Chapter 3

Solvable graphs of finite groups

Let *G* be a finite non-solvable group with solvable radical Sol(*G*). The solvable graph S(G) of *G* is a graph with vertex set $G \setminus Sol(G)$ and two distinct vertices *u* and *v* are adjacent if and only if $\langle u, v \rangle$ is solvable. In Section 3.1, we study graph realization properties of S(G). More precisely, we show that S(G) is not a star graph, a tree, an *n*-partite graph for any positive integer $n \ge 2$ and not a regular graph for any non-solvable finite group *G*. We also show that the girth of S(G) is 3 and the clique number of S(G) is greater than or equal to 4. In Section 3.2, we first show that for a given non-negative integer k, there are at the most finitely many finite non-solvable groups whose solvable graphs have genus k. We also show that there is no finite non-solvable group, whose solvable graph is planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the chapter by obtaining a relation between S(G) and $P_s(G)$ in Section 3.3, where $P_s(G)$ is the solvability degree of *G*. This chapter is based on our paper [22] published in *Hacettepe Journal of Mathematics and Statistics*.

3.1 Graph realization

We begin with the following lemma.

Lemma 3.1.1. For every $u \in G \setminus Sol(G)$ we have

$$\deg_{\mathcal{S}(G)}(u) = |\operatorname{Sol}_G(u)| - |\operatorname{Sol}(G)| - 1.$$

Proof. Note that $\deg_{\mathcal{S}(G)}(u)$ represents the number of vertices from $G \setminus Sol(G)$ which are adjacent to u. Since $u \in Sol_G(u)$, therefore $|Sol_G(u)| - 1$ represents the number of vertices

which are adjacent to u. Since we are excluding Sol(G) from the vertex set therefore $deg_{S(G)}(u) = |Sol_G(u)| - |Sol(G)| - 1$.

Proposition 3.1.2. $\mathcal{S}(G)$ is not a star.

Proof. Suppose for a contradiction S(G) is a star. Let $|G| - |\operatorname{Sol}(G)| = n$. Then there exists $u \in G \setminus \operatorname{Sol}(G)$ such that $\deg_{S(G)}(u) = n - 1$. Therefore, by Lemma 3.1.1, $|\operatorname{Sol}_G(u)| = |G|$. This gives $u \in \operatorname{Sol}(G)$, a contradiction. Hence, the result follows.

Proposition 3.1.3. $\mathcal{S}(G)$ is not complete bipartite.

Proof. Let S(G) be complete bipartite. Suppose that A_1 and A_2 are parts of the bi-partition. Then, by Proposition 3.1.2, $|A_1| \ge 2$ and $|A_2| \ge 2$. Let $u \in A_1, v \in A_2$. If $|\langle u, v \rangle \operatorname{Sol}(G) \setminus \operatorname{Sol}(G)| > 2$ then there exists $y \in \langle u, v \rangle \operatorname{Sol}(G) \setminus \operatorname{Sol}(G)$ with $u \ne y \ne v$ such that $\langle u, y \rangle$ and $\langle v, y \rangle$ are both solvable. But then $y \notin A_1$ and $y \notin A_2$, a contradiction.

It follows that $|\langle u, v \rangle \operatorname{Sol}(G) \setminus \operatorname{Sol}(G)| = 2$. In particular, $\operatorname{Sol}(G) = 1$ and $\langle u, v \rangle$ is cyclic of order 3 or $|\operatorname{Sol}(G)| = 2$ and v = uz for z an involution in $\operatorname{Sol}(G)$. Now the neighbours of $u \in A_1$ is just $u^2 \in A_2$ or uz in the respective cases. Hence $|A_2| = |A_1| = 1$, a contradiction. Hence, the result follows.

Following similar arguments as in the proof of Proposition 3.1.3 we get the following result.

Proposition 3.1.4. S(G) is not complete *n*-partite.

Proposition 3.1.5. For any finite non-solvable group G, $\mathcal{S}(G)$ has no isolated vertex.

