Chapter 2

Genus of commuting graphs of certain finite groups

In 2015, Afkhami, Farrokhi and Khashyarmanesh [6] and in 2016, Das and Nongsiang [35] have characterized finite non-abelian groups such that their commuting graphs are planar or toroidal. Recently, Nongsiang [81] has characterized finite non-abelian groups whose commuting graphs are double-toroidal or triple-toroidal. In this Chapter, we compute $\gamma(\mathcal{C}(G))$, the genus of commuting graph of G, for the classes of finite groups such that their central quotient is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ (where p is a prime), $D_{2n} = \langle a, b : a^n = b^2 = 1, bab^{-1} = a^{-1} \rangle$ (where $n \geq 2$) or $Sz(2) = \langle a, b : a^5 = b^4 = 1, b^{-1}ab = a^2 \rangle$. We also find conditions such that $\gamma(\mathcal{C}(G)) = 4, 5$ or 6 for the above mentioned groups. As a consequence of our results, we characterize groups of order p^3 , the meta-abelian groups $M_{2nk} = \langle a, b : a^n = b^{2k} = 1, bab^{-1} = a^{-1} \rangle$, D_{2n} , $Q_{4m} = \langle a, b : a^{2m} = 1, b^2 = a^m, bab^{-1} = a^{-1} \rangle$ and $U_{6n} = \langle a, b : a^{2n} = b^3 = 1, a^{-1}ba = b^{-1} \rangle$ such that their commuting graphs have genus 4, 5 or 6. It is worth mentioning that the spectral aspects of commuting graphs of these classes of groups have been described in [35, 38, 42]. This chapter is based on our paper [20].

2.1 Genus of C(G)

We begin this section by computing genus of C(G) for the groups whose central quotient is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$.

Theorem 2.1.1. If G is a finite group such that $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$ (for any prime p) then $\gamma(\mathcal{C}(G)) = 0$ or $\gamma(\mathcal{C}(G)) = (p+1) \left\lceil \frac{1}{12}((p-1)n-3)((p-1)n-4) \right\rceil$ according as $(p-1)n \leq 2$

or $(p-1)n \ge 3$, where n = |Z(G)|.

Proof. By Result 1.3.1 we have $C(G) = (p+1)K_{(p-1)n}$. If $(p-1)n \leq 2$ then $\gamma(C(G)) = 0$. If $(p-1)n \geq 3$ then, by (1.1.b) and Result 1.1.4, $\gamma(C(G)) = (p+1)\gamma(K_{(p-1)n}) = (p+1)\left[\frac{1}{12}((p-1)n-3)((p-1)n-4)\right]$.

Corollary 2.1.2. If G is a non-abelian group of order p^3 (for any prime p) then $\gamma(\mathcal{C}(G)) = 0$ or $\gamma(\mathcal{C}(G)) = (p+1) \left\lceil \frac{1}{12}((p-1)p-3)((p-1)p-4) \right\rceil$ according as p=2 or $p \geq 3$.

Proof. We have |Z(G)| = p and $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Therefore, p(p-1) = 2 or $p(p-1) \geq 6$ according as p = 2 or $p \geq 3$. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.3. If G is a finite 4-centralizer group then $\gamma(\mathcal{C}(G)) = 0$ or

$$\gamma(\mathcal{C}(G)) = 3 \left\lceil \frac{1}{12}(n-3)(n-4) \right\rceil$$

according as $n \leq 2$ or $n \geq 3$, where n = |Z(G)|.

Proof. If G is a 4-centralizer group then by Result 1.2.1 we have $\frac{G}{Z(G)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.4. If G is a finite (p+2)-centralizer p-group (for any prime p) then $\gamma(\mathcal{C}(G)) = 0$ or $\gamma(\mathcal{C}(G)) = (p+1) \left\lceil \frac{1}{12}((p-1)n-3)((p-1)n-4) \right\rceil$ according as $(p-1)n \leq 2$ or $(p-1)n \geq 3$, where n = |Z(G)|.

Proof. If G is a finite (p+2)-centralizer p-group (for any prime p) then by Result 1.2.3 we have $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.5. If G is a finite 5-centralizer group then $\gamma(\mathcal{C}(G)) = 0$ or

$$\gamma(C(G)) = 4 \left[\frac{1}{12} (2n - 3)(2n - 4) \right]$$

according as n = 1 or $n \ge 2$, where n = |Z(G)|.

Proof. If G is a finite 5-centralizer group then by Result 1.2.2 we have $\frac{G}{Z(G)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$. Therefore, (p-1)n=2 or $(p-1)n\geq 4$ according as n=1 or $n\geq 2$. Hence, the result follows from Theorem 2.1.1.

Corollary 2.1.6. If G is a finite group and $Pr(G) = \frac{p^2+p-1}{p^3}$, where p is the smallest prime divisor of the order of G, then $\gamma(\mathcal{C}(G)) = 0$ or

$$\gamma(\mathcal{C}(G)) = (p+1) \left[\frac{1}{12} ((p-1)n - 3)((p-1)n - 4) \right]$$

according as $(p-1)n \leq 2$ or $(p-1)n \geq 3$, where n = |Z(G)|.

Proof. If $\Pr(G) = \frac{p^2 + p - 1}{p^3}$ then by Result 1.2.17, we have $\frac{G}{Z(G)}$ is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Hence, the result follows from Theorem 2.1.1.

