
Chapter 3

Solvable graphs of finite groups

LetG be a finite non-solvable group with solvable radical Sol(G). The solvable graph S(G)
of G is a graph with vertex set G \ Sol(G) and two distinct vertices u and v are adjacent

if and only if ⟨u, v⟩ is solvable. In Section 3.1, we study graph realization properties of

S(G). More precisely, we show that S(G) is not a star graph, a tree, an n-partite graph

for any positive integer n ≥ 2 and not a regular graph for any non-solvable finite group

G. We also show that the girth of S(G) is 3 and the clique number of S(G) is greater

than or equal to 4. In Section 3.2, we first show that for a given non-negative integer k,

there are at the most finitely many finite non-solvable groups whose solvable graphs have

genus k. We also show that there is no finite non-solvable group, whose solvable graph is

planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the chapter by

obtaining a relation between S(G) and Ps(G) in Section 3.3, where Ps(G) is the solvability

degree of G. This chapter is based on our paper [22] published in Hacettepe Journal of

Mathematics and Statistics.

3.1 Graph realization

We begin with the following lemma.

Lemma 3.1.1. For every u ∈ G \ Sol(G) we have

degS(G)(u) = |SolG(u)| − | Sol(G)| − 1.

Proof. Note that degS(G)(u) represents the number of vertices from G \ Sol(G) which are

adjacent to u. Since u ∈ SolG(u), therefore | SolG(u)| − 1 represents the number of vertices
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which are adjacent to u. Since we are excluding Sol(G) from the vertex set therefore

degS(G)(u) = |SolG(u)| − | Sol(G)| − 1.

Proposition 3.1.2. S(G) is not a star.

Proof. Suppose for a contradiction S(G) is a star. Let |G|−|Sol(G)| = n. Then there exists

u ∈ G \ Sol(G) such that degS(G)(u) = n− 1. Therefore, by Lemma 3.1.1, |SolG(u)| = |G|.
This gives u ∈ Sol(G), a contradiction. Hence, the result follows.

Proposition 3.1.3. S(G) is not complete bipartite.

Proof. Let S(G) be complete bipartite. Suppose that A1 and A2 are parts of the bi-partition.

Then, by Proposition 3.1.2, |A1| ≥ 2 and |A2| ≥ 2. Let u ∈ A1, v ∈ A2. If |⟨u, v⟩ Sol(G) \
Sol(G)| > 2 then there exists y ∈ ⟨u, v⟩ Sol(G) \ Sol(G) with u ̸= y ̸= v such that ⟨u, y⟩ and
⟨v, y⟩ are both solvable. But then y ̸∈ A1 and y ̸∈ A2, a contradiction.

It follows that |⟨u, v⟩Sol(G) \ Sol(G)| = 2. In particular, Sol(G) = 1 and ⟨u, v⟩ is cyclic
of order 3 or |Sol(G)| = 2 and v = uz for z an involution in Sol(G). Now the neighbours of

u ∈ A1 is just u2 ∈ A2 or uz in the respective cases. Hence |A2| = |A1| = 1, a contradiction.

Hence, the result follows.

Following similar arguments as in the proof of Proposition 3.1.3 we get the following

result.

Proposition 3.1.4. S(G) is not complete n-partite.

Proposition 3.1.5. For any finite non-solvable group G, S(G) has no isolated vertex.

Proof. Suppose x is an isolated vertex of S(G). Then |Sol(G)| = 1; otherwise x is adjacent

to xz for any z ∈ Sol(G) \ {1}. Thus it follows that o(x) = 2; otherwise x is adjacent to x2.

Let y ∈ G. Then ⟨x, xy⟩ is dihedral and so x = xy as x is isolated. Hence x ∈ Z(G) and so

x ∈ Z(G) ≤ Sol(G), a contradiction. Hence, S(G) has no isolated vertex.

The following lemma is useful in proving the next two results as well as some results

in subsequent sections.

Lemma 3.1.6. Let G be a finite non-solvable group. Then there exist x ∈ G such that

x, x2 ̸∈ Sol(G).

Proof. Suppose that for all x ∈ G, we have x2 ∈ Sol(G). Therefore, G/ Sol(G) is elemen-

tary abelian and hence solvable. Also, Sol(G) is solvable. It follows that G is solvable, a

contradiction. Hence, the result follows.
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Theorem 3.1.7. Let G be a finite non-solvable group. Then girth(S(G)) = 3.

