Chapter 3

Solvable graphs of finite groups

Let G be a finite non-solvable group with solvable radical $\operatorname{Sol}(G)$. The solvable graph $\mathcal{S}(G)$ of G is a graph with vertex set $G \backslash \operatorname{Sol}(G)$ and two distinct vertices u and v are adjacent if and only if $\langle u, v\rangle$ is solvable. In Section 3.1, we study graph realization properties of $\mathcal{S}(G)$. More precisely, we show that $\mathcal{S}(G)$ is not a star graph, a tree, an n-partite graph for any positive integer $n \geq 2$ and not a regular graph for any non-solvable finite group G. We also show that the girth of $\mathcal{S}(G)$ is 3 and the clique number of $\mathcal{S}(G)$ is greater than or equal to 4 . In Section 3.2, we first show that for a given non-negative integer k, there are at the most finitely many finite non-solvable groups whose solvable graphs have genus k. We also show that there is no finite non-solvable group, whose solvable graph is planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the chapter by obtaining a relation between $\mathcal{S}(G)$ and $P_{s}(G)$ in Section 3.3, where $P_{s}(G)$ is the solvability degree of G. This chapter is based on our paper [22] published in Hacettepe Journal of Mathematics and Statistics.

3.1 Graph realization

We begin with the following lemma.
Lemma 3.1.1. For every $u \in G \backslash \operatorname{Sol}(G)$ we have

$$
\operatorname{deg}_{\mathcal{S}(G)}(u)=\left|\operatorname{Sol}_{G}(u)\right|-|\operatorname{Sol}(G)|-1
$$

Proof. Note that $\operatorname{deg}_{\mathcal{S}(G)}(u)$ represents the number of vertices from $G \backslash \operatorname{Sol}(G)$ which are adjacent to u. Since $u \in \operatorname{Sol}_{G}(u)$, therefore $\left|\operatorname{Sol}_{G}(u)\right|-1$ represents the number of vertices
which are adjacent to u. Since we are excluding $\operatorname{Sol}(G)$ from the vertex set therefore $\operatorname{deg}_{\mathcal{S}(G)}(u)=\left|\operatorname{Sol}_{G}(u)\right|-|\operatorname{Sol}(G)|-1$.

Proposition 3.1.2. $\mathcal{S}(G)$ is not a star.
Proof. Suppose for a contradiction $\mathcal{S}(G)$ is a star. Let $|G|-|\operatorname{Sol}(G)|=n$. Then there exists $u \in G \backslash \operatorname{Sol}(G)$ such that $\operatorname{deg}_{\mathcal{S}(G)}(u)=n-1$. Therefore, by Lemma 3.1.1, $\left|\operatorname{Sol}_{G}(u)\right|=|G|$. This gives $u \in \operatorname{Sol}(G)$, a contradiction. Hence, the result follows.

Proposition 3.1.3. $\mathcal{S}(G)$ is not complete bipartite.
Proof. Let $\mathcal{S}(G)$ be complete bipartite. Suppose that A_{1} and A_{2} are parts of the bi-partition. Then, by Proposition 3.1.2, $\left|A_{1}\right| \geq 2$ and $\left|A_{2}\right| \geq 2$. Let $u \in A_{1}, v \in A_{2}$. If $\mid\langle u, v\rangle \operatorname{Sol}(G) \backslash$ $\operatorname{Sol}(G) \mid>2$ then there exists $y \in\langle u, v\rangle \operatorname{Sol}(G) \backslash \operatorname{Sol}(G)$ with $u \neq y \neq v$ such that $\langle u, y\rangle$ and $\langle v, y\rangle$ are both solvable. But then $y \notin A_{1}$ and $y \notin A_{2}$, a contradiction.

It follows that $|\langle u, v\rangle \operatorname{Sol}(G) \backslash \operatorname{Sol}(G)|=2$. In particular, $\operatorname{Sol}(G)=1$ and $\langle u, v\rangle$ is cyclic of order 3 or $|\operatorname{Sol}(G)|=2$ and $v=u z$ for z an involution in $\operatorname{Sol}(G)$. Now the neighbours of $u \in A_{1}$ is just $u^{2} \in A_{2}$ or $u z$ in the respective cases. Hence $\left|A_{2}\right|=\left|A_{1}\right|=1$, a contradiction. Hence, the result follows.

Following similar arguments as in the proof of Proposition 3.1.3 we get the following result.