Theorem 2.1.7. Let G be a finite group such that $\frac{G}{Z(G)} \cong D_{2n}$ $(n \geq 2)$. Then

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } k = 1, n = 2, 3 \text{ and } k = n = 2\\ \lceil \frac{1}{12} ((n-1)k - 3)((n-1)k - 4) \rceil, & \text{if } k = 1, n \ge 4 \text{ and } k = 2, n \ge 3\\ \lceil \frac{1}{12} ((n-1)k - 3)((n-1)k - 4) \rceil + n \lceil \frac{1}{12} (k - 3)(k - 4) \rceil, & \text{if } k \ge 3, n \ge 2, \end{cases}$$

where k = |Z(G)|.

Proof. By Result 1.3.2 we have $C(G) = K_{(n-1)k} \sqcup nK_k$. Therefore,

$$C(G) = \begin{cases} K_1 \sqcup 2K_1, & \text{if } k = 1 \text{ and } n = 2\\ K_2 \sqcup 3K_1, & \text{if } k = 1 \text{ and } n = 3\\ K_2 \sqcup 2K_2, & \text{if } k = n = 2 \end{cases}$$

and so $\gamma(\mathcal{C}(G)) = 0$ in these cases. We also have

$$C(G) = \begin{cases} K_{n-1} \sqcup nK_1, & \text{if } k = 1 \text{ and } n \ge 4\\ K_{2(n-1)} \sqcup nK_2, & \text{if } k = 2 \text{ and } n \ge 3. \end{cases}$$

In these cases, $(n-1)k \geq 3$ and so by Result 1.1.4 and (1.1.b) we get

$$\gamma(\mathcal{C}(G)) = \lceil \frac{1}{12}((n-1)k - 3)((n-1)k - 4) \rceil.$$

If $k \geq 3$ and $n \geq 2$ then $(n-1)k \geq 3$. Therefore, by Result 1.1.4 and (1.1.b) we get the required expression for $\gamma(\mathcal{C}(G))$.

Corollary 2.1.8. Let $G = M_{2nk}$, where n > 2 and $k \ge 1$. If n is odd then

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } k = 1, n = 3 \\ \left\lceil \frac{1}{12} ((n-1)k - 3)((n-1)k - 4) \right\rceil, & \text{if } k = 1, n \ge 5 \\ & \text{or } k = 2, n \ge 3 \\ \left\lceil \frac{1}{12} ((n-1)k - 3)((n-1)k - 4) \right\rceil + n \left\lceil \frac{1}{12} (k - 3)(k - 4) \right\rceil, & \text{if } k \ge 3, n \ge 3. \end{cases}$$

If n is even then

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } k = 1, n = 4 \\ \left\lceil \frac{1}{12} ((n-2)k - 3)((n-2)k - 4) \right\rceil, & \text{if } k = 1, n \ge 6 \\ \left\lceil \frac{1}{12} ((n-2)k - 3)((n-2)k - 4) \right\rceil + \frac{n}{2} \left\lceil \frac{1}{12} (2k - 3)(2k - 4) \right\rceil, & \text{if } k \ge 2, n \ge 4 \end{cases}$$

Proof. We have $\frac{M_{2nk}}{Z(M_{2nk})} \cong D_{2n}$ or D_n depending on n is odd or even respectively. Also, $|Z(M_{2nk})| = k$ or 2k for n odd or even respectively. Therefore, if n is odd then the result follows from Theorem 2.1.7. If n is even then replacing n by $\frac{n}{2}$ and k by 2k in Theorem 2.1.7 we get the required result.

Corollary 2.1.9. Let $G = D_{2n} \ (n \ge 3)$. Then

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } n = 3, 4 \\ \left\lceil \frac{1}{12}(n-4)(n-5) \right\rceil, & \text{if } n \text{ is odd and } n \ge 5 \\ \left\lceil \frac{1}{12}(n-5)(n-6) \right\rceil, & \text{if } n \text{ is even and } n \ge 6. \end{cases}$$

Proof. We have $M_{2nk}=D_{2n}$ if k=1. Hence, the result follows from Corollary 2.1.8. \square

Corollary 2.1.10. Let $G = Q_{4m} \ (m \ge 3)$. Then

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } m = 2\\ \left\lceil \frac{1}{12} (2m - 5)(2m - 6) \right\rceil, & \text{if } m \ge 3. \end{cases}$$

Proof. We have $|Z(Q_{4m})| = 2$ and $\frac{Q_{4m}}{Z(Q_{4m})} \cong D_{2m}$. Hence, the result follows from Theorem 2.1.7.

Corollary 2.1.11. Let $G = U_{6n}$. Then

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } n = 1, 2\\ 3 \left\lceil \frac{1}{12}(n-3)(n-4) \right\rceil + \left\lceil \frac{1}{12}(2n-3)(2n-4) \right\rceil, & \text{if } n \ge 3. \end{cases}$$

Proof. We have $Z(U_{6n}) = \langle a^2 \rangle$ and $\frac{U_{6n}}{Z(U_{6n})} \cong D_6$. Hence, the result follows from Theorem 2.1.7 considering m = 3.

