
Chapter 4

Non-solvable graphs of groups

The non-solvable graph of a finite groupG, denoted by NS(G), is the complement of solv-

able graph of G considered in Chapter 3. In this chapter, we consider NS(G) and obtain

many results including certain results on graph realization. More precisely, in Section 4.1,

we shall study certain properties of degree of a vertex and vertex degree set of NS(G).
We shall also obtain certain bounds for Ps(G), including a better lower bound than the

lower bound obtained in Theorem 3.3.3. In Section 4.2, we shall show that NS(G) is not

bipartite, more generally it is not complete multi-partite. We shall also show that NS(G)
is hamiltonian for some classes of finite groups. In Sections 4.3-4.5, we shall obtain sev-

eral results regarding domination number, vertex connectivity, independence number and

clique number of NS(G). In section 4.6,we shall consider two groupsG andH having iso-

morphic non-solvable graphs and derive some properties of G and H . In the last section,

we shall show that the genus of NS(G) is greater or equal to 4. Hence, NS(G) is neither

planar, toroidal, double-toroidal nor triple-toroidal. We conclude this chapter by showing

that NS(G) is not projective. This chapter is based on our paper [23] published in the

Bulletin of the Malaysian Mathematical Sciences Society.

4.1 Vertex degree and cardinality of vertex degree set

It is easy to see that degNS(G)(x) = |G| − |SolG(x)| for any vertex x in the non-solvable

graph NS(G) of the group G. In [59], Hai-Reuven have shown that

6 ≤ degNS(G)(x) ≤ |G| − | Sol(G)| − 2 (4.1.a)
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Chapter 4. Non-solvable graphs of groups

for any x ∈ G \Sol(G). In this section, we first obtain some bounds for Ps(G) using (4.1.a).

The following result gives a connection between Ps(G) and the number of edges in NS(G).

Lemma 4.1.1. If G is a finite non-solvable group then

2|e(NS(G))| =
∑

x∈G\Sol(G)

degNS(G)(x) = |G|2(1− Ps(G)).

Proof. Let U = {(x, y) ∈ G×G : ⟨x, y⟩ is not solvable}. Then

|U | = |G×G| − |{(x, y) ∈ G×G : ⟨x, y⟩ is solvable}| = |G|2 − Ps(G)|G|2.

Note that

|U | = 2|e(NS(G))| =
∑

x∈G\Sol(G)

degNS(G)(x).

Hence the result follows.

Now we obtain the following bounds for Ps(G).

Theorem 4.1.2. If G is a finite non-solvable group then

2(|G| − | Sol(G)|)
|G|2

+
2| Sol(G)|

|G|
− |Sol(G)|2

|G|2
≤ Ps(G) ≤ 1− 6(|G| − | Sol(G)|)

|G|2
.

Proof. By Lemma 4.1.1 and (4.1.a), we have

6(|G| − | Sol(G)|) ≤ |G|2(1− Ps(G)) ≤ (|G| − | Sol(G)|)(|G| − | Sol(G)| − 2)

and hence the result follows on simplification.

Note that | Sol(G)|
|G| − |Sol(G)|2

|G|2 > 0 for any finite non-solvable group G. Hence, the lower

bound obtained in Theorem 4.1.2 for Ps(G) is better than the bound obtained in Theorem

3.3.3.

It was also shown in Result 1.3.17 that |deg(NS(G))| ≠ 2, where deg(NS(G)) is the

vertex degree set of NS(G). However,we observe that the cardinality of deg(NS(G)) may

be equal to 3. In this section, we shall obtain a class of groups G such that |deg(NS(G))|
= 3. Note that deg(NS(A5)) = {24, 36, 50}. More generally, we have the following result.

Proposition 4.1.3. Let S be any finite solvable group. Then | deg(NS(A5 × S))| = 3.

The proof of Proposition 4.1.3 follows from the fact that |deg(NS(A5))| = 3 and the

result given below.
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Lemma 4.1.4. Let G be a finite non-solvable group and S be any finite solvable group.

Then | deg(NS(G))| = | deg(NS(G× S))|.

Proof. Let (x, s), (y, t) ∈ G×S then ⟨(x, s), (y, t)⟩ ⊆ ⟨x, y⟩× ⟨s, t⟩. Therefore, ⟨(x, s), (y, t)⟩
is solvable if and only if ⟨x, y⟩ is solvable. Also, SolG×S((x, s)) = SolG(x) × S and hence

NbdNS(G×S)((x, s)) = NbdNS(G)(x) × S. That is, degNS(G×S)((x, s)) = |S|degNS(G)(x).

This completes the proof.

Now we state the main result of this section.

Theorem 4.1.5. If G is a finite non-solvable group such that G/ Sol(G) ∼= A5 then

| deg(NS(G))| = 3.

To prove this theorem we need the following results.

Lemma 4.1.6. Let H be a subgroup of a finite group G and x, y ∈ G.

(a) If ⟨x, y⟩ is solvable then ⟨xu, yv⟩ is also solvable for all u, v ∈ Sol(G).