Proof. Suppose x is an isolated vertex of S(G). Then $|\operatorname{Sol}(G)| = 1$; otherwise x is adjacent to xz for any $z \in \operatorname{Sol}(G) \setminus \{1\}$. Thus it follows that o(x) = 2; otherwise x is adjacent to x^2 . Let $y \in G$. Then $\langle x, x^y \rangle$ is dihedral and so $x = x^y$ as x is isolated. Hence $x \in Z(G)$ and so $x \in Z(G) \leq \operatorname{Sol}(G)$, a contradiction. Hence, S(G) has no isolated vertex.

The following lemma is useful in proving the next two results as well as some results in subsequent sections.

Lemma 3.1.6. Let G be a finite non-solvable group. Then there exist $x \in G$ such that $x, x^2 \notin Sol(G)$.

Proof. Suppose that for all $x \in G$, we have $x^2 \in \text{Sol}(G)$. Therefore, G/Sol(G) is elementary abelian and hence solvable. Also, Sol(G) is solvable. It follows that G is solvable, a contradiction. Hence, the result follows.

Theorem 3.1.7. Let G be a finite non-solvable group. Then $girth(\mathcal{S}(G)) = 3$.

Proof. Suppose for a contradiction that $\mathcal{S}(G)$ has no 3-cycle. Let $x \in G$ such that $x, x^2 \notin$ Sol(G) (by Lemma 3.1.6). Suppose $|\operatorname{Sol}(G)| \geq 2$. Let $z \in \operatorname{Sol}(G), z \neq 1$, then x, x^2 and xzform a 3-cycle, which is a contradiction. Thus $|\operatorname{Sol}(G)| = 1$. In this case, every element of G has order 2 or 3; otherwise, $\{x, x^2, x^3\}$ forms a 3-cycle in $\mathcal{S}(G)$ for all $x \in G$ with o(x) > 3. Therefore, $|G| = 2^m 3^n$ for some non-negative integers m and n. By Result 1.2.13, it follows that G is solvable; a contradiction. Hence, $\operatorname{girth}(\mathcal{S}(G)) = 3$.

Theorem 3.1.8. Let G be a finite non-solvable group. Then $\omega(\mathcal{S}(G)) \geq 4$.

Proof. Suppose for a contradiction that G is a finite non-solvable group with $\omega(\Gamma_s(G)) \leq 3$. Let $x \in G \setminus \text{Sol}(G)$ such that $x^2 \notin \text{Sol}(G)$ according to Lemma 3.1.6. Suppose $|\operatorname{Sol}(G)| \geq 2$. Let $z \in \operatorname{Sol}(G), z \neq 1$, then $\{x, x^2, xz, x^2z\}$ is a clique which is a contradiction. Thus $|\operatorname{Sol}(G)| = 1$. In this case every element of $G \setminus \operatorname{Sol}(G)$ has order 2, 3 or 4 otherwise $\{x, x^2, x^3, x^4\}$ is a clique with o(x) > 4, which is a contradiction. Therefore $|G| = 2^m 3^n$ where m, n are non-negative integers. Again, by Result 1.2.13, it follows that G is solvable; a contradiction. This completes the proof.

As a consequence of Theorem 3.1.7 and Theorem 3.1.8 we have the following corollary.

Corollary 3.1.9. The solvable graph of a finite non-solvable group is not a tree.

We conclude this section with the following result.

Proposition 3.1.10. S(G) is not regular.

Proof. Follows from Result 1.3.15, noting the fact that a graph is regular if and only if its complement is regular. \Box

3.2 Genus and diameter

We begin this section with the following useful lemma.

Lemma 3.2.1. Let G be a finite group and H a solvable subgroup of G. Then $\langle H, Sol(G) \rangle$ is a solvable subgroup of G.

Proposition 3.2.2. Let G be a finite non-solvable group such that $\gamma(\mathcal{S}(G)) = m$.

(a) If S is a non-empty subset of $G \setminus \text{Sol}(G)$ such that $\langle x, y \rangle$ is solvable for all $x, y \in S$ then $|S| \leq \left| \frac{7 + \sqrt{1 + 48m}}{2} \right|$.

