Chapter 2

Genus of commuting graphs of

certain finite groups

In 2015, Afkhami, Farrokhi and Khashyarmanesh [6] and in 2016, Das and Nongsiang
[35] have characterized finite non-abelian groups such that their commuting graphs are
planar or toroidal. Recently, Nongsiang [81] has characterized finite non-abelian groups
whose commuting graphs are double-toroidal or triple-toroidal. In this Chapter, we com-
pute v(C(G)), the genus of commuting graph of G, for the classes of finite groups such
that their central quotient is isomorphic to Z,, x Z, (where p is a prime), Dy, = (a,b: a™ =
b2 = 1,bab~! = a~ ') (where n > 2) or Sz(2) = (a,b : a® = b* = 1,b"lab = a?). We also
find conditions such that v(C(G)) = 4,5 or 6 for the above mentioned groups. As a conse-
quence of our results, we characterize groups of order p?, the meta-abelian groups Mopi =
{a,b:a™ =b** = 1,bab™" = a™ '), Doy, Qum = (a,b: a®™ = 1,b> = a™,bab~! = a~!) and
Usn = {a,b: a® = b*> = 1,a 'ba = b~!) such that their commuting graphs have genus 4, 5
or 6. It is worth mentioning that the spectral aspects of commuting graphs of these classes

of groups have been described in [35, 38, 42]. This chapter is based on our paper [20].

2.1 Genus of C(G)

We begin this section by computing genus of C(G) for the groups whose central quotient

is isomorphic to Z, x Zj.

Theorem 2.1.1. If G is a finite group such that % = Zp X Ly (for any prime p) then
A(C(G)) =0 0r4(C(G)) = (p+1) [ 5((p — 1V — 3)((p — 1) — 4)] according as (p—1)n < 2
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Chapter 2. Genus of commuting graphs

or (p—1)n > 3, where n = |Z(G)|.

Proof. By Result 1.3.1 we have C(G) = (p + 1)K(p_1y,. If (p — 1)n < 2 then v(C(G)) = 0.
If (p —1)n > 3 then, by (1.1.b) and Result 1.1.4, v(C(G)) = (p + D)V(Kp-1)n) = (p +
D [~ 1n —3)((p ~ )n —4)] =
Corollary 2.1.2. If G is a non-abelian group of order p® (for any prime p) then v(C(G)) = 0
ory(C(G))=(p+1) [%((p —1p=3)((p—1p— 4)} according as p =2 or p > 3.

Proof. We have |Z(G)| = p and % = Z,, x Z,. Therefore, p(p — 1) = 2 or p(p — 1) > 6

2(G)
according as p = 2 or p > 3. Hence, the result follows from Theorem [2.1.1 O

Corollary 2.1.3. If G is a finite 4-centralizer group then v(C(G)) =0 or

H(E(@) =3 | f5n -3 - 1)

according as n < 2 orn > 3, where n = |Z(G)|.

Proof. If G is a 4-centralizer group then by Result 1.2.1 we have % = 7o X Zso. Hence,
the result follows from Theorem 2.1.1] O

Corollary 2.1.4. If G is a finite (p+2)-centralizer p-group (for any prime p) then v(C(G)) =
0 or v(C(G)) = (p+ 1) [5((p—1)n=3)((p— 1)n—4)] according as (p — 1)n < 2 or
(p— 1)n >3, where n = |Z(G)|.

Proof. 1f G is a finite (p + 2)-centralizer p-group (for any prime p) then by Result 1.2.3 we

have % = Zp X Zyp. Hence, the result follows from Theorem m O

Corollary 2.1.5. If G is a finite 5-centralizer group then v(C(G)) =0 or

AC(@) = 4 Hz@n 3)@n - 4)]

according as n =1 orn > 2, where n = |Z(G)].

Proof. If G is a finite 5-centralizer group then by Result 1.2.2 we have % X Zs X Zs.
Therefore, (p — 1)n = 2 or (p — 1)n > 4 according as n = 1 or n > 2. Hence, the result
follows from Theorem 2.1.1] O

Corollary 2.1.6. If G is a finite group and Pr(G) = p2;§_1, where p is the smallest prime
divisor of the order of G, then v(C(G)) =0 or

HEE) =+ 1) | 35— D= 3((p = 1 - )]

according as (p — 1)n <2 or (p —1)n > 3, where n = |Z(G)|.
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Chapter 2. Genus of commuting graphs

Proof. If Pr(G) = 372—;7139_1 then by Result 1.2.17, we have % is isomorphic to Z, X Zj.