(b) If ⟨x, y⟩ is not solvable then ⟨xu, yv⟩ is not solvable for all u, v ∈ Sol(G).

Proof. Part (a) follows from the Lemma 3.2.1. Also, note that parts (a) and (b) are equiv-

alent.

Lemma 4.1.7. Let G be a finite group and x, y ∈ G. Then ⟨x Sol(G), y Sol(G)⟩ is solvable

if and only if ⟨x, y⟩ is solvable.

Proof. Let H = ⟨x, y⟩ and Z = Sol(G). Note that ⟨xZ, yZ⟩ = HZ
Z . Suppose ⟨xZ, yZ⟩ is

solvable. Then HZ
Z is solvable. Since Z ⊂ Sol(HZ) and Z is a normal subgroup of HZ, by

Result 1.2.9, we have
SolHZ(x)

Z
= SolHZ

Z
(xZ) =

HZ

Z
.

Therefore, SolHZ(x) = HZ. In particular, SolH(x) = H and so H is solvable.

If H is solvable then, by Lemma 4.1.6(a), SolHZ(x) = HZ for all x ∈ HZ. Thus HZ

is solvable and so HZ
Z is solvable. Hence, ⟨xiZ, xjZ⟩ is solvable for xi, xj ∈ HZ and so

⟨xZ, yZ⟩ is solvable.

Proposition 4.1.8. Let G be a finite non-solvable group. Then for all x ∈ G \ Sol(G) we

have

degNS(G)(x) = degNS(G/ Sol(G))(x Sol(G))|Sol(G)|.
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Proof. Let y ∈ NbdNS(G)(x). By Lemma 4.1.6(b), we have yz ∈ NbdNS(G)(x) for all

z ∈ Sol(G). Thus NbdNS(G)(x) is a union of distinct cosets of Sol(G). Let NbdNS(G)(x) =

y1 Sol(G) ∪ y2 Sol(G) ∪ · · · ∪ yn Sol(G). Then degNS(G)(x) = n|Sol(G)|. By Lemma 4.1.7,

we have ⟨x Sol(G), yi Sol(G)⟩ is not solvable if and only if ⟨x, yi⟩ is not solvable. There-

fore, NbdNS(G/ Sol(G))(x Sol(G)) = {y1 Sol(G), y2 Sol(G), . . . , yn Sol(G)} in NS(G/ Sol(G)).
Hence, degNS(G/Sol(G))(x Sol(G)) = n and the result follows.

As a consequence of Proposition 4.1.8 we have the following corollary.

Corollary 4.1.9. Let G be a finite non-solvable group. Then | deg(NS(G/Sol(G)))| =

| deg(NS(G))|.

Proof of Theorem 4.1.5: Note that G/ Sol(G) ∼= A5 implies NS(G/ Sol(G)) ∼= NS(A5).

Therefore

|deg (NS(G/ Sol(G)))| = |deg(NS(A5))| = 3.

Hence, the result follows from Corollary 4.1.9.

We conclude this section with the following upper bound for | deg(NS(G))|.

Theorem 4.1.10. If G is a finite non-solvable group having n distinct solvabilizers then

|deg(NS(G))| ≤ n− 1.

Proof. Let G,X1, X2, . . . , Xn−1 be the distinct solvabilizers of G where SolG(xi) = Xi for

some xi ∈ G \ Sol(G) and i = 1, 2, . . . , n− 1. Then

deg(NS(G)) = {|G| − |X1|, |G| − |X2|, . . . , |G| − |Xn−1|}.

Hence, the result follows.

4.2 Graph realization

By using Result 1.2.11, it can be shown that NS(G) is connected with diameter two. It is

also shown that NS(G) is not regular and hence not a complete graph. Recently, Akbari

[8] have shown that NS(G) is not a tree. In this section, we shall show that NS(G) is not

a complete multi-partite graph. We shall also show that NS(G) is hamiltonian for some

groups.

Theorem 4.2.1. Let G be a finite non-solvable group. Then NS(G) is not a complete

multi-partite graph. In particular, NS(G) is not a complete bipartite graph.
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Proof. SupposeNS(G) is a complete multi-partite graph. LetX1, X2, . . . , Xn be the partite

sets. Let x ∈ G \ Sol(G) then x ∈ Xi for some i and SolG(x) = Sol(G) ∪ Xi. Let y, z ∈
SolG(x). Then ⟨y, z⟩ is solvable and yz ∈ SolG(y) = SolG(x). Thus SolG(x) is a subgroup

of G. By Result 1.2.8, G is solvable, a contradiction. Hence, the result follows.

Theorem 4.2.2. Let G be a finite non-solvable group. Then NS(G) is not a bipartite

graph.

Proof. Suppose NS(G) is a bipartite graph. Let X,Y be the partite sets. Let x ∈ X and

y ∈ Y . Then, by Result 1.2.11, there exists z ∈ G \ Sol(G) such that ⟨x, z⟩ and ⟨y, z⟩ are

not solvable. Therefore, z /∈ X ∪ Y , a contradiction. Hence the result follows.

