n = 8 then we have

γ(C(G)) =
⌈
1

12
(7k − 3)(7k − 4)

⌉
for k ≤ 2. Therefore γ(C(G)) = 1, 10 for k = 1, 2 respectively. If k ≥ 3 we have

γ(C(G)) =
⌈
1

12
(7k − 3)(7k − 4)

⌉
+ 8

⌈
1

12
(k − 3)(k − 4)

⌉
≥

⌈
1

12
(7k − 3)(7k − 4)

⌉
=

⌈
1

12
(49k2 − 49k + 12)

⌉
=

⌈
1

12
(49k(k − 3) + (98k + 12)

⌉
≥ 26.

Case 8. If n = 9 then we have

γ(C(G)) =
⌈
1

12
(8k − 3)(8k − 4)

⌉
for k ≤ 2. Therefore γ(C(G)) = 2, 13 for k = 1, 2 respectively. For k ≥ 3 then we have

γ(C(G)) =
⌈
1

12
(8k − 3)(8k − 4)

⌉
+ 9

⌈
1

12
(k − 3)(k − 4)

⌉
≥

⌈
1

12
(8k − 3)(8k − 4)

⌉
=

⌈
1

12
(64k2 − 56k + 12)

⌉
=

⌈
1

12
(64k(k − 3) + (136k + 12)

⌉
= 35,

therefore γ(C(G)) ≥ 35.

Case 9. If n = 10 then we have

γ(C(G)) =
⌈
1

12
(9k − 3)(9k − 4)

⌉
for k ≤ 2. Therefore γ(C(G)) = 3, 18 for k = 1, 2 respectively. For k ≥ 3 we have

γ(C(G)) =
⌈
1

12
(9k − 3)(9k − 4)

⌉
+ 10

⌈
1

12
(k − 3)(k − 4)

⌉
≥

⌈
1

12
(9k − 3)(9k − 4)

⌉
=

⌈
1

12
(81k2 − 63k + 12)

⌉
=

⌈
1

12
(81k(k − 3) + (180k + 12))

⌉
≥ 46,
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therefore γ(C(G)) ≥ 46.

Case 10. If n = 11 then we have

γ(C(G)) =
⌈
1

12
(10k − 3)(10k − 4)

⌉
for k ≤ 2. Therefore γ(C(G)) = 4, 23 for k = 1, 2 respectively. For k ≥ 3

γ(C(G)) =
⌈
1

12
(10k − 3)(10k − 4)

⌉
+ 11

⌈
1

12
(k − 3)(k − 4)

⌉
≥

⌈
1

12
(10k − 3)(10k − 4)

⌉
=

⌈
1

12
(100k2 − 70k + 12)

⌉
=

⌈
1

12
(100k(k − 3) + (230k + 12))

⌉
≥ 59,

therefore γ(C(G)) ≥ 59.

Case 11. If n = 12 then we have

γ(C(G)) =
⌈
1

12
(11k − 3)(11k − 4)

⌉
for k ≤ 2. Note that k ̸= 1. Otherwise G ∼= D24 and so k = |Z(G)| = 2, a contradiction. If

k = 2 then γ(C(G)) = 29. For k ≥ 3

γ(C(G)) =
⌈
1

12
(11k − 3)(11k − 4)

⌉
+ 12

⌈
1

12
(k − 3)(k − 4)

⌉
≥

⌈
1

12
(11k − 3)(11k − 4)

⌉
=

⌈
1

12
(121k2 − 77k + 12)

⌉
=

⌈
1

12
(121k(k − 3) + (286k + 12))

⌉
≥ 73,

therefore γ(C(G)) ≥ 73.

Case 12. If n = 13 then we have

γ(C(G)) =
⌈
1

12
(12k − 3)(12k − 4)

⌉
for k ≤ 2. Therefore γ(C(G)) = 6, 35 for k = 1, 2 respectively. For k ≥ 3

γ(C(G)) =
⌈
1

12
(12k − 3)(12k − 4)

⌉
+ 13

⌈
1

12
(k − 3)(k − 4)

⌉
≥

⌈
1

12
(12k − 3)(12k − 4)

⌉
=

⌈
12k2 − 7k + 1

⌉
= ⌈12k(k − 3) + (29k + 1)⌉ ≥ 88

therefore γ(C(G)) ≥ 88.
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Case 13. If n ≥ 14 then by Result 1.3.2 we have

C(G) = K(n−1)k ⊔ nKk.

Therefore K13 ⊔ 14K1 is a subgraph of K(n−1)k ⊔ nKk for every k ≥ 1. We know the genus

of K13 ⊔ 14K1 is equal to 15. Hence by (1.1.a), γ(C(G)) ≥ 15.

Corollary 2.2.4. If G =M2nk, where n > 2, then

(a) γ(C(G)) = 4 if and only if n = 11, k = 1; or n = 12, k = 1.

(b) γ(C(G)) ̸= 5.

(c) γ(C(G)) = 6 if and only if n = 4, k = 4;n = 5, k = 3;n = 7, k = 2;n = 8, k = 2;n =

13, k = 1; or n = 14, k = 1.

(d) γ(C(G)) ≥ 7 for n = 3, k ≥ 5;n = 4, k ≥ 5;n = 5, k ≥ 4;n = 6, k ≥ 3;n = 7, k ≥
3;n = 8, k ≥ 3;n = 9, k ≥ 2;n = 10, k ≥ 2;n = 11, k ≥ 2;n = 12, k ≥ 2;n = 13, k ≥
2;n = 14, k ≥ 2; or n ≥ 15, k ≥ 1.