Hence, the result follows from Theorem [2.1.1 ]

Theorem 2.1.7. Let G be a finite group such that % = Doy, (n>2). Then

0 ifk=1n=23andk=n=2

Y(C(G) = 4 [L((n— Dk —3)((n — Dk — 4)], ifk=1n>4andk=2n>3

—

[15((n =Dk =3)((n— Dk =] +n [k =3)(k-4)], fk>3n>2,
where k = |Z(G)|.
Proof. By Result 1.3.2 we have C(G) = K(,_1); UnKj. Therefore,

K U2K,, ifk=1andn=2
C(G)={ KyU3K,, ifk=1andn=3
Ko U2Ky, ifk=n=2
and so 7(C(G)) = 0 in these cases. We also have

K, 1UnKj, ifk=1landn>14
C(G) =
K2(n,1) UnKy, ifk=2andn>3.

In these cases, (n — 1)k > 3 and so by Result 1.1.4 and (1.1.) we get

1(C(G)) = [%((n — Dk =3)((n - Dk —4)].

If k> 3 and n > 2 then (n — 1)k > 3. Therefore, by Result 1.1.4 and (1.1.b) we get the
required expression for v(C(G)). O

Corollary 2.1.8. Let G = Moy,, wheren > 2 and k > 1. If n is odd then

/

0, ifk=1n=3
[5((n =Dk =3)((n— 1k —4)], ifk=1,n>5

ork=2,n2>3

[H((n—1Dk=3)((n—Dk—-4)] +n[H(k—-3)(k—4)], ifk>3n>3.

=
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If n is even then
0, ifk=1n=4

C(G) =4 [L((n—2)k —3)((n — 2)k — 4)], ifk=1,n>6

=

[5((n—2)k=3)(n—2)k —4)] + 2 [52k—-3)(2k —4)], ifk>2n>4

—

Proof. We have Z0M Mo 3 > D, or D, depending on n is odd or even respectively. Also,

|Z(Mayni)| = k or 2k: for n odd or even respectively. Therefore, if n is odd then the result
follows from Theorem If n is even then replacing n by 5§ and k by 2k in Theorem
2.1.7 we get the required result. O

Corollary 2.1.9. Let G = Ds,, (n > 3). Then
0, ifn=3,4

V(C(G)) = [5(n—4)(n=5)], ifnisodd andn>5

[y

[L(n—5)(n—6)], ifn iseven andn > 6.
Proof. We have Moy, = Do, if k = 1. Hence, the result follows from Corollary O
Corollary 2.1.10. Let G = Qu, (m > 3). Then
0, ifm=2
[13(2m =5)@2m —6)], ifm>3.

Proof. We have |Z(Qam)| = 2 and Z(Qm j = Dam. Hence, the result follows from Theorem
2.1.7 O

Corollary 2.1.11. Let G = Ug,. Then
0, ifn=1,2
[ =3)(n -]+ [ -3)2n 4], i¥n>3.

Proof. We have Z(Ug,) = (a®) and ZZ?" j = Dg. Hence, the result follows from Theorem

considering m = 3. O

Corollary 2.1.12. IfG is a finite group such that Pr(G) € {£, 2, 32,3, 2, &} theny(C(G)) €
{0,1,2,6, [3(2n — 1)(3n — 2)] + 7[5 (n — 3)(n —4)], [4(n — 1)(4n — 3)] + 5[5 (n — 3)(n —

1, [3(n=1)Bn—4)]+4[15(n=3)(n—=4)], [5(n—2)(2n—3)] +3[ 75 (n—3)(n—4)1,3[ {3 (n—
3)(n —4)1,4[5(n — 2)(2n — 3)1}, where n = |Z(G)| > 3.
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Proof. If Pr(G) € {%, %, %, %, %, 1—76} then as given in Result 1.2.16, we have % is iso-
morphic to one of the groups in {D14, D1g, Ds, D¢, Zo X Zo,Zs x Z3}. Let n = |Z(G)|.
If % 2= D14 then considering m = 7 in Theorem we get

(E(@) = | 5(6n=3)(6n - )

if n = 1,2. Therefore, v(C(G)) =1 or 6 according as n =1 or 2. If n > 3 then we get

+(C(G)) = B(%L 1) — 2)} +7 [112(n _3)(n— 4)} .