Proof. Suppose for a contradiction that S(G) has no 3-cycle. Let x ∈ G such that x, x2 ̸∈
Sol(G) (by Lemma 3.1.6). Suppose | Sol(G)| ≥ 2. Let z ∈ Sol(G), z ̸= 1, then x, x2 and xz

form a 3-cycle, which is a contradiction. Thus |Sol(G)| = 1. In this case, every element

of G has order 2 or 3; otherwise, {x, x2, x3} forms a 3-cycle in S(G) for all x ∈ G with

o(x) > 3. Therefore, |G| = 2m3n for some non-negative integers m and n. By Result 1.2.13,

it follows that G is solvable; a contradiction. Hence, girth(S(G)) = 3.

Theorem 3.1.8. Let G be a finite non-solvable group. Then ω(S(G)) ≥ 4.

Proof. Suppose for a contradiction that G is a finite non-solvable group with ω(Γs(G))

≤ 3. Let x ∈ G \ Sol(G) such that x2 ̸∈ Sol(G) according to Lemma 3.1.6. Suppose

| Sol(G)| ≥ 2. Let z ∈ Sol(G), z ̸= 1, then {x, x2, xz, x2z} is a clique which is a contradiction.

Thus |Sol(G)| = 1. In this case every element of G \ Sol(G) has order 2, 3 or 4 otherwise

{x, x2, x3, x4} is a clique with o(x) > 4, which is a contradiction. Therefore |G| = 2m3n

where m,n are non-negative integers. Again, by Result 1.2.13, it follows that G is solvable;

a contradiction. This completes the proof.

As a consequence of Theorem 3.1.7 and Theorem 3.1.8 we have the following corollary.

Corollary 3.1.9. The solvable graph of a finite non-solvable group is not a tree.

We conclude this section with the following result.

Proposition 3.1.10. S(G) is not regular.

Proof. Follows from Result 1.3.15, noting the fact that a graph is regular if and only if its

complement is regular.

3.2 Genus and diameter

We begin this section with the following useful lemma.

Lemma 3.2.1. Let G be a finite group and H a solvable subgroup of G. Then ⟨H,Sol(G)⟩
is a solvable subgroup of G.

Proposition 3.2.2. Let G be a finite non-solvable group such that γ(S(G)) = m.

(a) If S is a non-empty subset of G \ Sol(G) such that ⟨x, y⟩ is solvable for all x, y ∈ S

then |S| ≤
⌊
7+

√
1+48m
2

⌋
.
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(b) |Sol(G)| ≤ 1
t−1

⌊
7+

√
1+48m
2

⌋
, where t = max{o(x Sol(G)) : x Sol(G) ∈ G/ Sol(G)}.

(c) If H is a solvable subgroup of G then |H| ≤
⌊
7+

√
1+48m
2

⌋
+ |H ∩ Sol(G)|.

Proof. We have S(G)[S] ∼= K|S| and γ(K|S|) = γ(S(G)[S]) ≤ γ(S(G)). Therefore, if m = 0

then γ(K|S|) = 0. This gives |S| ≤ 4, otherwise K|S| will have a subgraph K5 having genus

1. If m > 0 then, by Result 1.1.5, we have

|S| = ω(S(G)[S]) ≤ ω(S(G)) ≤ χ(S(G)) ≤
⌊
7 +

√
1 + 48m

2

⌋
where χ(S(G)) is the chromatic number of S(G). Hence part (a) follows.

Part (b) follows from Lemma 3.2.1 and part (a) considering S =
t−1⊔
i=1
yi Sol(G), where

y ∈ G \ Sol(G) such that o(y Sol(G)) = t.

Part (c) follows from part (a) noting that H = (H \ Sol(G)) ∪ (H ∩ Sol(G)).

Theorem 3.2.3. Let G be a finite non-solvable group. Then |G| is bounded above by a

function of γ(S(G)).

Proof. Let γ(S(G)) = m and hm =
⌊
7+

√
1+48m
2

⌋
. By Lemma 3.2.1, we have

S(G)[x Sol(G)] ∼= K| Sol(G)|,

where x ∈ G \ Sol(G). Therefore by Proposition 3.2.2(a), | Sol(G)| ≤ hm.