Theorem 4.2.3. Let G be a finite non-solvable group such that |SolG(x)| ≤ |G|
2 for all

x ∈ G \ Sol(G). Then NS(G) is hamiltonian.

Proof. Note that degNS(G)(x) = |G|−|SolG(x)| for all x ∈ G\Sol(G). Since |SolG(x)| ≤ |G|
2

for all x ∈ G \ Sol(G) we have |G| ≥ 2|SolG(x)|. Thus, it follows that degNS(G)(x) >

(|G| − | Sol(G)|)/2. Therefore by Result 1.1.1, NS(G) is hamiltonian.

Corollary 4.2.4. The non-solvable graph of the group PSL(3, 2)⋊ Z2, A6 and PSL(2, 8)

are hamiltonian.

Proof. The result follows from Theorem 4.2.3 using the fact that |SolG(x)| ≤ |G|
2 for all

x ∈ G \ Sol(G) where G = PSL(3, 2)⋊ Z2, A6 and PSL(2, 8).

The following result shows that there is a group G with |SolG(x)| > |G|/2 for some

x ∈ G \ Sol(G) such that NS(G) is hamiltonian.

Proposition 4.2.5. The non-solvable graph of A5 is Hamiltonian.

Proof. For any two vertex a and b we write a ∼ b if a is adjacent to b. It can be verified

that

(1, 5, 4, 3, 2) ∼ (1, 3)(2, 5) ∼ (2, 3, 4) ∼ (1, 4)(3, 5) ∼ (2, 5, 4) ∼ (1, 2)(3, 4) ∼ (1, 5, 4) ∼
(2, 5)(3, 4) ∼ (1, 3, 5) ∼ (1, 4)(2, 5) ∼ (2, 4, 3) ∼ (1, 3)(4, 5) ∼ (1, 2, 5) ∼ (1, 4)(2, 3) ∼
(3, 5, 4) ∼ (1, 5)(2, 4) ∼ (1, 2, 3) ∼ (1, 5)(3, 4) ∼ (2, 3, 5) ∼ (1, 4, 2) ∼ (2, 3)(4, 5) ∼ (1, 5, 2) ∼
(2, 4)(3, 5) ∼ (1, 4, 5) ∼ (1, 2)(3, 5) ∼ (1, 3, 4) ∼ (1, 2)(4, 5) ∼ (1, 5, 3) ∼ (1, 4, 2, 5, 3) ∼
(1, 3, 2) ∼ (3, 4, 5) ∼ (1, 3)(2, 4) ∼ (2, 5, 3) ∼ (1, 2, 4) ∼ (1, 5)(2, 3) ∼ (2, 4, 5) ∼ (1, 4, 3) ∼
(1, 3, 5, 2, 4) ∼ (1, 4, 5, 3, 2) ∼ (1, 2, 3, 4, 5) ∼ (1, 2, 4, 3, 5) ∼ (1, 5, 3, 2, 4) ∼ (1, 4, 5, 2, 3) ∼
(1, 5, 4, 2, 3) ∼ (1, 3, 4, 5, 2) ∼ (1, 5, 3, 4, 2) ∼ (1, 3, 2, 4, 5) ∼ (1, 3, 2, 5, 4) ∼ (1, 2, 4, 5, 3) ∼
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(1, 2, 5, 4, 3) ∼ (1, 5, 2, 3, 4) ∼ (1, 2, 3, 5, 4 ∼ (1, 4, 3, 2, 5) ∼ (1, 4, 3, 5, 2) ∼ (1, 3, 4, 2, 5) ∼
(1, 4, 2, 3, 5) ∼ (1, 5, 2, 4, 3) ∼ (1, 3, 5, 4, 2) ∼ (1, 2, 5, 3, 4) ∼ (1, 5, 4, 3, 2)

is a hamiltonian cycle of NS(A5). Hence, NS(A5) is hamiltonian.

We conclude this section with the following question.

Question 4.2.6. Is NS(G) Hamiltonian for any finite non-solvable group G?

4.3 Domination number and vertex connectivity

In this section, we shall obtain a few results regarding λ(NS(G)), the domination number

of NS(G).

Proposition 4.3.1. Let G be a finite non-solvable group. Then λ(NS(G)) ̸= 1.

Proof. Let {x} be a dominating set for NS(G). If Sol(G) contains a non-trivial element z

then xz is adjacent to x, a contradiction. Hence, |Sol(G)| = 1.

If o(x) ̸= 2 then x is adjacent to x−1, which is a contradiction. Hence, o(x) = 2 and

so x ∈ P2, for some Sylow 2-subgroup P2 of G. Since | Sol(G)| = 1 and x is adjacent to

all vertices of NS(G) we have SolG(x) = ⟨x⟩. Also, P2 ⊆ SolG(x) and so P2 = ⟨x⟩. If Q2

is another Sylow 2-subgroup of G then |Q2| = 2 and so ⟨P2, Q2⟩ is a dihedral group and

hence solvable. That is, x is not adjacent to y ∈ Q2, y ̸= 1, which is a contradiction. Thus

it follows that P2 is normal in G. Let g ∈ G \ P2. Then gxg
−1 = x, that is xg = gx and so

x ∈ Z(G), which is a contradiction. Hence, the result follows.