If % = D1 then considering m = 5 in Theorem we get

(E(6) = | g5an ~3an - 1)

if n = 1,2. Therefore, v(C(G)) = 0 or 2 according as n = 1 or 2. If n > 3 then we get

V(@) = E(zm —3)(n— 1)1 +5 H‘Q(n ) — 4)} .

If % = Dg then considering m = 4 in Theorem we get

C(G) = | 53— 3)3n - )

if n = 1,2. Therefore, v(C(G)) =0 or 1 according as n = 1 or 2. If n > 3 then we get

H(C(@)) = B(n (30— 4)1 44 Hzm —3)(n— 4)} .

If % = Dg then considering m = 3 in Theorem we get Y(C(G)) =0ifn=1. If
n =2 then v(C(G)) = [¢(2n — 3)(n —2)] = 0. If n > 3 then we get

1)) = ﬁ(zn _3)(n— 2)} +3 “2(71 _3)(n— 4)} .

If % & Zo X Zgy then considering p = 2 in Theorem we get 7(C(G)) = 0 if
n=12. If n >3 we get

1E(@) =3 | 50 =31

If %G) = 73 X Z3 then considering p = 3 in Theorem we get Y(C(G)) =0ifn=1
or 2. If n > 3 we get

HE@) =4 | g2~ B2
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Theorem 2.1.13. If G is a finite group such that % >~ S2(2) then

HE@) = |3 =1)(an=3)] +5 | 1= 13- )]
where n = | Z(G)].

Proof. By Result 1.3.4 we have C(G) = Ky, U5K3,. Therefore by (1.1.b) and Result 1.1.4,

AC(@)) = Y(Kun) + 57(K3,)

1

S n = 3)(4n —4) | +5 | (30— 3)(3n — 4)
| [+3]

E(n —1)(4n - 3)} +5 H(n —1)@n - 4)} |

Corollary 2.1.14. If G = Sz(2) then v(C(G)) = 0.

Proof. If G = Sz(2) then we have |Z(G)| = 1. Hence, the result follows from Theorem
2.1.13 O

Theorem 2.1.15. If G = Vg, = (a,b:a®>" =b* = 1,b"tab™! = bab = a™!) then

O) an = 172
(C(G)) = [2(2n —3)(4n —5)], ifn >3 and n is odd
%(n —2)(4n - 17)], if n >4 and n is even.

Proof. 1If n is odd then by Result 1.3.5 we have C(G) = Ky(g,—1) U 2nKs. If n = 1 then
2(2n—1) =2 and so y(C(G)) = 0. If n > 3 then by (1.1.b) and Result 1.1.4, we get

HEG)) =1 (Kaan-) + 20(Ka) = | (20~ B)(an 5.

If n is even then by Result 1.3.5 we have C(G) = Ky(,,—1)UnKy. Ifn = 2 then4(n—1) =4
and so y(C(G)) = 0. If n > 4 then by (1.1.b) and Result 1.1.4, we get

HCG) =1 (K1) + m(K3) = |0 = 2)(an =)

O]

1

Theorem 2.1.16. If G = QDon = (a,b: a®>"~ =b?> =1,bab™! = a2n72_1>, where n > 4,
then v(C(G)) = [5 (2"~ = 5)(2" 1 — 6)].
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Proof. By Result 1.3.7 we have C(G) = Kan—1_5 2" 2K,. Therefore by (1.1.5) and Result
1.1.4,

Y(C(G)) = Y(Kan-15) + 2" *(k)
1 n— n—
:[m@ ' —5)(2 1—@]

Theorem 2.1.17. If G = SDg, then

0, ifn=1
We(@) =1 T

[2(2n —3)(4n —5)], ifn is even and n > 2.