Let P be a Sylow p-subgroup of G for any prime p dividing |G| having order pn for

some positive integer n. Then P is a solvable. Therefore, by Proposition 3.2.2(c), we have

|P | ≤ hm + | Sol(G)| ≤ 2hm. Hence, |G| < (2hm)hm noting that the number of primes less

than 2hm is at most hm. This completes the proof.

As an immediate consequence of Theorem 3.2.3 we have the following corollary.

Corollary 3.2.4. Let n be a non-negative integer. Then there are at the most finitely many

finite non-solvable groups G such that γ(S(G)) = n.

The following lemma is essential in proving the main results of this section.

Lemma 3.2.5. If G is a non-solvable group of order not exceeding 120 then S(G) has a

subgraph isomorphic to K11 and γ(S(G)) ≥ 5.

Proof. If G is a non-solvable group and |G| ≤ 120 then G is isomorphic to A5, A5 × Z2, S5

or SL(2, 5). Note that | Sol(A5)| = |Sol(S5)| = 1 and | Sol(A5 × Z2)| = |Sol(SL(2, 5))| = 2.
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Also, A5 has a solvable subgroup of order 12 and S5, A5 × Z2, SL(2, 5) have solvable

subgroups of order 24. It follows that S(G) has a subgraph isomorphic to K11. Therefore,

by (1.1.b), γ(S(G)) ≥ γ(K11) = 5.

Theorem 3.2.6. The solvable graph of a finite non-solvable group is neither planar, toroidal,

double-toroidal nor triple-toroidal.

Proof. Let G be a finite non-solvable group. Note that it is enough to show γ(S(G)) ≥ 4 to

complete the proof. Suppose that γ(S(G)) ≤ 3. Let x ∈ G \ Sol(G) such that x2 ̸∈ Sol(G).

Such element exists by Lemma 3.1.6. Since any two elements of the set A = x Sol(G) ∪
x2 Sol(G) generate a solvable group, by Proposition 3.2.2(a), we have 2|Sol(G)| = |A| ≤⌊
7+

√
1+48·3
2

⌋
= 9. Thus | Sol(G)| ≤ 4. Let p be a prime divisor of |G| and P is a Sylow p-

subgroup of G. Since P is solvable, by Proposition 3.2.2(c), we get |P | ≤ 9+ |P ∩Sol(G)| ≤
13. If |P | = 11 or 13 then |P∩Sol(G)| = 1. Therefore, S(G)[P \Sol(G)] ∼= K10 orK12. Using

(1.1.b), we get γ(S(G)[P \Sol(G)]) = 4 or 6. Therefore, γ(S(G)) ≥ γ(S(G)[P \Sol(G)]) ≥ 4,

a contradiction. Thus |P | ≤ 9 and hence p ≤ 7. This shows that |G| divides 23.32.5.7.
We consider the following cases.

Case 1. | Sol(G)| = 4.

If H is a Sylow p-subgroup of G where p = 5 or 7 then ⟨H,Sol(G)⟩ is solvable since H is

solvable (by Lemma 3.2.1) We have |H ∩ Sol(G)| = 1 and |⟨H,Sol(G)⟩| = 20, 28 according

as p = 5, 7 respectively. Therefore S(G)[⟨H,Sol(G)⟩ \ Sol(G)] ∼= K16 or K24. By (1.1.b) we

get γ(S(G)) ≥ γ(S(G)[⟨H,Sol(G)⟩ \ Sol(G)]) ≥ 13, which is a contradiction.

Thus |G| is a divisor of 72. Therefore, by Lemma 3.2.5 we have γ(S(G)) ≥ 5, a contra-

diction.

Case 2. | Sol(G)| = 3.

If H is a Sylow p-subgroup of G where p = 5 or 7 then ⟨H,Sol(G)⟩ is solvable. We have

|H ∩ Sol(G)| = 1 and |⟨H,Sol(G)⟩| = 15, 21 according as p = 5, 7 respectively. Therefore

S(G)[⟨H,Sol(G)⟩ \ Sol(G)] ∼= K12 or K18.

By (1.1.b) we get γ(S(G)) ≥ γ(S(G)[⟨H,Sol(G)⟩ \ Sol(G)]) ≥ 6, which is a contradiction.

Thus |G| is a divisor of 72. Therefore, by Lemma 3.2.5 we have γ(S(G)) ≥ 5, a contra-

diction.