Proposition 3.1.4. $\mathcal{S}(G)$ is not complete n-partite.
Proposition 3.1.5. For any finite non-solvable group $G, \mathcal{S}(G)$ has no isolated vertex.
Proof. Suppose x is an isolated vertex of $\mathcal{S}(G)$. Then $|\operatorname{Sol}(G)|=1$; otherwise x is adjacent to $x z$ for any $z \in \operatorname{Sol}(G) \backslash\{1\}$. Thus it follows that $o(x)=2$; otherwise x is adjacent to x^{2}. Let $y \in G$. Then $\left\langle x, x^{y}\right\rangle$ is dihedral and so $x=x^{y}$ as x is isolated. Hence $x \in Z(G)$ and so $x \in Z(G) \leq \operatorname{Sol}(G)$, a contradiction. Hence, $\mathcal{S}(G)$ has no isolated vertex.

The following lemma is useful in proving the next two results as well as some results in subsequent sections.

Lemma 3.1.6. Let G be a finite non-solvable group. Then there exist $x \in G$ such that $x, x^{2} \notin \operatorname{Sol}(G)$.

Proof. Suppose that for all $x \in G$, we have $x^{2} \in \operatorname{Sol}(G)$. Therefore, $G / \operatorname{Sol}(G)$ is elementary abelian and hence solvable. Also, $\operatorname{Sol}(G)$ is solvable. It follows that G is solvable, a contradiction. Hence, the result follows.

Theorem 3.1.7. Let G be a finite non-solvable group. Then $\operatorname{girth}(\mathcal{S}(G))=3$.
Proof. Suppose for a contradiction that $\mathcal{S}(G)$ has no 3 -cycle. Let $x \in G$ such that $x, x^{2} \notin$ $\operatorname{Sol}(G)$ (by Lemma 3.1.6). Suppose $|\operatorname{Sol}(G)| \geq 2$. Let $z \in \operatorname{Sol}(G), z \neq 1$, then x, x^{2} and $x z$ form a 3 -cycle, which is a contradiction. Thus $|\operatorname{Sol}(G)|=1$. In this case, every element of G has order 2 or 3 ; otherwise, $\left\{x, x^{2}, x^{3}\right\}$ forms a 3 -cycle in $\mathcal{S}(G)$ for all $x \in G$ with $o(x)>3$. Therefore, $|G|=2^{m} 3^{n}$ for some non-negative integers m and n. By Result 1.2.13, it follows that G is solvable; a contradiction. Hence, $\operatorname{girth}(\mathcal{S}(G))=3$.

Theorem 3.1.8. Let G be a finite non-solvable group. Then $\omega(\mathcal{S}(G)) \geq 4$.
Proof. Suppose for a contradiction that G is a finite non-solvable group with $\omega\left(\Gamma_{s}(G)\right)$ ≤ 3. Let $x \in G \backslash \operatorname{Sol}(G)$ such that $x^{2} \notin \operatorname{Sol}(G)$ according to Lemma 3.1.6. Suppose $|\operatorname{Sol}(G)| \geq 2$. Let $z \in \operatorname{Sol}(G), z \neq 1$, then $\left\{x, x^{2}, x z, x^{2} z\right\}$ is a clique which is a contradiction. Thus $|\operatorname{Sol}(G)|=1$. In this case every element of $G \backslash \operatorname{Sol}(G)$ has order 2,3 or 4 otherwise $\left\{x, x^{2}, x^{3}, x^{4}\right\}$ is a clique with $o(x)>4$, which is a contradiction. Therefore $|G|=2^{m} 3^{n}$ where m, n are non-negative integers. Again, by Result 1.2.13, it follows that G is solvable; a contradiction. This completes the proof.

As a consequence of Theorem 3.1.7 and Theorem 3.1.8 we have the following corollary.
Corollary 3.1.9. The solvable graph of a finite non-solvable group is not a tree.
We conclude this section with the following result.
Proposition 3.1.10. $\mathcal{S}(G)$ is not regular.
Proof. Follows from Result 1.3.15, noting the fact that a graph is regular if and only if its complement is regular.

3.2 Genus and diameter

We begin this section with the following useful lemma.
Lemma 3.2.1. Let G be a finite group and H a solvable subgroup of G. Then $\langle H, \operatorname{Sol}(G)\rangle$ is a solvable subgroup of G.