(n—2)(4n-17)|, if nis odd and n > 3

Lol

Proof. 1f n is odd then by Result 1.3.6, we have C(G) = Ky,—1) UnkKy. If n =1 then
4(n — 1) = 0. Therefore v(C(G)) = 0. If n > 3 then by (1.1.b) and Result 1.1.4,

HCG) =1 (Kin-1) + m(K3) = |0 = 2)(an =)

If n is even then by Result 1.3.6, we have C(G) = Ky,_1) U 2nKs. Therefore by (1.1.b)
and Result 1.1.4,

HCG)) =1 (Kagan) + 2m(K2) = | (20 = 3)an ).

2.2 Some consequences

Using the results on v(C(G)) obtained in Section in this section we derive necessary
and sufficient conditions such that y(C(G)) = 4, 5 and 6 respectively.

ﬂmmmmZZLUGwaMMWWWMMMMﬁ%%de%mWMMMWmHMn
(a) ¥(C(G)) =4 if and only if p =3 and |Z(G)| = 3.
(b) 7(C(G)) # 5.
(c) Y(C(G)) = 6 if and only if p =2 and |Z(G)| = 8.
(d) v(C(G)) =7 forp=2,1Z(G)| 2 95p = 3,|Z(G)| = 4; orp > 5,|Z(G)| > 1
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Proof. By Theorem we have

HE@) = (p+ 1) | 15— 1 =3)(p - D= 1)

for (p — 1)n > 3, where |Z(G)| = n.
If p=2and n > 3 then

For 3 <n <7, it can be seen that v(C(G)) < 3. For n = 8, we have y(C(G)) =6 . If n > 9
then

1 1

Hence v(C(G)) =3 [15(n—3)(n—4)] > 6.
If p=3 and n > 2 then

(n—3)(n—4)

+(C(@)) = 4 {112(271 —3)(2n — 4)} —4 [é(n —2)(2n — 3)} .

If n =1 then (p — 1)n = 2. Therefore by Theorem v(C(G)) = 0. For n = 2, we have
v(C(G)) = 0. For n = 3, we have v(C(G)) = 4. If n > 4 then

é(Qn —3)n—2) = é(Qn(n 4 tn+6)> L

Hence v(C(G)) =4 [£(2n —3)(n —2)| > 8.

If p =5 then by Result 1.3.1 we have C(G) = 6K4y,. For n = 1, we have v(C(G)) = 0.
If n > 2 then 6K}y, has a subgraph 6Kg. Since v(6Kg) > 7, by (1.1.a), v(C(G)) > 7.

If p > 7 then by Result 1.3.1 we have C(G) = (p + 1) K¢y, which has a subgraph 8Ky for
n > 1. Since v(8Kg) > 7, by (1.1.a), v(C(G)) > 7. O

Corollary 2.2.2. If G is a non-abelian group of order p3 (for any prime p) then
(a) v(C(G)) =4 if and only if p = 3.
(b) v(C(G)) > 7 for any prime p > 5.

Corollary can be proved by using Theorem noting the fact that if G is a non-
abelian group of order p* then |Z(G)| = p and %G) = ZLp X L.

Theorem 2.2.3. If G is a finite group such that % = Do, where n > 2, then

(a) v(C(G)) =4 if and only if n =6,|Z(G)| =2; orn=11,|Z(G)| = 1.
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(b) 7(C(G)) # 5.
(¢) Y(C(GQ)) = 6 if and only if n = 2,|Z(G)| = 8n = 4,|Z(G)| = 4n = 5,|Z(G)| =
3n="1,1Z2(G) =2; orn=13,|Z(G)| = 1.

(d) V(C(G) = 7 forn = 2,|Z(G)| = %in = 3,|Z(G)] = 5;n = 4,|Z(G)| = 5n =
51Z(G)] > 4;n=06,|Z(G)| >3;n="7,1Z(G)| > 3;n=2_8,|Z(G)| > 2;n=9,|Z(G)| >
2;n =10,|Z(G)| > 2;n = 11,|Z(G)| > 2;n = 12,|Z(G)| > 2;n = 13,|Z(G)| > 2; or
n>14,1Z(G)| > 1.