- (b) $|\operatorname{Sol}(G)| \le \frac{1}{t-1} \left\lfloor \frac{7+\sqrt{1+48m}}{2} \right\rfloor$, where $t = \max\{o(x\operatorname{Sol}(G)) : x\operatorname{Sol}(G) \in G/\operatorname{Sol}(G)\}$.
- (c) If H is a solvable subgroup of G then $|H| \leq \left\lfloor \frac{7+\sqrt{1+48m}}{2} \right\rfloor + |H \cap \operatorname{Sol}(G)|$.

Proof. We have $\mathcal{S}(G)[S] \cong K_{|S|}$ and $\gamma(K_{|S|}) = \gamma(\mathcal{S}(G)[S]) \leq \gamma(\mathcal{S}(G))$. Therefore, if m = 0 then $\gamma(K_{|S|}) = 0$. This gives $|S| \leq 4$, otherwise $K_{|S|}$ will have a subgraph K_5 having genus 1. If m > 0 then, by Result 1.1.5, we have

$$|S| = \omega(\mathcal{S}(G)[S]) \le \omega(\mathcal{S}(G)) \le \chi(\mathcal{S}(G)) \le \left\lfloor \frac{7 + \sqrt{1 + 48m}}{2} \right\rfloor$$

where $\chi(\mathcal{S}(G))$ is the chromatic number of $\mathcal{S}(G)$. Hence part (a) follows.

Part (b) follows from Lemma 3.2.1 and part (a) considering $S = \bigsqcup_{i=1}^{t-1} y^i \operatorname{Sol}(G)$, where $y \in G \setminus \operatorname{Sol}(G)$ such that $o(y \operatorname{Sol}(G)) = t$.

Part (c) follows from part (a) noting that $H = (H \setminus Sol(G)) \cup (H \cap Sol(G))$.

Theorem 3.2.3. Let G be a finite non-solvable group. Then |G| is bounded above by a function of $\gamma(\mathcal{S}(G))$.

Proof. Let
$$\gamma(\mathcal{S}(G)) = m$$
 and $h_m = \left\lfloor \frac{7+\sqrt{1+48m}}{2} \right\rfloor$. By Lemma 3.2.1, we have
 $\mathcal{S}(G)[x \operatorname{Sol}(G)] \cong K_{|\operatorname{Sol}(G)|},$

where $x \in G \setminus \text{Sol}(G)$. Therefore by Proposition 3.2.2(a), $|\text{Sol}(G)| \leq h_m$.

Let P be a Sylow p-subgroup of G for any prime p dividing |G| having order p^n for some positive integer n. Then P is a solvable. Therefore, by Proposition 3.2.2(c), we have $|P| \leq h_m + |\operatorname{Sol}(G)| \leq 2h_m$. Hence, $|G| < (2h_m)^{h_m}$ noting that the number of primes less than $2h_m$ is at most h_m . This completes the proof. \Box

As an immediate consequence of Theorem 3.2.3 we have the following corollary.

Corollary 3.2.4. Let n be a non-negative integer. Then there are at the most finitely many finite non-solvable groups G such that $\gamma(\mathcal{S}(G)) = n$.

The following lemma is essential in proving the main results of this section.

Lemma 3.2.5. If G is a non-solvable group of order not exceeding 120 then S(G) has a subgraph isomorphic to K_{11} and $\gamma(S(G)) \ge 5$.

Proof. If G is a non-solvable group and $|G| \leq 120$ then G is isomorphic to $A_5, A_5 \times \mathbb{Z}_2, S_5$ or SL(2,5). Note that $|\operatorname{Sol}(A_5)| = |\operatorname{Sol}(S_5)| = 1$ and $|\operatorname{Sol}(A_5 \times \mathbb{Z}_2)| = |\operatorname{Sol}(SL(2,5))| = 2$.

Also, A_5 has a solvable subgroup of order 12 and S_5 , $A_5 \times \mathbb{Z}_2$, SL(2,5) have solvable subgroups of order 24. It follows that $\mathcal{S}(G)$ has a subgraph isomorphic to K_{11} . Therefore, by (1.1.b), $\gamma(\mathcal{S}(G)) \geq \gamma(K_{11}) = 5$.