Corollary 2.1.12. If G is a finite group such that $\Pr(G) \in \{\frac{5}{14}, \frac{2}{5}, \frac{11}{27}, \frac{1}{2}, \frac{5}{8}, \frac{7}{16}\}$ then $\gamma(\mathcal{C}(G)) \in \{0, 1, 2, 6, \lceil \frac{1}{2}(2n-1)(3n-2)\rceil + 7\lceil \frac{1}{12}(n-3)(n-4)\rceil, \lceil \frac{1}{3}(n-1)(4n-3)\rceil + 5\lceil \frac{1}{12}(n-3)(n-4)\rceil, \lceil \frac{1}{4}(n-1)(3n-4)\rceil + 4\lceil \frac{1}{12}(n-3)(n-4)\rceil, \lceil \frac{1}{6}(n-2)(2n-3)\rceil + 3\lceil \frac{1}{12}(n-3)(n-4)\rceil, 3\lceil \frac{1}{12}(n-3)(n-4)\rceil, 4\lceil \frac{1}{6}(n-2)(2n-3)\rceil \}$, where $n = |Z(G)| \geq 3$.

Proof. If $\Pr(G) \in \{\frac{5}{14}, \frac{2}{5}, \frac{11}{27}, \frac{1}{2}, \frac{5}{8}, \frac{7}{16}\}$ then as given in Result 1.2.16, we have $\frac{G}{Z(G)}$ is isomorphic to one of the groups in $\{D_{14}, D_{10}, D_{8}, D_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}\}$. Let n = |Z(G)|.

If $\frac{G}{Z(G)} \cong D_{14}$ then considering m = 7 in Theorem 2.1.7, we get

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12}(6n-3)(6n-4) \right\rceil$$

if n=1,2. Therefore, $\gamma(\mathcal{C}(G))=1$ or 6 according as n=1 or 2. If $n\geq 3$ then we get

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{2} (2n-1)(3n-2) \right] + 7 \left[\frac{1}{12} (n-3)(n-4) \right].$$

If $\frac{G}{Z(G)} \cong D_{10}$ then considering m = 5 in Theorem 2.1.7, we get

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (4n - 3)(4n - 4) \right\rceil$$

if n=1,2. Therefore, $\gamma(\mathcal{C}(G))=0$ or 2 according as n=1 or 2. If $n\geq 3$ then we get

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{3} (4n - 3)(n - 1) \right] + 5 \left[\frac{1}{12} (n - 3)(n - 4) \right].$$

If $\frac{G}{Z(G)} \cong D_8$ then considering m=4 in Theorem 2.1.7, we get

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (3n - 3)(3n - 4) \right\rceil$$

if n=1,2. Therefore, $\gamma(\mathcal{C}(G))=0$ or 1 according as n=1 or 2. If $n\geq 3$ then we get

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{4}(n-1)(3n-4) \right] + 4\left[\frac{1}{12}(n-3)(n-4) \right].$$

If $\frac{G}{Z(G)} \cong D_6$ then considering m = 3 in Theorem 2.1.7, we get $\gamma(\mathcal{C}(G)) = 0$ if n = 1. If n = 2 then $\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{6}(2n - 3)(n - 2) \right\rceil = 0$. If $n \geq 3$ then we get

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{6} (2n-3)(n-2) \right\rceil + 3 \left\lceil \frac{1}{12} (n-3)(n-4) \right\rceil.$$

If $\frac{G}{Z(G)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ then considering p=2 in Theorem 2.1.1 we get $\gamma(\mathcal{C}(G))=0$ if n=1,2. If $n\geq 3$ we get

$$\gamma(\mathcal{C}(G)) = 3 \left\lceil \frac{1}{12}(n-3)(n-4) \right\rceil.$$

If $\frac{G}{Z(G)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ then considering p = 3 in Theorem 2.1.1 we get $\gamma(\mathcal{C}(G)) = 0$ if n = 1 or 2. If $n \geq 3$ we get

$$\gamma(\mathcal{C}(G)) = 4 \left\lceil \frac{1}{6} (2n - 3)(n - 2) \right\rceil.$$

Theorem 2.1.13. If G is a finite group such that $\frac{G}{Z(G)} \cong Sz(2)$ then

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{3}(n-1)(4n-3) \right] + 5\left[\frac{1}{4}(n-1)(3n-4) \right],$$

where n = |Z(G)|.

Proof. By Result 1.3.4 we have $C(G) = K_{4n} \sqcup 5K_{3n}$. Therefore by (1.1.b) and Result 1.1.4,

$$\gamma(\mathcal{C}(G)) = \gamma(K_{4n}) + 5\gamma(K_{3n})$$

$$= \left\lceil \frac{1}{12} (4n - 3)(4n - 4) \right\rceil + 5 \left\lceil \frac{1}{12} (3n - 3)(3n - 4) \right\rceil$$

$$= \left\lceil \frac{1}{3} (n - 1)(4n - 3) \right\rceil + 5 \left\lceil \frac{1}{4} (n - 1)(3n - 4) \right\rceil.$$

Corollary 2.1.14. If G = Sz(2) then $\gamma(\mathcal{C}(G)) = 0$.

Proof. If G = Sz(2) then we have |Z(G)| = 1. Hence, the result follows from Theorem 2.1.13.