Proposition 3.2.2. Let G be a finite non-solvable group such that $\gamma(\mathcal{S}(G))=m$.
(a) If S is a non-empty subset of $G \backslash \operatorname{Sol}(G)$ such that $\langle x, y\rangle$ is solvable for all $x, y \in S$ then $|S| \leq\left\lfloor\frac{7+\sqrt{1+48 m}}{2}\right\rfloor$.
(b) $|\operatorname{Sol}(G)| \leq \frac{1}{t-1}\left\lfloor\frac{7+\sqrt{1+48 m}}{2}\right\rfloor$, where $t=\max \{o(x \operatorname{Sol}(G)): x \operatorname{Sol}(G) \in G / \operatorname{Sol}(G)\}$.
(c) If H is a solvable subgroup of G then $|H| \leq\left\lfloor\frac{7+\sqrt{1+48 m}}{2}\right\rfloor+|H \cap \operatorname{Sol}(G)|$.

Proof. We have $\mathcal{S}(G)[S] \cong K_{|S|}$ and $\gamma\left(K_{|S|}\right)=\gamma(\mathcal{S}(G)[S]) \leq \gamma(\mathcal{S}(G))$. Therefore, if $m=0$ then $\gamma\left(K_{|S|}\right)=0$. This gives $|S| \leq 4$, otherwise $K_{|S|}$ will have a subgraph K_{5} having genus 1. If $m>0$ then, by Result 1.1.5, we have

$$
|S|=\omega(\mathcal{S}(G)[S]) \leq \omega(\mathcal{S}(G)) \leq \chi(\mathcal{S}(G)) \leq\left\lfloor\frac{7+\sqrt{1+48 m}}{2}\right\rfloor
$$

where $\chi(\mathcal{S}(G))$ is the chromatic number of $\mathcal{S}(G)$. Hence part (a) follows.
Part (b) follows from Lemma 3.2.1 and part (a) considering $S=\bigsqcup_{i=1}^{t-1} y^{i} \operatorname{Sol}(G)$, where $y \in G \backslash \operatorname{Sol}(G)$ such that $o(y \operatorname{Sol}(G))=t$.

Part (c) follows from part (a) noting that $H=(H \backslash \operatorname{Sol}(G)) \cup(H \cap \operatorname{Sol}(G))$.
Theorem 3.2.3. Let G be a finite non-solvable group. Then $|G|$ is bounded above by a function of $\gamma(\mathcal{S}(G))$.

Proof. Let $\gamma(\mathcal{S}(G))=m$ and $h_{m}=\left\lfloor\frac{7+\sqrt{1+48 m}}{2}\right\rfloor$. By Lemma 3.2.1. we have

$$
\mathcal{S}(G)[x \operatorname{Sol}(G)] \cong K_{|\operatorname{Sol}(G)|},
$$

where $x \in G \backslash \operatorname{Sol}(G)$. Therefore by Proposition 3.2 .2 (a), $|\operatorname{Sol}(G)| \leq h_{m}$.
Let P be a Sylow p-subgroup of G for any prime p dividing $|G|$ having order p^{n} for some positive integer n. Then P is a solvable. Therefore, by Proposition 3.2.2(c), we have $|P| \leq h_{m}+|\operatorname{Sol}(G)| \leq 2 h_{m}$. Hence, $|G|<\left(2 h_{m}\right)^{h_{m}}$ noting that the number of primes less than $2 h_{m}$ is at most h_{m}. This completes the proof.

As an immediate consequence of Theorem 3.2.3 we have the following corollary.
Corollary 3.2.4. Let n be a non-negative integer. Then there are at the most finitely many finite non-solvable groups G such that $\gamma(\mathcal{S}(G))=n$.

The following lemma is essential in proving the main results of this section.
Lemma 3.2.5. If G is a non-solvable group of order not exceeding 120 then $\mathcal{S}(G)$ has a subgraph isomorphic to K_{11} and $\gamma(\mathcal{S}(G)) \geq 5$.

Proof. If G is a non-solvable group and $|G| \leq 120$ then G is isomorphic to $A_{5}, A_{5} \times \mathbb{Z}_{2}, S_{5}$ or $S L(2,5)$. Note that $\left|\operatorname{Sol}\left(A_{5}\right)\right|=\left|\operatorname{Sol}\left(S_{5}\right)\right|=1$ and $\left|\operatorname{Sol}\left(A_{5} \times \mathbb{Z}_{2}\right)\right|=|\operatorname{Sol}(S L(2,5))|=2$.