Theorem 3.2.6. The solvable graph of a finite non-solvable group is neither planar, toroidal, double-toroidal nor triple-toroidal.

Proof. Let G be a finite non-solvable group. Note that it is enough to show $\gamma(\mathcal{S}(G)) \geq 4$ to complete the proof. Suppose that $\gamma(\mathcal{S}(G)) \leq 3$. Let $x \in G \setminus \operatorname{Sol}(G)$ such that $x^2 \notin \operatorname{Sol}(G)$. Such element exists by Lemma 3.1.6. Since any two elements of the set $A = x \operatorname{Sol}(G) \cup x^2 \operatorname{Sol}(G)$ generate a solvable group, by Proposition 3.2.2(a), we have $2|\operatorname{Sol}(G)| = |A| \leq \left\lfloor \frac{7+\sqrt{1+48\cdot3}}{2} \right\rfloor = 9$. Thus $|\operatorname{Sol}(G)| \leq 4$. Let p be a prime divisor of |G| and P is a Sylow psubgroup of G. Since P is solvable, by Proposition 3.2.2(c), we get $|P| \leq 9 + |P \cap \operatorname{Sol}(G)| \leq 13$. If |P| = 11 or 13 then $|P \cap \operatorname{Sol}(G)| = 1$. Therefore, $\mathcal{S}(G)[P \setminus \operatorname{Sol}(G)] \cong K_{10}$ or K_{12} . Using (1.1.b), we get $\gamma(\mathcal{S}(G)[P \setminus \operatorname{Sol}(G)]) = 4$ or 6. Therefore, $\gamma(\mathcal{S}(G)) \geq \gamma(\mathcal{S}(G)[P \setminus \operatorname{Sol}(G)]) \geq 4$, a contradiction. Thus $|P| \leq 9$ and hence $p \leq 7$. This shows that |G| divides $2^3 \cdot 3^2 \cdot 5 \cdot 7$.

We consider the following cases.

Case 1. |Sol(G)| = 4.

If *H* is a Sylow *p*-subgroup of *G* where p = 5 or 7 then $\langle H, \operatorname{Sol}(G) \rangle$ is solvable since *H* is solvable (by Lemma 3.2.1) We have $|H \cap \operatorname{Sol}(G)| = 1$ and $|\langle H, \operatorname{Sol}(G) \rangle| = 20, 28$ according as p = 5, 7 respectively. Therefore $\mathcal{S}(G)[\langle H, \operatorname{Sol}(G) \rangle \setminus \operatorname{Sol}(G)] \cong K_{16}$ or K_{24} . By (1.1.*b*) we get $\gamma(\mathcal{S}(G)) \ge \gamma(\mathcal{S}(G)[\langle H, \operatorname{Sol}(G) \rangle \setminus \operatorname{Sol}(G)]) \ge 13$, which is a contradiction.

Thus |G| is a divisor of 72. Therefore, by Lemma 3.2.5 we have $\gamma(\mathcal{S}(G)) \geq 5$, a contradiction.

Case 2. |Sol(G)| = 3.

If H is a Sylow p-subgroup of G where p = 5 or 7 then $\langle H, \text{Sol}(G) \rangle$ is solvable. We have $|H \cap \text{Sol}(G)| = 1$ and $|\langle H, \text{Sol}(G) \rangle| = 15, 21$ according as p = 5, 7 respectively. Therefore

 $\mathcal{S}(G)[\langle H, \mathrm{Sol}(G) \rangle \setminus \mathrm{Sol}(G)] \cong K_{12} \text{ or } K_{18}.$

By (1.1.b) we get $\gamma(\mathcal{S}(G)) \ge \gamma(\mathcal{S}(G)[\langle H, \operatorname{Sol}(G) \rangle \setminus \operatorname{Sol}(G)]) \ge 6$, which is a contradiction.

Thus |G| is a divisor of 72. Therefore, by Lemma 3.2.5 we have $\gamma(\mathcal{S}(G)) \geq 5$, a contradiction.

Case 3. |Sol(G)| = 2.