Using GAP [91], it can be seen that λ(NS(A5)) = λ(NS(S5)) = 4. In fact, {(3, 4, 5),
(1, 2, 3, 4, 5), (1, 2, 4, 5, 3), (1, 5)(2, 4)} and {(4, 5), (1, 2)(3, 4, 5), (1, 3)(2, 4, 5), (1, 5)(2, 4)} are

dominating sets forA5 and S5 respectively. At this point we would like to ask the following

question.

Question 4.3.2. Is there any finite non-solvable group G such that λ(NS(G)) = 2, 3?

Proposition 4.3.3. Let G be a non-solvable group. Then a subset S of V (NS(G)) is a

dominating set if and only if SolG(S) ⊂ Sol(G) ∪ S.

Proof. Suppose S is a dominating set. If a ̸∈ Sol(G) ∪ S then, by definition of dominating

set, there exists x ∈ S such that ⟨x, a⟩ is not solvable. Thus a ̸∈ SolG(S). It follows that

SolG(S) ⊂ S ∪ Sol(G).

Now assume that SolG(S) ⊂ Sol(G) ∪ S. If a ̸∈ Sol(G) ∪ S then by hypothesis, a ̸∈
SolG(S). Therefore, a is adjacent to at least one element of S. This completes the proof.
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We conclude this section with the following result on vertex cut set and vertex connec-

tivity of NS(G).

Proposition 4.3.4. Let G be a finite non-solvable group and let S be a vertex cut set of

NS(G). Then S is a union of cosets of Sol(G). In particular κ(NS(G)) = t| Sol(G)|, where
t > 1 is an integer.

Proof. Let a ∈ S. Then there exist two distinct components G1, G2 of NS(G) \ S and

two vertices x ∈ V (G1), y ∈ V (G2) such that a is adjacent to both x and y. By Lemma

4.1.6(b), x and y are also adjacent to az for any z ∈ Sol(G), and so aSol(G) ⊂ S. Thus S

is a union of cosets of Sol(G). Hence, κ(NS(G)) = t| Sol(G)|, where t ≥ 1 is an integer.

Suppose that |S| = κ(NS(G)). It follows from the first part that κ(NS(G)) = t|Sol(G)|
for some integer t ≥ 1. If t = 1 then S = bSol(G) for some element b ∈ G\Sol(G). Therefore,
there exist two distinct components G1, G2 of NS(G) \ S and r ∈ V (G1), s ∈ V (G2) such

that b is adjacent to both r and s. In other words, ⟨b, r⟩ and ⟨b, s⟩ are not solvable. Suppose
that o(b) ̸= 2. Then the number of integers less than o(b) and relatively prime to it is greater

or equal to 2. Let 1 ̸= i ∈ N such that gcd(i, o(b)) = 1. Then

⟨bi, r⟩ = ⟨b, r⟩ and ⟨bi, s⟩ = ⟨b, s⟩.

Therefore, bi is adjacent to both r and s. This is a contradiction since bi /∈ bSol(G). Hence,

o(b) = 2.

Suppose x′ ∈ V (G1) and y
′ ∈ V (G2) are adjacent to bz for some z ∈ Sol(G). Then, by

Lemma 4.1.6(b), b is adjacent to x′ and y′. Again, by Lemma 4.1.7, x′ Sol(G) and y′ Sol(G)

are adjacent to bSol(G) in the graph NS(G/ Sol(G)). That is, g Sol(G) and bSol(G) are

adjacent for all g Sol(G) ∈ V (NS(G/ Sol(G))). Therefore, {bSol(G)} is a dominating set

of NS(G/ Sol(G)) and so λ(NS(G/ Sol(G))) = 1. Hence, the result follows in view of

Proposition 4.3.1.

4.4 Independence Number

In this section we consider the following question on independence number of NS(G).

Question 4.4.1. Suppose G is a non-solvable group such that NS(G) has no infinite

independent set. Is it true that α(NS(G)) is finite?

It is worth mentioning that Question 4.4.1 is similar to Question 1.3.9 and Question

1.3.12 where Abdollahi et al. and Nongsiang et al. considered non-commuting and non-

nilpotent graphs of finite groups respectively. Note that the group considered in [80, Page
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86] in order to answer Question 1.3.12 negatively, also gives negative answer to Question

4.4.1. However, the next theorem gives affirmative answer to Question 4.4.1 for some

classes of groups.

Theorem 4.4.2. Let G be a non-solvable group such that NS(G) has no infinite indepen-

dent sets. If Sol(G) is a subgroup and G is an Engel, locally finite, locally solvable, a linear

group or a 2-group then G is a finite group. In particular α(NS(G)) is finite.

Note that Theorem 4.4.2 and its proof are similar to Result 1.3.10 and Result 1.3.13.