Also, A_{5} has a solvable subgroup of order 12 and $S_{5}, A_{5} \times \mathbb{Z}_{2}, S L(2,5)$ have solvable subgroups of order 24. It follows that $\mathcal{S}(G)$ has a subgraph isomorphic to K_{11}. Therefore, by (1.1.b), $\gamma(\mathcal{S}(G)) \geq \gamma\left(K_{11}\right)=5$.

Theorem 3.2.6. The solvable graph of a finite non-solvable group is neither planar, toroidal, double-toroidal nor triple-toroidal.

Proof. Let G be a finite non-solvable group. Note that it is enough to show $\gamma(\mathcal{S}(G)) \geq 4$ to complete the proof. Suppose that $\gamma(\mathcal{S}(G)) \leq 3$. Let $x \in G \backslash \operatorname{Sol}(G)$ such that $x^{2} \notin \operatorname{Sol}(G)$. Such element exists by Lemma 3.1.6. Since any two elements of the set $A=x \operatorname{Sol}(G) \cup$ $x^{2} \operatorname{Sol}(G)$ generate a solvable group, by Proposition 3.2 .2 (a), we have $2|\operatorname{Sol}(G)|=|A| \leq$ $\left\lfloor\frac{7+\sqrt{1+48 \cdot 3}}{2}\right\rfloor=9$. Thus $|\operatorname{Sol}(G)| \leq 4$. Let p be a prime divisor of $|G|$ and P is a Sylow p subgroup of G. Since P is solvable, by Proposition 3.2 .2 (c), we get $|P| \leq 9+|P \cap \operatorname{Sol}(G)| \leq$ 13. If $|P|=11$ or 13 then $|P \cap \operatorname{Sol}(G)|=1$. Therefore, $\mathcal{S}(G)[P \backslash \operatorname{Sol}(G)] \cong K_{10}$ or K_{12}. Using (1.1.b), we get $\gamma(\mathcal{S}(G)[P \backslash \operatorname{Sol}(G)])=4$ or 6 . Therefore, $\gamma(\mathcal{S}(G)) \geq \gamma(\mathcal{S}(G)[P \backslash \operatorname{Sol}(G)]) \geq 4$, a contradiction. Thus $|P| \leq 9$ and hence $p \leq 7$. This shows that $|G|$ divides $2^{3} .3^{2}$.5.7.

We consider the following cases.
Case 1. $|\operatorname{Sol}(G)|=4$.
If H is a Sylow p-subgroup of G where $p=5$ or 7 then $\langle H, \operatorname{Sol}(G)\rangle$ is solvable since H is solvable (by Lemma 3.2.1) We have $|H \cap \operatorname{Sol}(G)|=1$ and $|\langle H, \operatorname{Sol}(G)\rangle|=20,28$ according as $p=5,7$ respectively. Therefore $\mathcal{S}(G)[\langle H, \operatorname{Sol}(G)\rangle \backslash \operatorname{Sol}(G)] \cong K_{16}$ or K_{24}. By (1.1.b) we get $\gamma(\mathcal{S}(G)) \geq \gamma(\mathcal{S}(G)[\langle H, \operatorname{Sol}(G)\rangle \backslash \operatorname{Sol}(G)]) \geq 13$, which is a contradiction.

Thus $|G|$ is a divisor of 72 . Therefore, by Lemma 3.2 .5 we have $\gamma(\mathcal{S}(G)) \geq 5$, a contradiction.
Case 2. $|\operatorname{Sol}(G)|=3$.
If H is a Sylow p-subgroup of G where $p=5$ or 7 then $\langle H, \operatorname{Sol}(G)\rangle$ is solvable. We have $|H \cap \operatorname{Sol}(G)|=1$ and $|\langle H, \operatorname{Sol}(G)\rangle|=15,21$ according as $p=5,7$ respectively. Therefore

$$
\mathcal{S}(G)[\langle H, \operatorname{Sol}(G)\rangle \backslash \operatorname{Sol}(G)] \cong K_{12} \text { or } K_{18} .
$$

By (1.1.b) we get $\gamma(\mathcal{S}(G)) \geq \gamma(\mathcal{S}(G)[\langle H, \operatorname{Sol}(G)\rangle \backslash \operatorname{Sol}(G)]) \geq 6$, which is a contradiction.
Thus $|G|$ is a divisor of 72 . Therefore, by Lemma 3.2.5 we have $\gamma(\mathcal{S}(G)) \geq 5$, a contradiction.