If *H* is a Sylow 7-subgroup of *G* then $\langle H, \operatorname{Sol}(G) \rangle$ is solvable. We have $|H \cap \operatorname{Sol}(G)| = 1$ and $|\langle H, \operatorname{Sol}(G) \rangle| = 14$. So, $\mathcal{S}(G)[\langle H, \operatorname{Sol}(G) \rangle \setminus \operatorname{Sol}(G)] \cong K_{12}$. By (1.1.*b*) we get $\gamma(\mathcal{S}(G)) \ge \gamma(\mathcal{S}(G)[\langle H, \operatorname{Sol}(G) \rangle \setminus \operatorname{Sol}(G)]) \ge 6$, which is a contradiction. Let *K* be a Sylow 3-subgroup of G. If |K| = 9 then $\langle K, \operatorname{Sol}(G) \rangle$ is solvable since K is solvable (by Lemma 3.2.1). We have $|K \cap \operatorname{Sol}(G)| = 1$ and $|\langle K, \operatorname{Sol}(G) \rangle| = 18$. So, $\mathcal{S}(G)[\langle K, \operatorname{Sol}(G) \rangle \setminus \operatorname{Sol}(G)] \cong K_{16}$. By (1.1.b) we get $\gamma(\mathcal{S}(G)) \ge \gamma(\mathcal{S}(G)[\langle K, \operatorname{Sol}(G) \rangle \setminus \operatorname{Sol}(G)]) = 13$, which is a contradiction.

Thus |G| is a divisor of 120. Therefore, by Lemma 3.2.5 we have $\gamma(\mathcal{S}(G)) \geq 5$, a contradiction.

Case 4. |Sol(G)| = 1.

In this case, first we shall show that $7 \nmid |G|$. On the contrary, assume that $7 \mid |G|$. Let n be the number of Sylow 7-subgroups of G. Then $n \mid 2^3.3^2.5$ and $n \equiv 1 \mod 7$. If $n \neq 1$ then $n \geq 8$. Let H_1, \ldots, H_8 be the eight distinct Sylow 7-subgroup of G. Then the subgraph induced $\mathcal{S}(G)[H_i \setminus \text{Sol}(G)]$ for each $1 \leq i \leq 8$ will contribute $\gamma(\mathcal{S}(G)[H_i \setminus \text{Sol}(G)]) = 1$ to the genus of $\mathcal{S}(G)$. Thus

$$\gamma(\mathcal{S}(G)) \ge \sum_{i=1}^{8} \gamma(\mathcal{S}(G)[H_i \setminus \operatorname{Sol}(G)]) = 8,$$

a contradiction. Therefore, Sylow 7-subgroup of G is unique and hence normal. Since we have started with a non-solvable group, by Result 1.2.4, it follows that G has an abelian subgroup of order at least 14. Therefore, by (1.1.b) we have $\gamma(\mathcal{S}(G)) \geq \gamma(K_{13}) = 8$, a contradiction. Hence, |G| is a divisor of $2^3 \cdot 3^2 \cdot 5$.

Now, we shall show that $9 \nmid |G|$. Assume that, on the contrary, $9 \mid |G|$. If Sylow 3subgroup of G is not normal in G then the number of Sylow 3-subgroup is greater than or equal to 4. Let H_1, H_2, H_3 be the three Sylow 3-subgroup of G. Then the induced subgraph $\mathcal{S}(G)[H_1 \setminus \mathrm{Sol}(G)] \cong K_8$ and so it contributes $\gamma(\mathcal{S}(G)[H_1 \setminus \mathrm{Sol}(G)]) = 2$ to the genus of $\mathcal{S}(G)$. If $|H_1 \cap H_2| = 1$ then the induced subgraph $\mathcal{S}(G)[H_2 \setminus \mathrm{Sol}(G)] \cong K_8$ and so it contributes +2 to the genus $\mathcal{S}(G)$. Thus

$$\gamma(\mathcal{S}(G)) \ge \gamma(\mathcal{S}(G)[(H_1 \cup H_2) \setminus \operatorname{Sol}(G)]) = 4$$

which is a contradiction. So assume that $|H_1 \cap H_2| = 3$. Similarly $|H_1 \cap H_3| = 3$ and $|H_2 \cap H_3| = 3$. Let $M = H_2 \setminus H_1$. Then |M| = 6. Also note that if $L = H_1 \cup H_2$ and $K = H_3 \setminus L$ then $|K| \ge 4$. Also $H_1 \cap M = H_1 \cap K = M \cap K = \emptyset$.