Proof. By Theorem we have

0, ifk=1n=23and k=n=2
VC(G) = 4 [L((n— Dk —3)((n — 1k — 4)], ifk=1n>4andk=2n>3
[H((n—1k=3)((n—1k—4)]+n[5(k-3)(k—4)], ifk>3n>2,
where k = |Z(G)|. We consider the following cases.
Case 1. If n = 2 then we have v(C(G)) =0 for k =1 and k = 2. For k > 3

1)) = HQ(k —3) (k- 4)} +2 HQ(k _ ) (k- 4)} —3 HQ(k ) (k- 4)} .

For k < 7, it can be seen that v(C(G)) < 3. For k = 8, we have v(C(G)) = 6. If £ > 9 then

1 B 1,5 _i _
(k= 3)(k —4) = (k= Th+12) = (k(k —9) + 2k +12) > 2,

Hence v(C(G)) =3[ (k — 3)(k —4)] > 6.
Case 2. If n = 3 then we have 7(C(G)) =0 for k = 1. For k = 2, we have

AC(G)) = Tg((n— Dk = 8)((n — 1k — )] =0

For k£ > 3, we have

~(C(@)) = H2<2k 3)(2k — 4)} +3 {112(1{ _ )k — 4)}

E(k —2)(2k — 3)} +3 HQ(k =3)(k - 4)} :

For k = 3,4 we have v(C(G)) = 1,2 respectively. If k£ > 5 then

bk —5) , k+2
6 2

1 1 2
6(k—2)(2k—3):6(21f2—7/<+6): > 3,
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also k —3 > 0 and k — 4 > 0, which gives 75 (k — 3)(k — 4) > 0. Therefore,

V(@) = ﬁ(kz—Q)(Qk—?))-‘ +3 muc_g)(k_zlﬂ >7

Case 3. If n = 4 then we have 7(C(G)) = 0,1 for k = 1,2 respectively. For k > 3 we have

+(C(G)) = [112(3;@ —3)(3k — 4)} 44 HZ(k ) (k- 4)} .

For k = 3,4 we have v(C(G)) = 3,6 respectively. If k > 5 then

7(C(@)) > [112(311: —3)(3k — 4)} = H(%Q — Tk + 4)} = [%(’1_5) + (2k + 1)} > 11.

Case 4. If n = 5 then we have
1
C(G) = | 5tk ~ 3k~ 1)
for k < 2. Therefore v(C(G)) = 0,2 for k = 1,2 respectively. If k > 3 we have
1 1
Y(C(Q)) = [12(4k: —3)(4k — 4)} +5 {12(145 —3)(k — 4)—‘ .

For k = 3, we have v(C(G)) = 6. If k > 4 then

(C(@)) > @(%-3)(%-4)} _ B(W —7k+3)w _ [4’6(";3 Dy 9’“;3} > 13

Case 5. If n = 6 then we have
1
C(G) = | 55k =35k~ 1)

for k < 2. Therefore v(C(G)) = 1,4 for k = 1,2 respectively. If k > 3 then we have

1

Y(C(G)) = HQ(% —3)(5k — 4% +6 {12

(k—3)(k — 4)-‘ .
Now,

> 11

— )

“2(5/<: — 3)(5k — 4)} = “2(25142 — 35k + 12)1 = [25]9(1’2_ 3, 4%1; 121

for k > 3. Therefore v(C(G)) > 11.

Case 6. If n = 7 then we have
1
(C(G) = | 56k~ 36k~ 1)
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for k < 2. Therefore v(C(G)) = 1,6 for k = 1,2 respectively. If £ > 3 then we have

+(C(G)) = Hz(ak — 3)(6k — 4)1 +7 HQ(k; ) (k- 4)} .

Now,

{112(6,{_3)(%_4)} _ {61-4:2 —27/<;+2W _ [6/{(1{—3)2—% 11k + 2

for k > 3. Therefore v(C(G)) > 18.
Case 7. If n = 8 then we have

-‘218,

ACE) = | 57k = 3Tk~ 1)

for k < 2. Therefore v(C(G)) = 1,10 for k = 1,2 respectively. If k > 3 we have

V(@) = %(m )7k —4)] +8 HQ(k —3) (k- 4)}

1
> | 5(Th=3)(Tk — 4)

1 1
= 5(4%2 — 49k + 12)} = {12(4%@ —3) + (98K + 12)} > 26.