Case 3. $|\operatorname{Sol}(G)|=2$.
If H is a Sylow 7 -subgroup of G then $\langle H, \operatorname{Sol}(G)\rangle$ is solvable. We have $|H \cap \operatorname{Sol}(G)|=1$ and $|\langle H, \operatorname{Sol}(G)\rangle|=14$. So, $\mathcal{S}(G)[\langle H, \operatorname{Sol}(G)\rangle \backslash \operatorname{Sol}(G)] \cong K_{12}$. By (1.1.b) we get $\gamma(\mathcal{S}(G)) \geq$ $\gamma(\mathcal{S}(G)[\langle H, \operatorname{Sol}(G)\rangle \backslash \operatorname{Sol}(G)]) \geq 6$, which is a contradiction. Let K be a Sylow 3-subgroup
of G. If $|K|=9$ then $\langle K, \operatorname{Sol}(G)\rangle$ is solvable since K is solvable (by Lemma 3.2.1). We have $|K \cap \operatorname{Sol}(G)|=1$ and $|\langle K, \operatorname{Sol}(G)\rangle|=18$. So, $\mathcal{S}(G)[\langle K, \operatorname{Sol}(G)\rangle \backslash \operatorname{Sol}(G)] \cong K_{16}$. By (1.1.b) we get $\gamma(\mathcal{S}(G)) \geq \gamma(\mathcal{S}(G)[\langle K, \operatorname{Sol}(G)\rangle \backslash \operatorname{Sol}(G)])=13$, which is a contradiction.

Thus $|G|$ is a divisor of 120 . Therefore, by Lemma 3.2.5 we have $\gamma(\mathcal{S}(G)) \geq 5$, a contradiction.
Case 4. $|\operatorname{Sol}(G)|=1$.
In this case, first we shall show that $7 \nmid|G|$. On the contrary, assume that $7||G|$. Let n be the number of Sylow 7 -subgroups of G. Then $n \mid 2^{3} .3^{2} .5$ and $n \equiv 1 \bmod 7$. If $n \neq 1$ then $n \geq 8$. Let H_{1}, \ldots, H_{8} be the eight distinct Sylow 7 -subgroup of G. Then the subgraph induced $\mathcal{S}(G)\left[H_{i} \backslash \operatorname{Sol}(G)\right]$ for each $1 \leq i \leq 8$ will contribute $\gamma\left(\mathcal{S}(G)\left[H_{i} \backslash \operatorname{Sol}(G)\right]\right)=1$ to the genus of $\mathcal{S}(G)$. Thus

$$
\gamma(\mathcal{S}(G)) \geq \sum_{i=1}^{8} \gamma\left(\mathcal{S}(G)\left[H_{i} \backslash \operatorname{Sol}(G)\right]\right)=8
$$

a contradiction. Therefore, Sylow 7 -subgroup of G is unique and hence normal. Since we have started with a non-solvable group, by Result 1.2.4, it follows that G has an abelian subgroup of order at least 14. Therefore, by (1.1.b) we have $\gamma(\mathcal{S}(G)) \geq \gamma\left(K_{13}\right)=8$, a contradiction. Hence, $|G|$ is a divisor of $2^{3} .3^{2} .5$.

Now, we shall show that $9 \nmid|G|$. Assume that, on the contrary, $9||G|$. If Sylow 3subgroup of G is not normal in G then the number of Sylow 3-subgroup is greater than or equal to 4 . Let H_{1}, H_{2}, H_{3} be the three Sylow 3 -subgroup of G. Then the induced subgraph $\mathcal{S}(G)\left[H_{1} \backslash \operatorname{Sol}(G)\right] \cong K_{8}$ and so it contributes $\gamma\left(\mathcal{S}(G)\left[H_{1} \backslash \operatorname{Sol}(G)\right]\right)=2$ to the genus of $\mathcal{S}(G)$. If $\left|H_{1} \cap H_{2}\right|=1$ then the induced subgraph $\mathcal{S}(G)\left[H_{2} \backslash \operatorname{Sol}(G)\right] \cong K_{8}$ and so it contributes +2 to the genus $\mathcal{S}(G)$. Thus

$$
\gamma(\mathcal{S}(G)) \geq \gamma\left(\mathcal{S}(G)\left[\left(H_{1} \cup H_{2}\right) \backslash \operatorname{Sol}(G)\right]\right)=4
$$

which is a contradiction. So assume that $\left|H_{1} \cap H_{2}\right|=3$. Similarly $\left|H_{1} \cap H_{3}\right|=3$ and $\left|H_{2} \cap H_{3}\right|=3$. Let $M=H_{2} \backslash H_{1}$. Then $|M|=6$. Also note that if $L=H_{1} \cup H_{2}$ and $K=H_{3} \backslash L$ then $|K| \geq 4$. Also $H_{1} \cap M=H_{1} \cap K=M \cap K=\emptyset$.