Proposition 4.4.3. Let G be a group. Then for every maximal independent set S of NS(G)
we have

∩
x∈S

SolG(x) = S ∪ Sol(G).

Proof. The result follows from the fact that S is maximal and S ∪ Sol(G) ⊂ SolG(x) for all

x ∈ S.

Remark 4.4.4. Let R = {(3, 4, 5), (1, 4)(3, 5), (2, 5, 3)} ⊂ A5. Then R is an independent

set of NS(A5) and ⟨R⟩ ∼= A5. This shows that a subgroup generated by an independent set

may not be solvable. Also there exist a maximal independent set S, such that R ⊆ S. Since

the edge set of NS(A5) is non-empty, we have S ̸= A5 \ Sol(A5), showing that S ∪ Sol(A5)

is not a subgroup of A5. Thus for a finite non-solvable group G and a maximal independent

set S of NS(G), S ∪ Sol(G) need not be a subgroup of G.

We conclude this section with the following result.

Theorem 4.4.5. The order of a finite non-solvable group G is bounded by a function of the

independence number of its non-solvable graph. Consequently, given a non-negative integer

k, there are at the most finitely many finite non-solvable groups whose non-solvable graphs

have independence number k.

Proof. Let x ∈ G such that x, x2 ̸∈ Sol(G). Then x Sol(G)∪x2 Sol(G) is an independent set

of NS(G). Thus |Sol(G)| ≤ k
2 . Let P be a Sylow subgroup of G then P is solvable. Thus it

follows that P \Sol(G) is an independent set of G. Hence |P \Sol(G)| ≤ k, that is |P | ≤ 3k
2 .

Since, the number of primes less or equal to 3k
2 is at most 3k

4 , we have |G| ≤ (3k2 )
3k
4 . This

completes the proof.
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4.5 Clique number of non-solvable graphs

In this section we prove the following results on clique number of NS(G).

Proposition 4.5.1. Let G be a finite non-solvable group.

(a) If H is a non-solvable subgroup of G then ω(NS(H)) ≤ ω(NS(G)).

(b) If G
N is non-solvable then ω(NS(GN )) ≤ ω(NS(G)). The equality holds when N =

Sol(G).

Proof. Part (a) follows from the fact that NS(H) is a subgraph of NS(G). For part (b),

we shall show that NS(GN ) is isomorphic to a subgraph of NS(G).
Let V (NS(GN )) = {x1N, x2N, . . . , xnN} and K = {x1, x2, . . . , xn}. Then, for xiN ∈

V (NS(GN )), there exist xjN ∈ V (NS(GN )) such that ⟨xiN, xjN⟩ is not solvable. Let H =

⟨xi, xj⟩. Then

⟨xiN, xjN⟩ = HN

N
.

Suppose H is solvable. Then there exists a sub-normal series {1} = H0 ≤ H1 ≤ H2 ≤ · · · ≤
Hn = H, where Hi is normal in Hi+1 and

Hi+1

Hi
is abelian for all i = 0, 1, . . . , n−1. Consider

the series N = H0N ≤ H1N ≤ · · · ≤ HnN = HN . We have HiN is normal in Hi+1N ,

for if an ∈ HiN and bm ∈ Hi+1N then bman(bm)−1 ∈ HiN . Also, Hi+1N
HiN

is abelian, for

if a, b ∈ Hi+1N
HiN

then a = kn1(HiN) = k(HiN) and b = ln2(HiN) = l(HiN). Therefore,

ab = kl(HiN). Since Hi+1/Hi is abelian, we have kHilHi = lHikHi, that is klHi = lkHi.

Thus

ab = kl(HiN) = (klHi)N = (lkHi)N = lk(HiN) = ba.

Therefore, Hi+1N
HiN

is abelian. Hence, HN is solvable and so HN/N = ⟨xiN, xjN⟩ is also

solvable; which is a contradiction. Therefore, H is non-solvable. Let L be a graph such that

V (L) = K and two vertices x, y of L are adjacent if and only if xN and yN are adjacent

in NS(GN ). Then L is a subgraph of NS(G)[K] and hence a subgraph of NS(G). Define

a map ϕ : V (NS(GN )) → V (L) by ϕ(xiN) = xi. Then ϕ is one-one and onto. Also two

vertices xiN and xjN are adjacent in NS(GN ) if and only if xi and xj are adjacent in L.

Thus NS(GN ) ∼= L.

IfN = Sol(G) then, by Lemma 4.1.7, it follows that {x1 Sol(G), x2 Sol(G), . . . , xt Sol(G)}
is a clique of NS( G

Sol(G)) if and only if {x1, x2, . . . , xt} is a clique of NS(G). Hence,

ω(NS( G
Sol(G))) = ω(NS(G)).
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Theorem 4.5.2. For any non-solvable group G and a solvable group S we have

ω(NS(G)) = ω(NS(G× S)).