Theorem 2.1.15. If $G = V_{8n} = \langle a, b : a^{2n} = b^4 = 1, b^{-1}ab^{-1} = bab = a^{-1} \rangle$ then

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } n = 1, 2\\ \left\lceil \frac{1}{6} (2n - 3)(4n - 5) \right\rceil, & \text{if } n \ge 3 \text{ and } n \text{ is odd} \\ \left\lceil \frac{1}{3} (n - 2)(4n - 7) \right\rceil, & \text{if } n \ge 4 \text{ and } n \text{ is even.} \end{cases}$$

Proof. If n is odd then by Result 1.3.5 we have $C(G) = K_{2(2n-1)} \sqcup 2nK_2$. If n = 1 then 2(2n-1) = 2 and so $\gamma(C(G)) = 0$. If $n \geq 3$ then by (1.1.b) and Result 1.1.4, we get

$$\gamma(\mathcal{C}(G)) = \gamma(K_{2(2n-1)}) + 2n\gamma(K_2) = \left[\frac{1}{6}(2n-3)(4n-5)\right].$$

If n is even then by Result 1.3.5 we have $C(G) = K_{4(n-1)} \sqcup nK_4$. If n = 2 then 4(n-1) = 4 and so $\gamma(C(G)) = 0$. If $n \geq 4$ then by (1.1.b) and Result 1.1.4, we get

$$\gamma(\mathcal{C}(G)) = \gamma(K_{4(n-1)}) + n\gamma(K_4) = \left[\frac{1}{3}(n-2)(4n-7)\right].$$

Theorem 2.1.16. If $G = QD_{2^n} = \langle a, b : a^{2^{n-1}} = b^2 = 1, bab^{-1} = a^{2^{n-2}-1} \rangle$, where $n \geq 4$, then $\gamma(\mathcal{C}(G)) = \lceil \frac{1}{12} (2^{n-1} - 5) (2^{n-1} - 6) \rceil$.

22

Proof. By Result 1.3.7 we have $C(G) = K_{2^{n-1}-2} \sqcup 2^{n-2}K_2$. Therefore by (1.1.b) and Result 1.1.4,

$$\gamma(\mathcal{C}(G)) = \gamma(K_{2^{n-1}-2}) + 2^{n-2}\gamma(K_2)$$
$$= \left[\frac{1}{12}(2^{n-1} - 5)(2^{n-1} - 6)\right].$$

Theorem 2.1.17. If $G = SD_{8n}$ then

 $\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } n = 1 \\ \left\lceil \frac{1}{3}(n-2)(4n-7) \right\rceil, & \text{if } n \text{ is odd and } n \ge 3 \\ \left\lceil \frac{1}{6}(2n-3)(4n-5) \right\rceil, & \text{if } n \text{ is even and } n \ge 2. \end{cases}$

Proof. If n is odd then by Result 1.3.6, we have $C(G) = K_{4(n-1)} \sqcup nK_4$. If n = 1 then 4(n-1) = 0. Therefore $\gamma(C(G)) = 0$. If $n \geq 3$ then by (1.1.b) and Result 1.1.4,

$$\gamma(\mathcal{C}(G)) = \gamma(K_{4(n-1)}) + n\gamma(K_4) = \left[\frac{1}{3}(n-2)(4n-7)\right].$$

If n is even then by Result 1.3.6, we have $C(G) = K_{2(2n-1)} \sqcup 2nK_2$. Therefore by (1.1.b) and Result 1.1.4,

$$\gamma(\mathcal{C}(G)) = \gamma(K_{2(2n-1)}) + 2n\gamma(K_2) = \left[\frac{1}{6}(2n-3)(4n-5)\right].$$

2.2 Some consequences

Using the results on $\gamma(\mathcal{C}(G))$ obtained in Section 2.1, in this section we derive necessary and sufficient conditions such that $\gamma(\mathcal{C}(G)) = 4,5$ and 6 respectively.

Theorem 2.2.1. If G is a finite group such that $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$ (for any prime p) then

- (a) $\gamma(\mathcal{C}(G)) = 4$ if and only if p = 3 and |Z(G)| = 3.
- (b) $\gamma(\mathcal{C}(G)) \neq 5$.
- (c) $\gamma(\mathcal{C}(G)) = 6$ if and only if p = 2 and |Z(G)| = 8.
- (d) $\gamma(\mathcal{C}(G)) \geq 7$ for $p = 2, |Z(G)| \geq 9$; $p = 3, |Z(G)| \geq 4$; or $p \geq 5, |Z(G)| \geq 1$.

Proof. By Theorem 2.1.1, we have

$$\gamma(\mathcal{C}(G)) = (p+1) \left[\frac{1}{12} ((p-1)n - 3)((p-1)n - 4) \right],$$

for $(p-1)n \geq 3$, where |Z(G)| = n.

If p = 2 and $n \ge 3$ then

$$\gamma(\mathcal{C}(G)) = 3 \left\lceil \frac{1}{12}(n-3)(n-4) \right\rceil.$$

For $3 \le n \le 7$, it can be seen that $\gamma(\mathcal{C}(G)) \le 3$. For n = 8, we have $\gamma(\mathcal{C}(G)) = 6$. If $n \ge 9$ then

$$\frac{1}{12}(n-3)(n-4) = \frac{1}{12}(n(n-9) + 2n + 12) > 2.$$

Hence $\gamma(C(G)) = 3 \left[\frac{1}{12} (n-3)(n-4) \right] > 6.$

If p = 3 and $n \ge 2$ then

$$\gamma(\mathcal{C}(G)) = 4 \left[\frac{1}{12} (2n-3)(2n-4) \right] = 4 \left[\frac{1}{6} (n-2)(2n-3) \right].$$

If n = 1 then (p-1)n = 2. Therefore by Theorem 2.1.1, $\gamma(\mathcal{C}(G)) = 0$. For n = 2, we have $\gamma(\mathcal{C}(G)) = 0$. For n = 3, we have $\gamma(\mathcal{C}(G)) = 4$. If $n \geq 4$ then

$$\frac{1}{6}(2n-3)(n-2) = \frac{1}{6}(2n(n-4) + n + 6) > 1.$$

Hence $\gamma(\mathcal{C}(G)) = 4 \left\lceil \frac{1}{6}(2n-3)(n-2) \right\rceil \geq 8$.