If $|K| \geq 5$ then H_{1} contribute +2 to genus of $\mathcal{S}(G), M$ and K each contribute +1 to genus of $\mathcal{S}(G)$. Hence genus of $\mathcal{S}(G)$ is greater than or equal to 4 , a contradiction.

Assume that $|K|=4$. In this case $\left|M \cap H_{3}\right|=2$. Let $x \in M \cap H_{3}$. Then H_{1} contribute +2 to genus of $\mathcal{S}(G), M \backslash\{x\}$ and $K \cup\{x\}$ each contribute +1 to genus of $\mathcal{S}(G)$. Hence genus of $\mathcal{S}(G)$ is greater than or equal to 4 , a contradiction.

These show that the Sylow 3 -subgroup of G is unique and hence normal in G. Therefore, by Result 1.2.4 and Lemma 3.2.5, G has an abelian subgroup A of order at least 18. Hence,

$$
\gamma(\mathcal{S}(G)) \geq \gamma(\mathcal{S}(G)[A \backslash \operatorname{Sol}(G)]) \geq \gamma\left(K_{17}\right)=16
$$

which is a contradiction.
It follows that $9 \nmid|G|$ and $|G|$ is a divisor of 120 . Therefore, by Lemma 3.2.5 we get $\gamma(\mathcal{S}(G)) \geq 5$, a contradiction. Hence, $\gamma(\mathcal{S}(G)) \geq 4$ and the result follows.

The above theorem gives that $\gamma(\mathcal{S}(G)) \geq 4$. Usually, genera of solvable graphs of finite non-solvable groups are very large. For example, if G is the smallest non-solvable group A_{5} then $\mathcal{S}(G)$ has 59 vertices and 571 edges. Also $\gamma(\mathcal{S}(G)) \geq 571 / 6-59 / 2+1=68$ (follows from Result 1.1.2).

The following theorem shows that the crosscap number of the solvable graph of a finite non-solvable group is greater than 1.

Proposition 3.2.7. The solvable graph of a finite non-solvable group is not projective.
Proof. Suppose G is a finite non-solvable group whose solvable graph is projective. Note that if $\mathcal{S}(G)$ has a subgraph isomorphic to K_{n} then, by (1.1.c), we must have $n \leq 6$. Let $x \in G$, such that $x, x^{2} \notin \operatorname{Sol}(G)$. Then

$$
\mathcal{S}(G)\left[x \operatorname{Sol}(G) \cup x^{2} \operatorname{Sol}(G)\right] \cong K_{2|\operatorname{Sol}(G)|}
$$

Therefore, $2|\operatorname{Sol}(G)| \leq 6$ and hence $|\operatorname{Sol}(G)| \leq 3$.
Let $p||G|$ be a prime and P be a Sylow p-subgroup of G. Then $\mathcal{S}(G)[P \backslash \operatorname{Sol}(G)] \cong$ $K_{|P \backslash \operatorname{Sol}(G)|}$ since P is solvable. Therefore, $|P \backslash \operatorname{Sol}(G)|=|P|-|P \cap \operatorname{Sol}(G)| \leq 6$ and hence $|P| \leq 9$. This shows that $|G|$ is a divisor of $2^{3} .3^{2} .5 .7$.

If $7||G|$ then the Sylow 7 -subgroup of G is unique and hence normal in G; otherwise, let H and K be two Sylow 7-subgroup of G. Then $|H \cap K|=|H \cap \operatorname{Sol}(G)|=|K \cap \operatorname{Sol}(G)|=1$. Therefore, $\mathcal{S}(G)[(H \cup K) \backslash \operatorname{Sol}(G)]$ has a subgraph isomorphic to $2 K_{6}$. Hence, $\mathcal{S}(G)$ has a subgraph isomorphic to $2 K_{5}$, which is a contradiction. Similarly, if $9||G|$ then the Sylow 3 -subgroup of G is normal in G. Therefore, by Result 1.2.4, it follows that $|G| \leq 72$ or $|G|$ is a divisor of 2^{3}.3.5. In the both cases, by Lemma 3.2.5, $\mathcal{S}(G)$ has complete subgraphs isomorphic to K_{11}, which is a contradiction. This completes the proof.