Proof. Suppose C is a clique of NS(G). Let a, b ∈ C then ⟨a, b⟩ is not solvable. Now,

⟨(a, es), (b, es)⟩ ∼= ⟨a, b⟩, where es is the identity element of S, and so ⟨(a, es), (b, es)⟩ is not
solvable. Thus C×{es} is a clique of NS(G×S). Now suppose D is a clique of NS(G×S).
Let (x, s1), (y, s2) ∈ D, where x ̸= y. Then ⟨(x, s1), (y, s2)⟩ ⊆ ⟨x, y⟩ × ⟨s1, s2⟩. Since S is

solvable, we have ⟨s1, s2⟩ is solvable. Since ⟨(x, s1), (y, s2)⟩ is not solvable, we have ⟨x, y⟩
is not solvable. Thus E = {x : (x, s) ∈ D} is a clique of NS(G). Hence, the result follows

noting that |D| = |E|.

The following lemma is useful in obtaining a lower bound for ω(NS(G)).

Lemma 4.5.3. Let G be a finite non-solvable group. Then there exists an element x ∈
G \ Sol(G) such that o(x) is a prime greater or equal to 5.

Proof. Suppose that 1 ̸= o(x) = 2α3β for all x ∈ G \ Sol(G), where α and β are non-zero

integers. Then |G/ Sol(G)| = 2m3n for some non-zero integers m,n. Therefore, G/ Sol(G)

is solvable and so, by Lemma 4.1.7, G is solvable; a contradiction. This proves the existence

of an element x ∈ G \ Sol(G) such that o(x) is a prime greater or equal to 5.

Proposition 4.5.4. Let G be a finite non-solvable group. Then ω(NS(G)) ≥ 6.

Proof. By Lemma 4.5.3, we have an element x ∈ G\Sol(G) such that o(x) is a prime greater

or equal to 5. Let y ∈ G\Sol(G) such that x is adjacent to y. Then {x, y, xy, x2y, x3y, x4y}
is a clique of NS(G) and so ω(NS(G)) ≥ 6.

The following program in GAP [91] shows that

ω(NS(A5)) = ω(NS(SL(2, 5))) = ω(NS(Z2 ×A5)) = 8 and ω(NS(S5)) = 16.

Note that A5 = SmallGroup(60, 5), SL(2, 5) = SmallGroup(120, 5), S5 =

SmallGroup(120, 34) and Z2 × A5 = SmallGroup(120, 35). Also G/ Sol(G) ∼= A5 for G =

A5, SL(2, 5) and Z2 ×A5.

LoadPackage("GRAPE");

sol:=[60,120];

for n in sol do

allg:=AllSmallGroups(n);
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for g in allg do

if IsSolvable(g)=false then

h:=Graph(g,Difference(g,RadicalGroup(g)), OnPoints,function(x,y) return

IsSolvable(Subgroup(g,[x,y]))=false; end, true);

k:=CompleteSubgraphs(h);

cn:=[];

for i in k

do

AddSet(cn,Size(i));

od;

Print("\n",IdGroup(g),", ",StructureDescription(g),", cliquenumber=",

Maximum(cn),"\n");

fi;

od;

n:=n+1;

od;

The following program in GAP [91] shows that the clique number of NS(G) for groups

of order less or equal to 360 with G/ Sol(G) ̸∼= A5 is greater or equal to 9.

n:=120;

while n<=504 do

allg:=AllSmallGroups(n);

for g in allg do

if IsSolvable(g)=false then

rad:=RadicalGroup(g);

m:=Size(rad);

l:=n/m;

if l>60 then

dif:=Difference(g,rad);

for x in dif do

clique:=[x];

p:=0;

for y in dif do

i:=0;
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for z in clique do

if IsSolvable(Subgroup(g,[y,z]))=true then

i:=1;

break;

fi;

od;

if i=0 then

AddSet(clique,y);

fi;

if Size(clique)>9 then

p:=1;

break;

fi;

od;

if p=1 then

break;

fi;

od;

if p=1 then

Print(IdGroup(g), "Clique greater than 8", "\n","\n");

else

Print(IdGroup(g), "Not Clique greater than 8", "\n","\n");

fi;

fi;

fi;

od;

n:=n+1;

od;

We conclude this section with the following conjecture.

Conjecture 4.5.5. Let G be a non-solvable group such that ω(NS(G)) = 8. Then

G/ Sol(G) ∼= A5.
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4.6 Groups with the same non-solvable graphs

In [72],Moghaddamfar et al. conjectured that ifG andH are two non-abelian finite groups

such that their non-commuting graphs are isomorphic then |G| = |H|. This conjecture was

verified for several classes of finite groups in [1, 72]. However, the conjecture was refuted

by Moghaddamfar [71] in the year 2006. Recently, Nongsiang and Saikia [80] posed sim-

ilar conjecture for non-nilpotent graphs of finite groups. In this section, we consider the

following problem.

Problem 4.6.1. Let G and H be two non-solvable groups such that NS(G) ∼= NS(H).

Determine whether |G| = |H|.

We begin the section with the following theorem.