If p = 5 then by Result 1.3.1 we have $\mathcal{C}(G) = 6K_{4n}$. For n = 1, we have $\gamma(\mathcal{C}(G)) = 0$. If $n \geq 2$ then $6K_{4n}$ has a subgraph $6K_8$. Since $\gamma(6K_8) \geq 7$, by (1.1.a), $\gamma(\mathcal{C}(G)) \geq 7$.

If $p \geq 7$ then by Result 1.3.1 we have $C(G) = (p+1)K_{6n}$ which has a subgraph $8K_6$ for $n \geq 1$. Since $\gamma(8K_6) \geq 7$, by (1.1.a), $\gamma(C(G)) \geq 7$.

Corollary 2.2.2. If G is a non-abelian group of order p^3 (for any prime p) then

- (a) $\gamma(\mathcal{C}(G)) = 4$ if and only if p = 3.
- (b) $\gamma(\mathcal{C}(G)) \geq 7$ for any prime $p \geq 5$.

Corollary 2.2.2 can be proved by using Theorem 2.2.1 noting the fact that if G is a non-abelian group of order p^3 then |Z(G)| = p and $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Theorem 2.2.3. If G is a finite group such that $\frac{G}{Z(G)} \cong D_{2n}$, where $n \geq 2$, then

(a)
$$\gamma(C(G)) = 4$$
 if and only if $n = 6, |Z(G)| = 2$; or $n = 11, |Z(G)| = 1$.

- (b) $\gamma(\mathcal{C}(G)) \neq 5$.
- (c) $\gamma(\mathcal{C}(G)) = 6$ if and only if n = 2, |Z(G)| = 8; n = 4, |Z(G)| = 4; n = 5, |Z(G)| = 3; n = 7, |Z(G)| = 2; or n = 13, |Z(G)| = 1.
- (d) $\gamma(\mathcal{C}(G)) \geq 7$ for $n = 2, |Z(G)| \geq 9; n = 3, |Z(G)| \geq 5; n = 4, |Z(G)| \geq 5; n = 5, |Z(G)| \geq 4; n = 6, |Z(G)| \geq 3; n = 7, |Z(G)| \geq 3; n = 8, |Z(G)| \geq 2; n = 9, |Z(G)| \geq 2; n = 10, |Z(G)| \geq 2; n = 11, |Z(G)| \geq 2; n = 12, |Z(G)| \geq 2; n = 13, |Z(G)| \geq 2; or n \geq 14, |Z(G)| \geq 1.$

Proof. By Theorem 2.1.7 we have

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } k = 1, n = 2, 3 \text{ and } k = n = 2\\ \lceil \frac{1}{12}((n-1)k-3)((n-1)k-4) \rceil, & \text{if } k = 1, n \ge 4 \text{ and } k = 2, n \ge 3\\ \lceil \frac{1}{12}((n-1)k-3)((n-1)k-4) \rceil + n \lceil \frac{1}{12}(k-3)(k-4) \rceil, & \text{if } k \ge 3, n \ge 2, \end{cases}$$

where k = |Z(G)|. We consider the following cases.

Case 1. If n=2 then we have $\gamma(\mathcal{C}(G))=0$ for k=1 and k=2. For $k\geq 3$

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12}(k-3)(k-4) \right\rceil + 2\left\lceil \frac{1}{12}(k-3)(k-4) \right\rceil = 3\left\lceil \frac{1}{12}(k-3)(k-4) \right\rceil.$$

For $k \leq 7$, it can be seen that $\gamma(\mathcal{C}(G)) \leq 3$. For k = 8, we have $\gamma(\mathcal{C}(G)) = 6$. If $k \geq 9$ then

$$\frac{1}{12}(k-3)(k-4) = \frac{1}{12}(k^2 - 7k + 12) = \frac{1}{12}(k(k-9) + 2k + 12) > 2.$$

Hence $\gamma(C(G)) = 3 \left[\frac{1}{12} (k-3)(k-4) \right] > 6.$

Case 2. If n=3 then we have $\gamma(\mathcal{C}(G))=0$ for k=1. For k=2, we have

$$\gamma(\mathcal{C}(G)) = \lceil \frac{1}{12} ((n-1)k - 3)((n-1)k - 4) \rceil = 0.$$

For $k \geq 3$, we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (2k-3)(2k-4) \right\rceil + 3 \left\lceil \frac{1}{12} (k-3)(k-4) \right\rceil$$
$$= \left\lceil \frac{1}{6} (k-2)(2k-3) \right\rceil + 3 \left\lceil \frac{1}{12} (k-3)(k-4) \right\rceil.$$

For k=3,4 we have $\gamma(\mathcal{C}(G))=1,2$ respectively. If $k\geq 5$ then

$$\frac{1}{6}(k-2)(2k-3) = \frac{1}{6}(2k^2 - 7k + 6) = \frac{2k(k-5)}{6} + \frac{k+2}{2} > 3,$$

also k-3>0 and k-4>0, which gives $\frac{1}{12}(k-3)(k-4)>0$. Therefore,

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{6}(k-2)(2k-3) \right\rceil + 3\left\lceil \frac{1}{12}(k-3)(k-4) \right\rceil > 7$$