If $|K| \ge 5$ then H_1 contribute +2 to genus of $\mathcal{S}(G)$, M and K each contribute +1 to genus of $\mathcal{S}(G)$. Hence genus of $\mathcal{S}(G)$ is greater than or equal to 4, a contradiction.

Assume that |K| = 4. In this case $|M \cap H_3| = 2$. Let $x \in M \cap H_3$. Then H_1 contribute +2 to genus of $\mathcal{S}(G)$, $M \setminus \{x\}$ and $K \cup \{x\}$ each contribute +1 to genus of $\mathcal{S}(G)$. Hence genus of $\mathcal{S}(G)$ is greater than or equal to 4, a contradiction.

These show that the Sylow 3-subgroup of G is unique and hence normal in G. Therefore, by Result 1.2.4 and Lemma 3.2.5, G has an abelian subgroup A of order at least 18. Hence,

$$\gamma(\mathcal{S}(G)) \ge \gamma(\mathcal{S}(G)[A \setminus \operatorname{Sol}(G)]) \ge \gamma(K_{17}) = 16$$

which is a contradiction.

It follows that $9 \nmid |G|$ and |G| is a divisor of 120. Therefore, by Lemma 3.2.5 we get $\gamma(\mathcal{S}(G)) \geq 5$, a contradiction. Hence, $\gamma(\mathcal{S}(G)) \geq 4$ and the result follows.

The above theorem gives that $\gamma(\mathcal{S}(G)) \ge 4$. Usually, genera of solvable graphs of finite non-solvable groups are very large. For example, if *G* is the smallest non-solvable group A_5 then $\mathcal{S}(G)$ has 59 vertices and 571 edges. Also $\gamma(\mathcal{S}(G)) \ge 571/6 - 59/2 + 1 = 68$ (follows from Result 1.1.2).

The following theorem shows that the crosscap number of the solvable graph of a finite non-solvable group is greater than 1.

Proposition 3.2.7. The solvable graph of a finite non-solvable group is not projective.

Proof. Suppose G is a finite non-solvable group whose solvable graph is projective. Note that if $\mathcal{S}(G)$ has a subgraph isomorphic to K_n then, by (1.1.c), we must have $n \leq 6$. Let $x \in G$, such that $x, x^2 \notin \text{Sol}(G)$. Then

$$\mathcal{S}(G)[x\operatorname{Sol}(G) \cup x^2\operatorname{Sol}(G)] \cong K_{2|\operatorname{Sol}(G)|}.$$

Therefore, $2|\operatorname{Sol}(G)| \leq 6$ and hence $|\operatorname{Sol}(G)| \leq 3$.

Let $p \mid |G|$ be a prime and P be a Sylow p-subgroup of G. Then $\mathcal{S}(G)[P \setminus \text{Sol}(G)] \cong K_{|P \setminus \text{Sol}(G)|}$ since P is solvable. Therefore, $|P \setminus \text{Sol}(G)| = |P| - |P \cap \text{Sol}(G)| \le 6$ and hence $|P| \le 9$. This shows that |G| is a divisor of $2^3 \cdot 3^2 \cdot 5 \cdot 7$.

If 7 | |G| then the Sylow 7-subgroup of G is unique and hence normal in G; otherwise, let H and K be two Sylow 7-subgroup of G. Then $|H \cap K| = |H \cap \text{Sol}(G)| = |K \cap \text{Sol}(G)| = 1$. Therefore, $\mathcal{S}(G)[(H \cup K) \setminus \text{Sol}(G)]$ has a subgraph isomorphic to $2K_6$. Hence, $\mathcal{S}(G)$ has a subgraph isomorphic to $2K_5$, which is a contradiction. Similarly, if 9 | |G| then the Sylow 3-subgroup of G is normal in G. Therefore, by Result 1.2.4, it follows that $|G| \leq 72$ or |G| is a divisor of $2^3.3.5$. In the both cases, by Lemma 3.2.5, $\mathcal{S}(G)$ has complete subgraphs isomorphic to K_{11} , which is a contradiction. This completes the proof.