Case 3. | Sol(G)| = 2.

If H is a Sylow 7-subgroup of G then ⟨H,Sol(G)⟩ is solvable. We have |H ∩ Sol(G)| = 1

and |⟨H,Sol(G)⟩| = 14. So, S(G)[⟨H,Sol(G)⟩ \Sol(G)] ∼= K12. By (1.1.b) we get γ(S(G)) ≥
γ(S(G)[⟨H,Sol(G)⟩ \ Sol(G)]) ≥ 6, which is a contradiction. Let K be a Sylow 3-subgroup
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of G. If |K| = 9 then ⟨K,Sol(G)⟩ is solvable since K is solvable (by Lemma 3.2.1). We

have |K ∩ Sol(G)| = 1 and |⟨K,Sol(G)⟩| = 18. So, S(G)[⟨K,Sol(G)⟩ \ Sol(G)] ∼= K16. By

(1.1.b) we get γ(S(G)) ≥ γ(S(G)[⟨K,Sol(G)⟩ \ Sol(G)]) = 13, which is a contradiction.

Thus |G| is a divisor of 120. Therefore, by Lemma 3.2.5 we have γ(S(G)) ≥ 5, a

contradiction.

Case 4. | Sol(G)| = 1.

In this case, first we shall show that 7 ∤ |G|. On the contrary, assume that 7 | |G|. Let n
be the number of Sylow 7-subgroups of G. Then n | 23.32.5 and n ≡ 1 mod 7. If n ̸= 1 then

n ≥ 8. Let H1, . . . ,H8 be the eight distinct Sylow 7-subgroup of G. Then the subgraph

induced S(G)[Hi \ Sol(G)] for each 1 ≤ i ≤ 8 will contribute γ(S(G)[Hi \ Sol(G)]) = 1 to

the genus of S(G). Thus

γ(S(G)) ≥
8∑

i=1

γ(S(G)[Hi \ Sol(G)]) = 8,

a contradiction. Therefore, Sylow 7-subgroup of G is unique and hence normal. Since we

have started with a non-solvable group, by Result 1.2.4, it follows that G has an abelian

subgroup of order at least 14. Therefore, by (1.1.b) we have γ(S(G)) ≥ γ(K13) = 8, a

contradiction. Hence, |G| is a divisor of 23.32.5.

Now, we shall show that 9 ∤ |G|. Assume that, on the contrary, 9 | |G|. If Sylow 3-

subgroup of G is not normal in G then the number of Sylow 3-subgroup is greater than or

equal to 4. Let H1, H2, H3 be the three Sylow 3-subgroup of G. Then the induced subgraph

S(G)[H1\Sol(G)] ∼= K8 and so it contributes γ(S(G)[H1\Sol(G)]) = 2 to the genus of S(G).
If |H1 ∩H2| = 1 then the induced subgraph S(G)[H2 \ Sol(G)] ∼= K8 and so it contributes

+2 to the genus S(G). Thus

γ(S(G)) ≥ γ(S(G)[(H1 ∪H2) \ Sol(G)]) = 4

which is a contradiction. So assume that |H1 ∩ H2| = 3. Similarly |H1 ∩ H3| = 3 and

|H2 ∩ H3| = 3. Let M = H2 \ H1. Then |M | = 6. Also note that if L = H1 ∪ H2 and

K = H3 \ L then |K| ≥ 4. Also H1 ∩M = H1 ∩K =M ∩K = ∅.
If |K| ≥ 5 then H1 contribute +2 to genus of S(G), M and K each contribute +1 to

genus of S(G). Hence genus of S(G) is greater than or equal to 4, a contradiction.

Assume that |K| = 4. In this case |M ∩H3| = 2. Let x ∈M ∩H3. Then H1 contribute

+2 to genus of S(G), M \ {x} and K ∪ {x} each contribute +1 to genus of S(G). Hence

genus of S(G) is greater than or equal to 4, a contradiction.
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These show that the Sylow 3-subgroup of G is unique and hence normal in G. Therefore,

by Result 1.2.4 and Lemma 3.2.5, G has an abelian subgroup A of order at least 18. Hence,

γ(S(G)) ≥ γ(S(G)[A \ Sol(G)]) ≥ γ(K17) = 16

which is a contradiction.