•

Case 3. If n=4 then we have $\gamma(\mathcal{C}(G))=0,1$ for k=1,2 respectively. For $k\geq 3$ we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (3k - 3)(3k - 4) \right\rceil + 4 \left\lceil \frac{1}{12} (k - 3)(k - 4) \right\rceil.$$

For k = 3, 4 we have $\gamma(\mathcal{C}(G)) = 3, 6$ respectively. If $k \geq 5$ then

$$\gamma(\mathcal{C}(G)) > \left\lceil \frac{1}{12} (3k - 3)(3k - 4) \right\rceil = \left\lceil \frac{1}{4} (3k^2 - 7k + 4) \right\rceil = \left\lceil \frac{3k(k - 5)}{4} + (2k + 1) \right\rceil \ge 11.$$

Case 4. If n = 5 then we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (4k - 3)(4k - 4) \right\rceil$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G)) = 0, 2$ for k = 1, 2 respectively. If $k \geq 3$ we have

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{12} (4k - 3)(4k - 4) \right] + 5 \left[\frac{1}{12} (k - 3)(k - 4) \right].$$

For k=3, we have $\gamma(\mathcal{C}(G))=6$. If $k\geq 4$ then

$$\gamma(\mathcal{C}(G)) \ge \left\lceil \frac{1}{12} (4k - 3)(4k - 4) \right\rceil = \left\lceil \frac{1}{3} (4k^2 - 7k + 3) \right\rceil = \left\lceil \frac{4k(k - 4)}{3} + \frac{9k + 3}{3} \right\rceil \ge 13.$$

Case 5. If n = 6 then we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (5k - 3)(5k - 4) \right\rceil$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G)) = 1, 4$ for k = 1, 2 respectively. If $k \geq 3$ then we have

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{12} (5k - 3)(5k - 4) \right] + 6 \left[\frac{1}{12} (k - 3)(k - 4) \right].$$

Now,

$$\left\lceil \frac{1}{12}(5k-3)(5k-4) \right\rceil = \left\lceil \frac{1}{12}(25k^2 - 35k + 12) \right\rceil = \left\lceil \frac{25k(k-3)}{12} + \frac{40k+12}{12} \right\rceil \ge 11,$$

for $k \geq 3$. Therefore $\gamma(\mathcal{C}(G)) \geq 11$.

Case 6. If n = 7 then we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (6k - 3)(6k - 4) \right\rceil$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G)) = 1, 6$ for k = 1, 2 respectively. If $k \geq 3$ then we have

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{12} (6k - 3)(6k - 4) \right] + 7 \left[\frac{1}{12} (k - 3)(k - 4) \right].$$

Now,

$$\left[\frac{1}{12}(6k-3)(6k-4)\right] = \left[\frac{6k^2 - 7k + 2}{2}\right] = \left[\frac{6k(k-3) + 11k + 2}{2}\right] \ge 18,$$

for $k \geq 3$. Therefore $\gamma(\mathcal{C}(G)) \geq 18$.

Case 7. If n = 8 then we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (7k - 3)(7k - 4) \right\rceil$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G)) = 1, 10$ for k = 1, 2 respectively. If $k \geq 3$ we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (7k - 3)(7k - 4) \right\rceil + 8 \left\lceil \frac{1}{12} (k - 3)(k - 4) \right\rceil$$

$$\geq \left\lceil \frac{1}{12} (7k - 3)(7k - 4) \right\rceil$$

$$= \left\lceil \frac{1}{12} (49k^2 - 49k + 12) \right\rceil = \left\lceil \frac{1}{12} (49k(k - 3) + (98k + 12)) \right\rceil \geq 26.$$

Case 8. If n = 9 then we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (8k - 3)(8k - 4) \right\rceil$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G)) = 2, 13$ for k = 1, 2 respectively. For $k \geq 3$ then we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (8k - 3)(8k - 4) \right\rceil + 9 \left\lceil \frac{1}{12} (k - 3)(k - 4) \right\rceil$$

$$\geq \left\lceil \frac{1}{12} (8k - 3)(8k - 4) \right\rceil$$

$$= \left\lceil \frac{1}{12} (64k^2 - 56k + 12) \right\rceil = \left\lceil \frac{1}{12} (64k(k - 3) + (136k + 12)) \right\rceil = 35,$$

therefore $\gamma(\mathcal{C}(G)) \geq 35$.

Case 9. If n = 10 then we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (9k - 3)(9k - 4) \right\rceil$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G)) = 3,18$ for k = 1,2 respectively. For $k \geq 3$ we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (9k - 3)(9k - 4) \right\rceil + 10 \left\lceil \frac{1}{12} (k - 3)(k - 4) \right\rceil$$

$$\geq \left\lceil \frac{1}{12} (9k - 3)(9k - 4) \right\rceil$$

$$= \left\lceil \frac{1}{12} (81k^2 - 63k + 12) \right\rceil = \left\lceil \frac{1}{12} (81k(k - 3) + (180k + 12)) \right\rceil \geq 46,$$

therefore $\gamma(\mathcal{C}(G)) \geq 46$.