Corollary 2.2.4 can be proved by using Theorem 2.2.3 noting the fact that if G =M2nk then
M2nk

Z(M2nk)
∼= D2n or Dn depending on n is odd or even respectively also |Z(M2nk)| = k or 2k

for n is odd or even respectively.

Corollary 2.2.5. If G = D2n then

(a) γ(C(G)) = 4 if and only if n = 11 or 12.

(b) γ(C(G)) ̸= 5.

(c) γ(C(G)) = 6 if and only if n = 13 or 14.

(d) γ(C(G)) ≥ 7 for n ≥ 15.

Corollary 2.2.5 can be proved by using Corollary 2.2.4 noting the fact that M2nk = D2n if

k = 1.

Corollary 2.2.6. If G = Q4m then

(a) γ(C(G)) = 4 if and only if m = 6.

(b) γ(C(G)) ̸= 5.

(c) γ(C(G)) = 6 if and only if m = 7.

29



Chapter 2. Genus of commuting graphs

(d) γ(C(G)) ≥ 7 for m ≥ 8.

Corollary 2.2.6 can be proved by using Theorem 2.2.3 noting the fact that if G = Q4m then

|Z(Q4m)| = 2 and Q4m

Z(Q4m)
∼= D2m.

Corollary 2.2.7. If G = U6n then γ(C(G)) ̸= 4, 5, 6 also γ(C(G)) ≥ 7 for n ≥ 5.

Corollary 2.2.7 can be proved by using Theorem 2.2.3 noting the fact that if G = U6n then

|Z(U6n)| = n and U6n
Z(U6n)

∼= D6.

Theorem 2.2.8. If G is a finite group such that G
Z(G)

∼= Sz(2) then γ(C(G)) ̸= 4, 5, 6 also

γ(C(G)) ≥ 7 for n ≥ 2.

Proof. By Theorem 2.1.13 we have

γ(C(G)) =
⌈
1

3
(n− 1)(4n− 3)

⌉
+ 5

⌈
1

4
(n− 1)(3n− 4)

⌉
where |Z(G)| = n. It can be seen that γ(C(G)) = 0 for n = 1. If n ≥ 2 then

1

3
(n− 1)(4n− 3) =

4n(n− 2)

3
+
n+ 3

3
> 1,

also n− 1 > 0 and 3n− 4 > 0, so 1
2(n− 1)(3n− 4) > 0. Therefore

γ(C(G)) =
⌈
1

3
(n− 1)(4n− 3)

⌉
+ 5

⌈
1

4
(n− 1)(3n− 4)

⌉
> 7.

Theorem 2.2.9. If G = V8n then

(a) γ(C(G)) = 4 if and only if n = 3.

(b) γ(C(G)) ̸= 5.

(c) γ(C(G)) = 6 if and only if n = 4.

(d) γ(C(G)) > 18 for n ≥ 5.

Proof. By Theorem 2.1.15 we have, γ(C(G)) = 0 for n = 1, 2.

Case 1. n is odd. If n ≥ 3 then by Theorem 2.1.15 we have

γ(C(G)) =
⌈
1

6
(4n− 5)(2n− 3)

⌉
.

Clearly, γ(C(G)) = 4 for n = 3. If n ≥ 5 then

γ(C(G)) =
⌈
1

6
(4n− 5)(2n− 3)

⌉
=

⌈
1

3
(8n(n− 5) + 18n+ 15)

⌉
> 18.
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Case 2. n is even. If n ≥ 4 then by Theorem 2.1.15 we have

γ(C(G)) =
⌈
1

3
(4n− 7)(n− 2)

⌉
.

Clearly, γ(C(G)) = 6 for n = 4. If n ≥ 6 then

γ(C(G)) =
⌈
1

3
(4n− 7)(n− 2)

⌉
=

⌈
1

3
(4n(n− 6) + 9n+ 14)

⌉
> 22.

Theorem 2.2.10. If G = QD2n or SD8n then γ(C(G)) ̸= 4, 5, 6 also γ(C(G)) ≥ 7 for n ≥ 5

or n ≥ 4 respectively.

Proof. If G = QD2n then by Theorem 2.1.16 we have

γ(C(G)) =
⌈
1

12
(2n−1 − 5)(2n−1 − 6)

⌉
.

If n = 4 then γ(C(G)) = 1. If n ≥ 5 then (2n−1 − 5) ≥ 11 and (2n−1 − 6) ≥ 10. So

1
12(2

n−1 − 5)(2n−1 − 6) ≥ 110
12 . Therefore γ(C(G)) =

⌈
1
6(2

n−1 − 5)(2n−1 − 6)
⌉
≥ 10. Hence

the result follows.

If G = SD8n then by Theorem 2.1.17 we have

γ(C(G)) =


0, if n = 1⌈
1
3(4n− 7)(n− 2)

⌉
, if n is odd and n ≥ 3⌈

1
6(4n− 5)(2n− 3)

⌉
, if n is even and n ≥ 2.

For n = 3 we have γ(C(G)) = 2. If n ≥ 5 and n is odd then

γ(C(G)) =
⌈
1

3
(4n− 7)(n− 2)

⌉
=

⌈
1

3
(4n(n− 5) + 5n+ 14)

⌉
≥ 13.

If n = 2 then γ(C(G)) = 1. If n is even and n ≥ 4 then

γ(C(G)) =
⌈
1

6
(4n− 5)(2n− 3)

⌉
=

⌈
1

6
(8n(n− 4) + 10n+ 15)

⌉
> 10.

Hence the result follows.

It is observed that γ(C(G)) ̸= 5 for all the groups considered in our study. It may be

interesting to give examples of groups G such that γ(C(G)) = 5. In general we pose the

following question:

“Which positive integers can be realized as genus of commuting graphs of some finite

non-abelian groups?”
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