Theorem 4.6.2. Let G and H be two non-solvable groups such that NS(G) ∼= NS(H). If

G is finite then H is also finite. Moreover, | Sol(H)| divides

gcd(|G| − | Sol(G)|, |G| − | SolG(x)|, |SolG(g)| − | Sol(G)|),

where g ∈ G \ Sol(G), and hence |H| is bounded by a function of G.

Proof. Since NS(G) ∼= NS(H), we have |H \ Sol(H)| = |G \ Sol(G)| and so |H \ Sol(H)| is
finite. If h ∈ H \ Sol(H) then {aha−1 : a ∈ H} ⊂ H \ Sol(H), since Sol(H) is closed under

conjugation. Thus every element in H \Sol(H) has finitely many conjugates in H. It follows

that K = CH(H \Sol(H)) has finite index in H. Since NS(H) has no isolated vertex, there

exist two adjacent vertices u and v in NS(H). Now, if s ∈ K then s ∈ CH({u, v}) and so

⟨su, v⟩ is not solvable since ⟨su, v⟩ ∼= ⟨u, v⟩ × ⟨s⟩. Therefore Ku ⊂ H \ Sol(H) and so K is

finite. Hence, H is finite.

It follows that Sol(H) is a subgroup of H and so |Sol(H)| divides |H| − |Sol(H)|. Since
|H|−| Sol(H)| = |G|−| Sol(G)|, we have | Sol(H)| divides |G|−| Sol(G)|. Let x′ ∈ H\Sol(H)

and y ∈ SolH(x′). Then, by Lemma 4.1.6(a), ⟨x′, yz⟩ is solvable for all z ∈ Sol(H). Thus

SolH(x′) = Sol(H)∪y1 Sol(H)∪· · ·∪yn Sol(H), for some yi ∈ H. Therefore | Sol(H)| divides
|SolH(x′)| and so | Sol(H)| divides |H| − |SolH(x′)|. We have deg(NS(G)) = deg(NS(H))

since NS(G) ∼= NS(H). Also degNS(G)(g) = |G| − | SolG(g)| for any g ∈ V (NS(G))
and degNS(H)(h) = |H| − |SolH(h)| for any h ∈ V (NS(H)). Therefore |Sol(H)| divides
|H| − |SolH(h)| and hence |G| − |SolG(g)| for any g ∈ G \ Sol(G). Since | Sol(H)| divides
|G|−| Sol(G)| and |G|−| SolG(g)|, it divides |G|−| Sol(G)|−(|G|−| SolG(g)|) = | SolG(g)|−
|Sol(G)|. This completes the proof.
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Proposition 4.6.3. Let G be a non-solvable group such that NS(G) is finite. Then G is

a finite group.

Proof. It follows directly from the first paragraph of the proof of Theorem 4.6.2.

Proposition 4.6.4. Let G be a group such that NS(G) ∼= NS(A5) then G ∼= A5.

Proof. Since NS(G) ∼= NS(A5), we have G is a finite non-solvable group and

|G \ Sol(G)| = |A5 \ Sol(A5)| = 59.

Therefore, |G| = |Sol(G)| + 59. Since Sol(G) is a subgroup of G, we have | Sol(G)| ≤ |G|
2

and so |G| ≤ 118. Hence, the result follows.

Remark 4.6.5. Using the following program in GAP [91], one can see that the non-solvable

graphs of SL(2, 5) and Z2 × A5 are isomorphic. It follows that non-solvable graphs of two

groups are isomorphic need not implies that their corresponding groups are isomorphic.

LoadPackage("GRAPE");

g:=SmallGroup(120,5);

solg:=RadicalGroup(g);

gmc:= Difference(g,solg);

m:=Size(gmc);

h:=SmallGroup(120,35);

hmc:=Difference(h,RadicalGroup(h));

if m=Size(hmc) then

gg:=Graph(g,gmc,OnPoints,function(x,y) return

IsSolvable(Subgroup(g,[x,y]))=false; end, true);

gh:=Graph(h,hmc,OnPoints,function(x,y) return

IsSolvable(Subgroup(h,[x,y]))=false; end, true);

if IsIsomorphicGraph(gg,gh)=true then

Print("\n","\n","an example of G and H isomorphic

but not of same order.doc","G= ",

StructureDescription(g), ", ", " Id=", IdGroup(g)," H = ",

StructureDescription(h)," Id=", IdGroup(h),"\n","\n");

fi;

fi;
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Proposition 4.6.6. Let G and H be two finite non-solvable groups. If NS(G) ∼= NS(H)

then NS(G×A) ∼= NS(H×B), where A and B are two solvable groups having equal order.

Proof. Let φ : NS(G) → NS(H) be a graph isomorphism and ψ : A → B be a bijective

map. Then (g, a) 7→ (φ(g), ψ(a)) defines a graph isomorphism between NS(G × A) and

NS(H ×B).

A non-solvable groupG is called an Fs-group if for every two elements x, y ∈ G\Sol(G)
such that SolG(x) ̸= SolG(y) implies SolG(x) ̸⊂ SolG(y) and SolG(y) ̸⊂ SolG(x).

Proposition 4.6.7. Let G be an Fs-group. If H is a non-solvable group such that NS(G) ∼=
NS(H) then H is also an Fs-group.