Case 10. If n = 11 then we have

$$\gamma(C(G)) = \left[\frac{1}{12}(10k - 3)(10k - 4)\right]$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G)) = 4,23$ for k = 1,2 respectively. For $k \geq 3$

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (10k - 3)(10k - 4) \right\rceil + 11 \left\lceil \frac{1}{12} (k - 3)(k - 4) \right\rceil$$

$$\geq \left\lceil \frac{1}{12} (10k - 3)(10k - 4) \right\rceil$$

$$= \left\lceil \frac{1}{12} (100k^2 - 70k + 12) \right\rceil = \left\lceil \frac{1}{12} (100k(k - 3) + (230k + 12)) \right\rceil \geq 59,$$

therefore $\gamma(\mathcal{C}(G)) \geq 59$.

Case 11. If n = 12 then we have

$$\gamma(C(G)) = \left[\frac{1}{12}(11k - 3)(11k - 4)\right]$$

for $k \leq 2$. Note that $k \neq 1$. Otherwise $G \cong D_{24}$ and so k = |Z(G)| = 2, a contradiction. If k = 2 then $\gamma(\mathcal{C}(G)) = 29$. For $k \geq 3$

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (11k - 3)(11k - 4) \right\rceil + 12 \left\lceil \frac{1}{12} (k - 3)(k - 4) \right\rceil$$

$$\geq \left\lceil \frac{1}{12} (11k - 3)(11k - 4) \right\rceil$$

$$= \left\lceil \frac{1}{12} (121k^2 - 77k + 12) \right\rceil = \left\lceil \frac{1}{12} (121k(k - 3) + (286k + 12)) \right\rceil \geq 73,$$

therefore $\gamma(\mathcal{C}(G)) \geq 73$.

Case 12. If n = 13 then we have

$$\gamma(C(G)) = \left[\frac{1}{12}(12k - 3)(12k - 4)\right]$$

for $k \leq 2$. Therefore $\gamma(\mathcal{C}(G)) = 6,35$ for k = 1,2 respectively. For $k \geq 3$

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (12k - 3)(12k - 4) \right\rceil + 13 \left\lceil \frac{1}{12} (k - 3)(k - 4) \right\rceil$$
$$\ge \left\lceil \frac{1}{12} (12k - 3)(12k - 4) \right\rceil$$
$$= \left\lceil 12k^2 - 7k + 1 \right\rceil = \left\lceil 12k(k - 3) + (29k + 1) \right\rceil \ge 88$$

therefore $\gamma(\mathcal{C}(G)) \geq 88$.

Case 13. If $n \ge 14$ then by Result 1.3.2 we have

$$\mathcal{C}(G) = K_{(n-1)k} \sqcup nK_k.$$

Therefore $K_{13} \sqcup 14K_1$ is a subgraph of $K_{(n-1)k} \sqcup nK_k$ for every $k \geq 1$. We know the genus of $K_{13} \sqcup 14K_1$ is equal to 15. Hence by (1.1.a), $\gamma(\mathcal{C}(G)) \geq 15$.

Corollary 2.2.4. If $G = M_{2nk}$, where n > 2, then

- (a) $\gamma(C(G)) = 4$ if and only if n = 11, k = 1; or n = 12, k = 1.
- (b) $\gamma(\mathcal{C}(G)) \neq 5$.
- (c) $\gamma(\mathcal{C}(G)) = 6$ if and only if n = 4, k = 4; n = 5, k = 3; n = 7, k = 2; n = 8, k = 2; n = 13, k = 1; or <math>n = 14, k = 1.
- (d) $\gamma(\mathcal{C}(G)) \geq 7$ for $n = 3, k \geq 5; n = 4, k \geq 5; n = 5, k \geq 4; n = 6, k \geq 3; n = 7, k \geq 3; n = 8, k \geq 3; n = 9, k \geq 2; n = 10, k \geq 2; n = 11, k \geq 2; n = 12, k \geq 2; n = 13, k \geq 2; n = 14, k \geq 2; or n \geq 15, k \geq 1.$

Corollary 2.2.4 can be proved by using Theorem 2.2.3 noting the fact that if $G = M_{2nk}$ then $\frac{M_{2nk}}{Z(M_{2nk})} \cong D_{2n}$ or D_n depending on n is odd or even respectively also $|Z(M_{2nk})| = k$ or 2k for n is odd or even respectively.

Corollary 2.2.5. If $G = D_{2n}$ then

- (a) $\gamma(\mathcal{C}(G)) = 4$ if and only if n = 11 or 12.
- (b) $\gamma(\mathcal{C}(G)) \neq 5$.
- (c) $\gamma(\mathcal{C}(G)) = 6$ if and only if n = 13 or 14.
- (d) $\gamma(\mathcal{C}(G)) \geq 7$ for $n \geq 15$.

Corollary 2.2.5 can be proved by using Corollary 2.2.4 noting the fact that $M_{2nk} = D_{2n}$ if k = 1.

Corollary 2.2.6. If $G = Q_{4m}$ then

- (a) $\gamma(\mathcal{C}(G)) = 4$ if and only if m = 6.
- (b) $\gamma(\mathcal{C}(G)) \neq 5$.
- (c) $\gamma(\mathcal{C}(G)) = 6$ if and only if m = 7.

(d) $\gamma(\mathcal{C}(G)) \geq 7 \text{ for } m \geq 8.$

Corollary 2.2.6 can be proved by using Theorem 2.2.3 noting the fact that if $G=Q_{4m}$ then $|Z(Q_{4m})|=2$ and $\frac{Q_{4m}}{Z(Q_{4m})}\cong D_{2m}$.