Case 8. If n = 9 then we have
1
ﬂaanz[m@k—w@k—®]

for k < 2. Therefore v(C(G)) = 2,13 for k = 1,2 respectively. For k > 3 then we have

+(C(@)) = _112(8k — 3)(8k — 4)} +9 {112(1{ ~3) (k- 4)}

1
> | o5 (8 —3)(8k — 4)}

1 1
15 (64K — 56k + 12)} = [12(64k(k‘ —3) + (136k + 12)} = 35,
therefore v(C(G)) > 35.
Case 9. If n = 10 then we have
1
(E(G)) = | 1500k - 3)(0k ~ )

for k < 2. Therefore y(C(G)) = 3,18 for k = 1,2 respectively. For k > 3 we have

1)) = %(% — 3)(9k — 4)1 +10 HQU@ ) (k- 4)}

M1
> | 150k —3)(9%k 4)}

1 1
= | 5 (81K — 63k + 12)1 = ’712<81/€(1€ —3) + (180k + 12))1 > 46,
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therefore v(C(G)) > 46.
Case 10. If n = 11 then we have

Y(C(G)) = {12(1% 3)(1019—4)}

for k < 2. Therefore v(C(G)) = 4,23 for k = 1,2 respectively. For k > 3

1

1(C(G) = | 15 (10k — 3)(10k - 4)1 11 HZ(;@ _3)(k— 4)}

(1
> | 15 (10k = 3)(10k — 4)}

1 1
= | 15 (100K — 70k + 12)1 = {12(10014@ —3) + (230k + 12))} > 59,

therefore v(C(G)) > 59.
Case 11. If n = 12 then we have

N HQ(m —3)(11k — 4)}

for k < 2. Note that k # 1. Otherwise G = Day and so k = |Z(G)| = 2, a contradiction. If
k =2 then v(C(G)) = 29. For k > 3

1 (C(G)) = %(m )11k — 4)1 +12 [112(1@ ) (k- 4)}

1
> | 5 (11k = 3)(11k - 4)}

1 1
= | 5 (121K — 7Tk + 12)1 = {12(12114@ — 3) + (286k + 12))} > 73,

therefore v(C(G)) > 73.
Case 12. If n = 13 then we have

N HQ(m 3)(12k — 4)}

for k < 2. Therefore v(C(G)) = 6,35 for k = 1, 2 respectively. For k > 3

[112 (12k — 3)(12k — 4)} +13 “2(/{ —3)(k — 4%

1
[12 (12k — 3)( 12k—4)w

= [12k* — Tk + 1| = [12k(k — 3) + (29k + 1)] > 88
therefore v(C(G)) > 88.
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Case 13. If n > 14 then by Result 1.3.2 we have
C(G) = K(nfl)k UnkKy.

Therefore K3 L 14K is a subgraph of K(,,_1y; UnKj for every k > 1. We know the genus
of K13 U 14K is equal to 15. Hence by (1.1.a), v(C(G)) > 15. O

Corollary 2.2.4. If G = My, where n > 2, then
(a) v(C(@)) =4 if and only if n =11,k =1; orn =12,k = 1.
(b) 7(C(G)) # 5.

(c) Y(C(G)) =6 ifand only ifn =4,k =4n=5k=3;n="Tk=2n=8k=2;n=
13, k=1; 0rn=14,k = 1.

(d) y(C(G)) > T forn =3,k >5;n =4k >5n=>5k>4n=06k>3n="7k>
3n=8k>3n=9k>2n=10k>2;n=11,k > 2;n =12k > 2;n = 13,k >
2:n=14,k>2; orn > 15k > 1.

Corollary can be proved by using Theorem 2.2.3|noting the fact that if G = Mo, then

Zé\]{j;:k) = Dy, or D,, depending on n is odd or even respectively also | Z(Ma,1)| = k or 2k

for n is odd or even respectively.

Corollary 2.2.5. If G = Ds, then
(a) Y(C(GQ)) =4 if and only if n =11 or 12.
(b) (C(G)) # 5.
(c) v(C(GQ)) =6 if and only if n = 13 or 14.
(d) v(C(G)) = 7 for n > 15.