It follows that 9 ∤ |G| and |G| is a divisor of 120. Therefore, by Lemma 3.2.5 we get

γ(S(G)) ≥ 5, a contradiction. Hence, γ(S(G)) ≥ 4 and the result follows.

The above theorem gives that γ(S(G)) ≥ 4. Usually, genera of solvable graphs of finite

non-solvable groups are very large. For example, if G is the smallest non-solvable group

A5 then S(G) has 59 vertices and 571 edges. Also γ(S(G)) ≥ 571/6−59/2+1 = 68 (follows

from Result 1.1.2).

The following theorem shows that the crosscap number of the solvable graph of a finite

non-solvable group is greater than 1.

Proposition 3.2.7. The solvable graph of a finite non-solvable group is not projective.

Proof. Suppose G is a finite non-solvable group whose solvable graph is projective. Note

that if S(G) has a subgraph isomorphic to Kn then, by (1.1.c), we must have n ≤ 6. Let

x ∈ G, such that x, x2 ̸∈ Sol(G). Then

S(G)[x Sol(G) ∪ x2 Sol(G)] ∼= K2| Sol(G)|.

Therefore, 2|Sol(G)| ≤ 6 and hence | Sol(G)| ≤ 3.

Let p | |G| be a prime and P be a Sylow p-subgroup of G. Then S(G)[P \ Sol(G)] ∼=
K|P\Sol(G)| since P is solvable. Therefore, |P \ Sol(G)| = |P | − |P ∩ Sol(G)| ≤ 6 and hence

|P | ≤ 9. This shows that |G| is a divisor of 23.32.5.7.

If 7 | |G| then the Sylow 7-subgroup of G is unique and hence normal in G; otherwise, let

H and K be two Sylow 7-subgroup of G. Then |H ∩K| = |H ∩Sol(G)| = |K ∩Sol(G)| = 1.

Therefore, S(G)[(H ∪K) \ Sol(G)] has a subgraph isomorphic to 2K6. Hence, S(G) has a
subgraph isomorphic to 2K5, which is a contradiction. Similarly, if 9 | |G| then the Sylow

3-subgroup of G is normal in G. Therefore, by Result 1.2.4, it follows that |G| ≤ 72 or |G|
is a divisor of 23.3.5. In the both cases, by Lemma 3.2.5, S(G) has complete subgraphs

isomorphic to K11, which is a contradiction. This completes the proof.

We conclude this section, by an observation and a couple of problems regarding the

diameter and connectedness of S(G). Using the following programme in GAP[91], we see
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that the solvable graph of the groupsA5, S5, A5×Z2, SL(2, 5), PSL(3, 2) andGL(2, 4) are

connected with diameter 2. The solvable graphs of S6 andA6 are connected with diameters

greater than 2.

g:=PSL(3,2);

sol:=RadicalGroup(g);

L:=[];

gsol:=Difference(g,sol);

for x in gsol do

AddSet(L,[x]);

for y in Difference(gsol,L) do

if IsSolvable(Subgroup(g,[x,y]))=true then

break;

fi;

i:=0;

for z in gsol do

if IsSolvable(Subgroup(g,[x,z]))=true and

IsSolvable(Subgroup(g,[z,y]))=true

then

i:=1;

break;

fi;

od;

if i=0 then

Print("Diameter>2");

Print(x," ",y);

fi;

od;

od;

In this connection, the following problems were posed in [22].

Problem 3.2.8. Is S(G) connected for any finite non-solvable group G?

Problem 3.2.9. Is there any finite bound for the diameter of S(G) when S(G) is connected?
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It is worth mentioning that Akbari et al. [9] have answered these problems by proving

that S(G) is connected and diameter of S(G) is at the most 11. Akbari et al. [9] also

remarked that the actual bound for the diameter of S(G) is much smaller than 11. Recently,

Burness, Lucchini and Nemmi [28] have shown that S(G) is connected and its diameter is

less than or equal to 5.

3.3 Relations with solvability degree

In this section, we study a few properties of Ps(G), the solvability degree of G, and derive

a connection between Ps(G) and S(G) for finite non-solvable groups G. We begin with the

following lemma.

Lemma 3.3.1. Let G be a finite group. Then Ps(G) =
1

|G|2
∑
u∈G

|SolG(u)|.