Corollary 2.2.7. If $G = U_{6n}$ then $\gamma(\mathcal{C}(G)) \neq 4, 5, 6$ also $\gamma(\mathcal{C}(G)) \geq 7$ for $n \geq 5$.

Corollary 2.2.7 can be proved by using Theorem 2.2.3 noting the fact that if $G = U_{6n}$ then $|Z(U_{6n})| = n$ and $\frac{U_{6n}}{Z(U_{6n})} \cong D_6$.

Theorem 2.2.8. If G is a finite group such that $\frac{G}{Z(G)} \cong Sz(2)$ then $\gamma(\mathcal{C}(G)) \neq 4, 5, 6$ also $\gamma(\mathcal{C}(G)) \geq 7$ for $n \geq 2$.

Proof. By Theorem 2.1.13 we have

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{3}(n-1)(4n-3) \right] + 5\left[\frac{1}{4}(n-1)(3n-4) \right]$$

where |Z(G)| = n. It can be seen that $\gamma(\mathcal{C}(G)) = 0$ for n = 1. If $n \geq 2$ then

$$\frac{1}{3}(n-1)(4n-3) = \frac{4n(n-2)}{3} + \frac{n+3}{3} > 1,$$

also n-1 > 0 and 3n-4 > 0, so $\frac{1}{2}(n-1)(3n-4) > 0$. Therefore

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{3}(n-1)(4n-3)\right] + 5\left[\frac{1}{4}(n-1)(3n-4)\right] > 7.$$

Theorem 2.2.9. If $G = V_{8n}$ then

- (a) $\gamma(\mathcal{C}(G)) = 4$ if and only if n = 3.
- (b) $\gamma(\mathcal{C}(G)) \neq 5$.
- (c) $\gamma(\mathcal{C}(G)) = 6$ if and only if n = 4.
- (d) $\gamma(\mathcal{C}(G)) > 18 \text{ for } n \geq 5.$

Proof. By Theorem 2.1.15 we have, $\gamma(\mathcal{C}(G)) = 0$ for n = 1, 2.

Case 1. n is odd. If $n \ge 3$ then by Theorem 2.1.15 we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{6} (4n - 5)(2n - 3) \right\rceil.$$

Clearly, $\gamma(\mathcal{C}(G)) = 4$ for n = 3. If $n \geq 5$ then

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{6} (4n - 5)(2n - 3) \right\rceil = \left\lceil \frac{1}{3} (8n(n - 5) + 18n + 15) \right\rceil > 18.$$

Case 2. n is even. If $n \ge 4$ then by Theorem 2.1.15 we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{3}(4n-7)(n-2) \right\rceil.$$

Clearly, $\gamma(\mathcal{C}(G)) = 6$ for n = 4. If $n \ge 6$ then

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{3} (4n - 7)(n - 2) \right\rceil = \left\lceil \frac{1}{3} (4n(n - 6) + 9n + 14) \right\rceil > 22.$$

Theorem 2.2.10. If $G = QD_{2^n}$ or SD_{8n} then $\gamma(\mathcal{C}(G)) \neq 4, 5, 6$ also $\gamma(\mathcal{C}(G)) \geq 7$ for $n \geq 5$ or $n \geq 4$ respectively.

Proof. If $G = QD_{2^n}$ then by Theorem 2.1.16 we have

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{12} (2^{n-1} - 5)(2^{n-1} - 6) \right\rceil.$$

If n=4 then $\gamma(\mathcal{C}(G))=1$. If $n\geq 5$ then $(2^{n-1}-5)\geq 11$ and $(2^{n-1}-6)\geq 10$. So $\frac{1}{12}(2^{n-1}-5)(2^{n-1}-6)\geq \frac{110}{12}$. Therefore $\gamma(\mathcal{C}(G))=\left\lceil\frac{1}{6}(2^{n-1}-5)(2^{n-1}-6)\right\rceil\geq 10$. Hence the result follows.

If $G = SD_{8n}$ then by Theorem 2.1.17 we have

$$\gamma(\mathcal{C}(G)) = \begin{cases} 0, & \text{if } n = 1\\ \left\lceil \frac{1}{3} (4n - 7)(n - 2) \right\rceil, & \text{if } n \text{ is odd and } n \ge 3\\ \left\lceil \frac{1}{6} (4n - 5)(2n - 3) \right\rceil, & \text{if } n \text{ is even and } n \ge 2. \end{cases}$$

For n=3 we have $\gamma(\mathcal{C}(G))=2$. If $n\geq 5$ and n is odd then

$$\gamma(\mathcal{C}(G)) = \left[\frac{1}{3}(4n-7)(n-2)\right] = \left[\frac{1}{3}(4n(n-5)+5n+14)\right] \ge 13.$$

If n=2 then $\gamma(\mathcal{C}(G))=1$. If n is even and $n\geq 4$ then

$$\gamma(\mathcal{C}(G)) = \left\lceil \frac{1}{6} (4n - 5)(2n - 3) \right\rceil = \left\lceil \frac{1}{6} (8n(n - 4) + 10n + 15) \right\rceil > 10.$$

Hence the result follows.

It is observed that $\gamma(\mathcal{C}(G)) \neq 5$ for all the groups considered in our study. It may be interesting to give examples of groups G such that $\gamma(\mathcal{C}(G)) = 5$. In general we pose the following question:

"Which positive integers can be realized as genus of commuting graphs of some finite non-abelian groups?"