We conclude this section, by an observation and a couple of problems regarding the diameter and connectedness of S(G). Using the following programme in GAP[91], we see

that the solvable graph of the groups A_5 , S_5 , $A_5 \times \mathbb{Z}_2$, SL(2,5), PSL(3,2) and GL(2,4) are connected with diameter 2. The solvable graphs of S_6 and A_6 are connected with diameters greater than 2.

```
g:=PSL(3,2);
sol:=RadicalGroup(g);
L:=[];
gsol:=Difference(g,sol);
for x in gsol do
 AddSet(L,[x]);
 for y in Difference(gsol,L) do
  if IsSolvable(Subgroup(g,[x,y]))=true then
   break;
  fi;
  i:=0;
  for z in gsol do
   if IsSolvable(Subgroup(g,[x,z]))=true and
   IsSolvable(Subgroup(g,[z,y]))=true
   then
    i:=1;
    break;
   fi;
  od;
  if i=0 then
   Print("Diameter>2");
   Print(x," ",y);
  fi;
 od;
od;
```

In this connection, the following problems were posed in [22].

Problem 3.2.8. Is $\mathcal{S}(G)$ connected for any finite non-solvable group G?

Problem 3.2.9. Is there any finite bound for the diameter of $\mathcal{S}(G)$ when $\mathcal{S}(G)$ is connected?

It is worth mentioning that Akbari et al. [9] have answered these problems by proving that S(G) is connected and diameter of S(G) is at the most 11. Akbari et al. [9] also remarked that the actual bound for the diameter of S(G) is much smaller than 11. Recently, Burness, Lucchini and Nemmi [28] have shown that S(G) is connected and its diameter is less than or equal to 5.

3.3 Relations with solvability degree

In this section, we study a few properties of $P_s(G)$, the solvability degree of G, and derive a connection between $P_s(G)$ and S(G) for finite non-solvable groups G. We begin with the following lemma.

Lemma 3.3.1. Let G be a finite group. Then $P_s(G) = \frac{1}{|G|^2} \sum_{u \in G} |\operatorname{Sol}_G(u)|$.

Proof. Let $S = \{(u, v) \in G \times G : \langle u, v \rangle \text{ is solvable} \}$. Then

$$\mathcal{S} = \bigcup_{u \in G} (\{u\} \times \{v \in G : \langle u, v \rangle \text{ is solvable}\}) = \bigcup_{u \in G} (\{u\} \times \operatorname{Sol}_G(u)).$$

Therefore, $|\mathcal{S}| = \sum_{u \in G} |\operatorname{Sol}_G(u)|$. Hence, the result follows from (1.2.*b*).

Corollary 3.3.2. $|G|P_s(G)$ is an integer for any finite group G.

Proof. By Result 1.2.10 we have that |G| divides $\sum_{u \in G} |\operatorname{Sol}_G(u)|$. Hence, the result follows from Lemma 3.3.1.

We have the following lower bound for $P_s(G)$.

Theorem 3.3.3. For any finite group G,

$$P_s(G) \ge \frac{|\operatorname{Sol}(G)|}{|G|} + \frac{2(|G| - |\operatorname{Sol}(G)|)}{|G|^2}$$

Proof. By Lemma 3.3.1, we have

$$|G|^{2}P_{s}(G) = \sum_{u \in \operatorname{Sol}(G)} |\operatorname{Sol}_{G}(u)| + \sum_{u \in G \setminus \operatorname{Sol}(G)} |\operatorname{Sol}_{G}(u)|$$
$$= |G||\operatorname{Sol}(G)| + \sum_{u \in G \setminus \operatorname{Sol}(G)} |\operatorname{Sol}_{G}(u)|.$$
(3.3.a)

By Result 1.2.7, $|C_G(u)|$ is a divisor of $|\operatorname{Sol}_G(u)|$ for all $u \in G$ where $C_G(u) = \{v \in G : uv = vu\}$, the centralizer of $u \in G$. Since $|C_G(u)| \ge 2$ for all $u \in G$ we have $|\operatorname{Sol}_G(u)| \ge 2$ for all $u \in G$. Therefore

$$\sum_{u \in G \setminus \operatorname{Sol}(G)} |\operatorname{Sol}_G(u)| \ge 2(|G| - |\operatorname{Sol}(G)|).$$

Hence, the result follows from (3.3.a).