Proof. Let ψ : NS(H) → NS(G) be a graph isomorphism. Let x, y ∈ H \Sol(H) such that

SolH(x) ⊆ SolH(y). Then ψ(SolH(x) \ Sol(H)) ⊆ ψ(SolH(y) \ Sol(H)). We have

ψ(SolH(z) \ Sol(H)) = SolG(ψ(z)) \ Sol(G) for all z ∈ H \ Sol(H).

Therefore, SolG(ψ(x)) \ Sol(G) ⊆ SolG(ψ(y)) \ Sol(G). Since G is an Fs-group, we have

SolG(ψ(x)) \ Sol(G) = SolG(ψ(y)) \ Sol(G).

It follows that SolH(x) \ Sol(H) = SolH(y) \ Sol(H) and so SolH(x) = SolH(y). Hence, H

is an Fs-group.

4.7 Genus of non-solvable graph

In Result 1.3.16, it was shown that NS(G) is not planar for finite non-solvable group G.

In this section, we extent Result 1.3.16 and show that NS(G) is neither planar, toroidal,

double-toroidal nor triple-toroidal. We also obtain the following bound for |Sol(G)| in

terms of genus of NS(G).

Proposition 4.7.1. Let G be a finite non-solvable group. Then

|Sol(G)| ≤
√

2γ(NS(G)) + 2.

Proof. Assume that Z = Sol(G). By Proposition 4.5.4, we have ω(NS(G)) ≥ 3. So, there

exist u, v, w ∈ G \ Z such that they are adjacent to each other. Then, by Lemma 4.1.6(b),

NS(G)[uZ ∪ vZ ∪ wZ] is isomorphic to K|Z|,|Z|,|Z|. We have

γ(NS(G)) ≥ γ(K|Z|,|Z|,|Z|) =
(|Z| − 2)(|Z| − 1)

2
≥ (|Z| − 2)(|Z| − 2)

2

and hence the result follows.
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Theorem 4.7.2. Let G be a finite non-solvable graph. Then γ(NS(G)) ≥ 4. In particular,

NS(G) is neither planar, toroidal, double-toroidal nor triple-toroidal.

Proof. By Lemma 4.5.3, we have an element x ∈ G\Sol(G) such that o(x) is a prime greater

or equal to 5. Clearly, NbdNS(G)(x) ̸= ∅. Assume that o(y) = 2 for all y ∈ NbdNS(G)(x).

Then xy ∈ NbdNS(G)(x) and so o(xy) = 2. Thus ⟨x, y⟩ = ⟨y, xy⟩ is isomorphic to a

dihedral group, which is a contradiction. Therefore, there exist y ∈ NbdNS(G)(x) such that

o(y) ≥ 3. Let 1 ̸= j ∈ N and gcd(j, o(x)) = 1. Consider the subsets H = {x, x2, x3, x4},
K = {yixj : i = 1, 2, j = 0, 1, 2, 3, 4} of G \ Sol(G) and the induced graph NS(G)[H ∪K].

Notice that NS(G)[H ∪K] has a subgraph isomorphic to K4,10 and hence

γ(NS(G)) ≥ γ(NS(G)[H ∪K]) ≥ γ(K4,10) = 4.

This completes the proof.

Remark 4.7.3. By GAP [91], using the following program, we see that NS(A5) has 1140

edges and 59 vertices. Thus by Result 1.1.2, we have γ(NS(A5)) ≥ 1140
6 − 59

2 + 1 = 161.5

and so γ(NS(A5)) ≥ 162.

LoadPackage("GRAPE");

g:=AlternatingGroup(5);

solg:=RadicalGroup(g);

h:=Graph(g,Difference(g,solg),OnPoints,function(x,y) return

IsSolvable(Subgroup(g,[x,y]))= false; end, true);

k:=Vertices(h);

i:=0;

for x in k do

i:=i+VertexDegree(h,x);

od;

Print("Number of Edges=",i/2);

Similarly NS(S5),NS(SL(2, 5)) and Z2 ×A5 has 4560 edges and 119 vertices. So their

genera are at least 732.

It is shown in [49] that 2K5 is not projective. Hence, any graph containing a subgraph

isomorphic to 2K5 is not projective. We conclude this chapter with the following result.

Theorem 4.7.4. Let G be a finite non-solvable group. Then NS(G) is not projective.
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Proof. As shown in the proof of Theorem 4.7.2, there exist x, y ∈ G\Sol(G) such that o(x) is

a prime greater or equal to 5, o(y) ≥ 3 and they are adjacent. Let 1 ̸= j ∈ N, gcd(j, o(y)) =
1. Consider the subsets H = {y, xy, x2y, x3y, x4y} and K = {yj , xyj , x2yj , x3yj , x4yj} of

G \ Sol(G). Then H ∩K = ∅ and NS(G)[H] ∼= NS(G)[K] ∼= K5. It follows that NS(G)
has a subgraph isomorphic to 2K5. Hence, NS(G) is not projective.
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