Proof. Let S = {(u, v) ∈ G×G : ⟨u, v⟩ is solvable}. Then

S = ∪
u∈G

({u} × {v ∈ G : ⟨u, v⟩ is solvable}) = ∪
u∈G

({u} × SolG(u)).

Therefore, |S| =
∑
u∈G

|SolG(u)|. Hence, the result follows from (1.2.b).

Corollary 3.3.2. |G|Ps(G) is an integer for any finite group G.

Proof. By Result 1.2.10 we have that |G| divides
∑
u∈G

|SolG(u)|. Hence, the result follows

from Lemma 3.3.1.

We have the following lower bound for Ps(G).

Theorem 3.3.3. For any finite group G,

Ps(G) ≥
|Sol(G)|

|G|
+

2(|G| − | Sol(G)|)
|G|2

.

Proof. By Lemma 3.3.1, we have

|G|2Ps(G) =
∑

u∈Sol(G)

| SolG(u)|+
∑

u∈G\Sol(G)

|SolG(u)|

= |G||Sol(G)|+
∑

u∈G\Sol(G)

| SolG(u)|. (3.3.a)

40



Chapter 3. Solvable graphs of finite groups

By Result 1.2.7, |CG(u)| is a divisor of | SolG(u)| for all u ∈ G where CG(u) = {v ∈ G :

uv = vu}, the centralizer of u ∈ G. Since |CG(u)| ≥ 2 for all u ∈ G we have | SolG(u)| ≥ 2

for all u ∈ G. Therefore ∑
u∈G\Sol(G)

| SolG(u)| ≥ 2(|G| − | Sol(G)|).

Hence, the result follows from (3.3.a).

The following theorem shows that Ps(G) > Pr(G) for any finite non-solvable group.

Theorem 3.3.4. Let G be a finite group. Then Ps(G) ≥ Pr(G) with equality if and only if

G is abelian.

Proof. For all u ∈ G we have CG(u) ⊆ SolG(u) and so |SolG(u)| ≥ |CG(u)|. Therefore, by

Lemma 3.3.1 and (1.2.a) we get

Ps(G) =
1

|G|2
∑
x∈G

|SolG(x)|

≥ 1

|G|2
∑
u∈G

|CG(u)| = Pr(G).

Clearly, Ps(G) = Pr(G) if and only if SolG(u) = CG(u) for all u ∈ G. Therefore, if G is

abelian then SolG(u) = G = CG(u) for all u ∈ G and so

Ps(G) = 1 = Pr(G).

Suppose that SolG(u) = CG(u) for all u ∈ G. Then G is an S-group. Let a, b ∈ G. Then

⟨a, b⟩ is solvable. Therefore
b ∈ SolG(a) = CG(a)

and so ab = ba. Hence, G is abelian. This completes the proof.

Let |e(S(G))| be the number of edges of the solvable graph S(G) of G. The following

theorem gives a relation between Ps(G) and |e(S(G))|.

Theorem 3.3.5. Let G be a finite non-solvable group. Then

2|e(S(G))| = |G|2Ps(G) + |Sol(G)|2 + |Sol(G)| − |G|(2| Sol(G)|+ 1).

Proof. We have

2|e(S(G))| = |{(x, y) ∈ (G \ Sol(G))× (G \ Sol(G)) : ⟨x, y⟩ is solvable}| − |G|+ |Sol(G)|.
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Also

S = {(x, y) ∈ G×G : ⟨x, y⟩ is solvable}

= Sol(G)× Sol(G) ⊔ Sol(G)× (G \ Sol(G)) ⊔ (G \ Sol(G))× Sol(G)

⊔ {(x, y) ∈ (G \ Sol(G))× (G \ Sol(G)) : ⟨x, y⟩ is solvable}.

Therefore

|S| = |Sol(G)|2 + 2| Sol(G)|(|G| − | Sol(G)|) + 2|e(S(G))|+ |G| − | Sol(G)|,

so by Lemma 3.3.1,

|G|2Ps(G) = |G|(2|Sol(G)|+ 1)− | Sol(G)|2 − | Sol(G)|+ 2|e(S(G))|.

Hence, the result follows.

We conclude this chapter noting that lower bounds for |e(S(G))| can be obtained from

Theorem 3.3.5 using the lower bounds given in Theorem 3.3.3, Theorem 3.3.4 and the lower

bounds for Pr(G) obtained in Result 1.2.18.
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