The following theorem shows that $P_s(G) > \Pr(G)$ for any finite non-solvable group.

Theorem 3.3.4. Let G be a finite group. Then $P_s(G) \ge \Pr(G)$ with equality if and only if G is abelian.

Proof. For all $u \in G$ we have $C_G(u) \subseteq \operatorname{Sol}_G(u)$ and so $|\operatorname{Sol}_G(u)| \ge |C_G(u)|$. Therefore, by Lemma 3.3.1 and (1.2.*a*) we get

$$P_s(G) = \frac{1}{|G|^2} \sum_{x \in G} |\operatorname{Sol}_G(x)|$$

$$\geq \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| = \Pr(G).$$

Clearly, $P_s(G) = \Pr(G)$ if and only if $\operatorname{Sol}_G(u) = C_G(u)$ for all $u \in G$. Therefore, if G is abelian then $\operatorname{Sol}_G(u) = G = C_G(u)$ for all $u \in G$ and so

$$P_s(G) = 1 = \Pr(G).$$

Suppose that $Sol_G(u) = C_G(u)$ for all $u \in G$. Then G is an S-group. Let $a, b \in G$. Then $\langle a, b \rangle$ is solvable. Therefore

$$b \in \mathrm{Sol}_G(a) = C_G(a)$$

and so ab = ba. Hence, G is abelian. This completes the proof.

Let $|e(\mathcal{S}(G))|$ be the number of edges of the solvable graph $\mathcal{S}(G)$ of G. The following theorem gives a relation between $P_s(G)$ and $|e(\mathcal{S}(G))|$.

Theorem 3.3.5. Let G be a finite non-solvable group. Then

$$2|e(\mathcal{S}(G))| = |G|^2 P_s(G) + |\operatorname{Sol}(G)|^2 + |\operatorname{Sol}(G)| - |G|(2|\operatorname{Sol}(G)| + 1).$$

Proof. We have

$$2|e(\mathcal{S}(G))| = |\{(x,y) \in (G \setminus \operatorname{Sol}(G)) \times (G \setminus \operatorname{Sol}(G)) : \langle x,y \rangle \text{ is solvable}\}| - |G| + |\operatorname{Sol}(G)|.$$

Also

$$\begin{split} \mathcal{S} &= \{ (x,y) \in G \times G : \langle x,y \rangle \text{ is solvable} \} \\ &= \operatorname{Sol}(G) \times \operatorname{Sol}(G) \quad \sqcup \quad \operatorname{Sol}(G) \times (G \setminus \operatorname{Sol}(G)) \quad \sqcup \quad (G \setminus \operatorname{Sol}(G)) \times \operatorname{Sol}(G) \\ &\sqcup \quad \{ (x,y) \in (G \setminus \operatorname{Sol}(G)) \times (G \setminus \operatorname{Sol}(G)) : \langle x,y \rangle \text{ is solvable} \}. \end{split}$$

Therefore

$$|\mathcal{S}| = |\operatorname{Sol}(G)|^2 + 2|\operatorname{Sol}(G)|(|G| - |\operatorname{Sol}(G)|) + 2|e(\mathcal{S}(G))| + |G| - |\operatorname{Sol}(G)|,$$

so by Lemma 3.3.1,

$$|G|^2 P_s(G) = |G|(2|\operatorname{Sol}(G)| + 1) - |\operatorname{Sol}(G)|^2 - |\operatorname{Sol}(G)| + 2|e(\mathcal{S}(G))|.$$

Hence, the result follows.

We conclude this chapter noting that lower bounds for |e(S(G))| can be obtained from Theorem 3.3.5 using the lower bounds given in Theorem 3.3.3, Theorem 3.3.4 and the lower bounds for Pr(G) obtained in Result 1.2.18.