We conclude this section, by an observation and a couple of problems regarding the diameter and connectedness of $\mathcal{S}(G)$. Using the following programme in GAP[91], we see
that the solvable graph of the groups $A_{5}, S_{5}, A_{5} \times \mathbb{Z}_{2}, S L(2,5), P S L(3,2)$ and $G L(2,4)$ are connected with diameter 2 . The solvable graphs of S_{6} and A_{6} are connected with diameters greater than 2.

```
g:=PSL(3,2);
sol:=RadicalGroup(g);
L:=[];
gsol:=Difference(g,sol);
for x in gsol do
    AddSet(L,[x]);
    for y in Difference(gsol,L) do
    if IsSolvable(Subgroup(g, [x,y]))=true then
        break;
    fi;
    i:=0;
    for z in gsol do
        if IsSolvable(Subgroup(g,[x,z]))=true and
        IsSolvable(Subgroup(g, [z,y]))=true
        then
            i:=1;
        break;
        fi;
    od;
    if i=0 then
        Print("Diameter>2");
        Print(x," ",y);
    fi;
od;
od;
```

In this connection, the following problems were posed in [22].
Problem 3.2.8. Is $\mathcal{S}(G)$ connected for any finite non-solvable group G ?
Problem 3.2.9. Is there any finite bound for the diameter of $\mathcal{S}(G)$ when $\mathcal{S}(G)$ is connected?

It is worth mentioning that Akbari et al. [9] have answered these problems by proving that $\mathcal{S}(G)$ is connected and diameter of $\mathcal{S}(G)$ is at the most 11. Akbari et al. [9] also remarked that the actual bound for the diameter of $\mathcal{S}(G)$ is much smaller than 11. Recently, Burness, Lucchini and Nemmi [28] have shown that $\mathcal{S}(G)$ is connected and its diameter is less than or equal to 5 .

3.3 Relations with solvability degree

In this section, we study a few properties of $P_{s}(G)$, the solvability degree of G, and derive a connection between $P_{s}(G)$ and $\mathcal{S}(G)$ for finite non-solvable groups G. We begin with the following lemma.

Lemma 3.3.1. Let G be a finite group. Then $P_{s}(G)=\frac{1}{|G|^{2}} \sum_{u \in G}\left|\operatorname{Sol}_{G}(u)\right|$.
Proof. Let $\mathcal{S}=\{(u, v) \in G \times G:\langle u, v\rangle$ is solvable $\}$. Then

$$
\mathcal{S}=\underset{u \in G}{\cup}(\{u\} \times\{v \in G:\langle u, v\rangle \text { is solvable }\})=\underset{u \in G}{\cup}\left(\{u\} \times \operatorname{Sol}_{G}(u)\right) .
$$

Therefore, $|\mathcal{S}|=\sum_{u \in G}\left|\operatorname{Sol}_{G}(u)\right|$. Hence, the result follows from (1.2.b).
Corollary 3.3.2. $|G| P_{s}(G)$ is an integer for any finite group G.
Proof. By Result 1.2.10 we have that $|G|$ divides $\sum_{u \in G}\left|\operatorname{Sol}_{G}(u)\right|$. Hence, the result follows from Lemma 3.3.1.

We have the following lower bound for $P_{s}(G)$.
Theorem 3.3.3. For any finite group G,

$$
P_{S}(G) \geq \frac{|\operatorname{Sol}(G)|}{|G|}+\frac{2(|G|-|\operatorname{Sol}(G)|)}{|G|^{2}}
$$

Proof. By Lemma 3.3.1, we have

$$
\begin{align*}
|G|^{2} P_{s}(G) & =\sum_{u \in \operatorname{Sol}(G)}\left|\operatorname{Sol}_{G}(u)\right|+\sum_{u \in G \backslash \operatorname{Sol}(G)}\left|\operatorname{Sol}_{G}(u)\right| \\
& =|G||\operatorname{Sol}(G)|+\sum_{u \in G \backslash \operatorname{Sol}(G)}\left|\operatorname{Sol}_{G}(u)\right| . \tag{3.3.a}
\end{align*}
$$

By Result 1.2.7, $\left|C_{G}(u)\right|$ is a divisor of $\left|\operatorname{Sol}_{G}(u)\right|$ for all $u \in G$ where $C_{G}(u)=\{v \in G$: $u v=v u\}$, the centralizer of $u \in G$. Since $\left|C_{G}(u)\right| \geq 2$ for all $u \in G$ we have $\left|\operatorname{Sol}_{G}(u)\right| \geq 2$ for all $u \in G$. Therefore

$$
\sum_{u \in G \backslash \operatorname{Sol}(G)}\left|\operatorname{Sol}_{G}(u)\right| \geq 2(|G|-|\operatorname{Sol}(G)|) .
$$

Hence, the result follows from (3.3.a).
The following theorem shows that $P_{s}(G)>\operatorname{Pr}(G)$ for any finite non-solvable group.
Theorem 3.3.4. Let G be a finite group. Then $P_{s}(G) \geq \operatorname{Pr}(G)$ with equality if and only if G is abelian.