Corollary can be proved by using Corollary noting the fact that Ms,;, = Doy, if
k=1

Corollary 2.2.6. If G = Quy, then
(a) v(C(G)) =4 if and only if m = 6.
(b) 7(C(G)) #5.
(¢) ¥(C(G)) = 6 if and only if m =T.
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(d) v(C(G)) =7 for m = 8.

Corollary can be proved by using Theorem noting the fact that if G = Qu,, then

|Z2(Qum)| = 2and 52 = Dy,

Corollary 2.2.7. If G = U, then v(C(G)) # 4,5,6 also v(C(G)) > 7 forn > 5.

Corollary can be proved by using Theorem noting the fact that if G = Ug,, then
|Z(Uspn)| = n and Z(U#;) = Dg.

Theorem 2.2.8. If G is a finite group such that % = S5z(2) then v(C(G)) # 4,5,6 also
Y(C(G)) > 7 forn > 2.

Proof. By Theorem we have
1 1
v(C(@)) = [3(n —1)(4n — 3)—‘ +5 L(n —1)(3n — 4)-‘
where |Z(G)| = n. It can be seen that v(C(G)) =0 for n = 1. If n > 2 then

1 dn(n—2) n+3
- 1) (4n — 3) = + 1
3(n )(4n — 3) 3 3 > 1,

alson —1>0and 3n —4 > 0, so 3(n —1)(3n — 4) > 0. Therefore

H(C(@) = B(n _1)(n — 3)} +5 H(n (30— 4)} > 7.

Theorem 2.2.9. If G = Vi, then
(a) ¥(C(G)) =4 if and only if n = 3.
(b) ~(C(G)) # 5.

(c) Y(C(G)) = 6 if and only if n = 4.
(d) Y(C(G)) > 18 for n > 5.

Proof. By Theorem [2.1.15| we have, v(C(G)) = 0 for n =1, 2.
Case 1. n is odd. If n > 3 then by Theorem [2.1.15| we have

(E(6) = [ glan=s5)2n-3)|.
Clearly, v(C(G)) = 4 for n = 3. If n > 5 then

+(C(G)) = [é(zm —5)(2n— 3)} _ E(Sn(n _5)+ 180+ 15)} > 18,
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Case 2. n is even. If n > 4 then by Theorem [2.1.15| we have
1

1E(@) = |

(4n — 7)(n — 2)} .

Clearly, v(C(G)) = 6 for n =4. If n > 6 then

(@) = B(zm _T)(n— z)w - E(ém(n )+ 9+ 14)} > 922,

O

Theorem 2.2.10. If G = QDan or SDgy, then v(C(G)) # 4,5,6 also v(C(G)) > 7 forn >5

or n > 4 respectively.

Proof. 1If G = QQDan then by Theorem [2.1.16] we have

A(C(@) = HQ@’H sy - 6>] |

If n = 4 then v(C(G)) = 1. If n > 5 then (2"~ ! —5) > 11 and (2! —6) > 10. So

£t —5)(2"1 — 6) > L. Therefore v(C(G)) = [£(2"' —5)(2""1 — 6)] > 10. Hence

the result follows.
If G = SDg, then by Theorem [2.1.17] we have

0, ifn=1
He@) =4 T

[2(4n—5)(2n —3)], ifnis even and n > 2.

(4n—T7)(n—2)], ifnisoddandn >3

Lol

For n = 3 we have v(C(G)) = 2. If n > 5 and n is odd then

~(C(@)) = E(zm —7)(n— 2)_ = _;(4n(n —5) +5n + 14)} > 13.

If n =2 then v(C(G)) = 1. If n is even and n > 4 then

Y (@) = ﬁ(zm _5)2n—3)| = _é(8n(n —4)+ 100+ 15)} > 10,

Hence the result follows. O

It is observed that v(C(G)) # 5 for all the groups considered in our study. It may be
interesting to give examples of groups G such that v(C(G)) = 5. In general we pose the
following question:

“Which positive integers can be realized as genus of commuting graphs of some finite

non-abelian groups?”
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