Proof. For all $u \in G$ we have $C_{G}(u) \subseteq \operatorname{Sol}_{G}(u)$ and so $\left|\operatorname{Sol}_{G}(u)\right| \geq\left|C_{G}(u)\right|$. Therefore, by Lemma 3.3.1 and (1.2.a) we get

$$
\begin{aligned}
P_{s}(G) & =\frac{1}{|G|^{2}} \sum_{x \in G}\left|\operatorname{Sol}_{G}(x)\right| \\
& \geq \frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|=\operatorname{Pr}(G) .
\end{aligned}
$$

Clearly, $P_{s}(G)=\operatorname{Pr}(G)$ if and only if $\operatorname{Sol}_{G}(u)=C_{G}(u)$ for all $u \in G$. Therefore, if G is abelian then $\operatorname{Sol}_{G}(u)=G=C_{G}(u)$ for all $u \in G$ and so

$$
P_{s}(G)=1=\operatorname{Pr}(G) .
$$

Suppose that $\operatorname{Sol}_{G}(u)=C_{G}(u)$ for all $u \in G$. Then G is an S-group. Let $a, b \in G$. Then $\langle a, b\rangle$ is solvable. Therefore

$$
b \in \operatorname{Sol}_{G}(a)=C_{G}(a)
$$

and so $a b=b a$. Hence, G is abelian. This completes the proof.
Let $|e(\mathcal{S}(G))|$ be the number of edges of the solvable graph $\mathcal{S}(G)$ of G. The following theorem gives a relation between $P_{s}(G)$ and $|e(\mathcal{S}(G))|$.

Theorem 3.3.5. Let G be a finite non-solvable group. Then

$$
2|e(\mathcal{S}(G))|=|G|^{2} P_{S}(G)+|\operatorname{Sol}(G)|^{2}+|\operatorname{Sol}(G)|-|G|(2|\operatorname{Sol}(G)|+1) .
$$

Proof. We have

$$
2|e(\mathcal{S}(G))|=\mid\{(x, y) \in(G \backslash \operatorname{Sol}(G)) \times(G \backslash \operatorname{Sol}(G)):\langle x, y\rangle \text { is solvable }\}|-|G|+|\operatorname{Sol}(G)| .
$$

Also

$$
\begin{aligned}
\mathcal{S}= & \{(x, y) \in G \times G:\langle x, y\rangle \text { is solvable }\} \\
= & \operatorname{Sol}(G) \times \operatorname{Sol}(G) \quad \sqcup \quad \operatorname{Sol}(G) \times(G \backslash \operatorname{Sol}(G)) \quad \sqcup \quad(G \backslash \operatorname{Sol}(G)) \times \operatorname{Sol}(G) \\
& \sqcup \quad\{(x, y) \in(G \backslash \operatorname{Sol}(G)) \times(G \backslash \operatorname{Sol}(G)):\langle x, y\rangle \text { is solvable }\} .
\end{aligned}
$$

Therefore

$$
|\mathcal{S}|=|\operatorname{Sol}(G)|^{2}+2|\operatorname{Sol}(G)|(|G|-|\operatorname{Sol}(G)|)+2|e(\mathcal{S}(G))|+|G|-|\operatorname{Sol}(G)|,
$$

so by Lemma 3.3.1,

$$
|G|^{2} P_{s}(G)=|G|(2|\operatorname{Sol}(G)|+1)-|\operatorname{Sol}(G)|^{2}-|\operatorname{Sol}(G)|+2|e(\mathcal{S}(G))| .
$$

Hence, the result follows.
We conclude this chapter noting that lower bounds for $|e(\mathcal{S}(G))|$ can be obtained from Theorem 3.3.5 using the lower bounds given in Theorem 3.3.3. Theorem 3.3.4 and the lower bounds for $\operatorname{Pr}(G)$ obtained in Result 1.2.18.

