Chapter 5

Various spectra and energies of commuting conjugacy class graph of groups

The commuting conjugacy class graph (or CCC-graph) of a group G, defined by $\operatorname{CCC}(G)$, is a simple undirected graph whose vertex set is the set of conjugacy classes of non-central elements of G and two distinct vertices x^{G} and y^{G} are adjacent if there exists some elements $x^{\prime} \in x^{G}$ and $y^{\prime} \in y^{G}$ such that $\left\langle x^{\prime}, y^{\prime}\right\rangle$ is abelian. In 2020, Salahshour and Ashrafi [86] have obtained the structure of $\mathcal{C C C}(G)$ considering G to be the groups $D_{2 n}(n \geq 3), Q_{4 m}(m \geq$ 2), $U_{(n, m)}(m \geq 2$ and $n \geq 2), V_{8 n}(n \geq 2), S D_{8 n}(n \geq 2), G(p, m, n)$, (where p is any prime, $m \geq 1$ and $n \geq 1$). In this chapter we compute various spectra and energies of commuting conjugacy class graph of these groups. Computation of various spectra is helpful to check whether $\operatorname{CCC}(G)$ is super integral. In Section 5.1, we shall compute various spectra and energies of CCC-graph of the above mentioned groups and observed that $\operatorname{CCC}(G)$ is super integral if $G=D_{2 n}, Q_{4 m}, U_{(n, m)}, V_{8 n}, S D_{8 n}$ and $G(p, m, n)$. In Section 5.2 , we shall determine whether the inequalities in Conjecture 1.1.7 and Question 1.1.8 satisfy for $\mathcal{C C C}(G)$. In Section 5.3. we shall determine whether $\mathcal{C C C}(G)$ is hyperenergetic, borderenergetic, Lhyperenergetic, L-borderenergetic, Q-hyperenergetic or Q-borderenergetic. This chapter is based on our papers [18] published in Algebraic Structures and Their Applications and [21] communicated for publication.

5.1 Various spectra and energies

In this section we compute various spectra and energies of commuting conjugacy class graphs of the groups mentioned in the introduction.

Theorem 5.1.1. If $G=D_{2 n}$ then
(a) $\operatorname{Spec}(\mathcal{C C C}(G))= \begin{cases}\left\{(-1)^{\frac{n-3}{2}}, 0^{1},\left(\frac{n-3}{2}\right)^{1}\right\}, & \text { if } n \text { is odd } \\ \left\{(-1)^{\frac{n}{2}-2}, 0^{2},\left(\frac{n}{2}-2\right)^{1}\right\}, & \text { if } n \text { and } \frac{n}{2} \text { are even } \\ \left\{(-1)^{\frac{n}{2}-1}, 1^{1},\left(\frac{n}{2}-2\right)^{1}\right\}, & \text { if } n \text { is even and } \frac{n}{2} \text { is odd }\end{cases}$
and $E(\operatorname{CCC}(G))= \begin{cases}n-3, & \text { if } n \text { is odd } \\ n-4, & \text { if } n \text { and } \frac{n}{2} \text { are even } \\ n-2, & \text { if } n \text { is even and } \frac{n}{2} \text { is odd. }\end{cases}$
(b) L-spec $(\mathcal{C C C}(G))= \begin{cases}\left\{0^{2},\left(\frac{n-1}{2}\right)^{\frac{n-3}{2}}\right\}, & \text { if } n \text { is odd } \\ \left\{0^{3},\left(\frac{n}{2}-1\right)^{\frac{n}{2}-2}\right\}, & \text { if } n \text { and } \frac{n}{2} \text { are even } \\ \left\{0^{2}, 2^{1},\left(\frac{n}{2}-1\right)^{\frac{n}{2}-2}\right\}, & \text { if } n \text { is even and } \frac{n}{2} \text { is odd }\end{cases}$
and $L E(\operatorname{CCC}(G))= \begin{cases}\frac{2(n-1)(n-3)}{n+1}, & \text { if } n \text { is odd } \\ \frac{3(n-2)(n-4)}{n+2}, & \text { if } n \text { and } \frac{n}{2} \text { are even } \\ 4, & \text { if } n=6 \\ \frac{(n-4)(3 n-10)}{n+2}, & \text { if } n \text { is even, } n \geq 10 \text { and } \frac{n}{2} \text { is odd. }\end{cases}$
(c) $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))= \begin{cases}\left\{0^{1},(n-3)^{1},\left(\frac{n-5}{2}\right)^{\frac{n-3}{2}}\right\}, & \text { if } n \text { is odd } \\ \left\{0^{2},(n-4)^{1},\left(\frac{n}{2}-3\right)^{\frac{n}{2}-2}\right\}, & \text { if } n \text { and } \frac{n}{2} \text { are even } \\ \left\{2^{1}, 0^{1},(n-4)^{1},\left(\frac{n}{2}-3\right)^{\frac{n}{2}-2}\right\}, & \text { if } n \text { is even and } \frac{n}{2} \text { is odd }\end{cases}$
and $L E^{+}(\operatorname{CCC}(G))= \begin{cases}\frac{(n-3)(n+3)}{n+1}, & \text { if } n \text { is odd } \\ \frac{(n-4)(n+6)}{n+2}, & \text { if } n=4,8 \\ \frac{2(n-2)(n-4)}{n+2}, & \text { if } n, \frac{n}{2} \text { are even and } n \geq 12 \\ 4, & \text { if } n=6 \\ \frac{22}{3}, & \text { if } n=10 \\ \frac{2(n-2)(n-6)}{n+2}, & \text { if } n \text { is even, } n \geq 14 \text { and } \frac{n}{2} \text { is odd. }\end{cases}$
Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
By Result 1.3.18 we have $\mathcal{C C C}(G)=K_{1} \sqcup K_{\frac{n-1}{2}}$. Therefore, by Result 1.1.6, it follows that

$$
\begin{aligned}
& \operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{\frac{n-3}{2}}, 0^{1},\left(\frac{n-3}{2}\right)^{1}\right\}, \quad \mathrm{L}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{2},\left(\frac{n-1}{2}\right)^{\frac{n-3}{2}}\right\} \\
& \text { and } \mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{1},(n-3)^{1},\left(\frac{n-5}{2}\right)^{\frac{n-3}{2}}\right\} .
\end{aligned}
$$

Hence, by (1.1.d), we get

$$
E(\mathcal{C C C}(G))=\frac{n-3}{2}+\frac{n-3}{2}=n-3 .
$$

We have $|V(\mathcal{C C C}(G))|=\frac{n+1}{2}$ and $|e(\mathcal{C C C}(G))|=\frac{(n-1)(n-3)}{8}$. Therefore, $\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=$ $\frac{(n-1)(n-3)}{2(n+1)}$. Also,

$$
\begin{aligned}
& \left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{(n-1)(n-3)}{2(n+1)}\right|=\frac{(n-1)(n-3)}{2(n+1)} \text { and } \\
& \left|\frac{n-1}{2}-\frac{2|e(\mathcal{C C C}(G))|}{|V(\operatorname{CCC}(G))|}\right|=\left|\frac{n-1}{2}-\frac{(n-1)(n-3)}{2(n+1)}\right|=\frac{2(n-1)}{n+1} .
\end{aligned}
$$

Now, by (1.1.e), we have

$$
L E(\mathcal{C C C}(G))=2 \times \frac{(n-1)(n-3)}{2(n+1)}+\frac{n-3}{2} \times \frac{2(n-1)}{n+1}=\frac{2(n-1)(n-3)}{n+1} .
$$

Again,

$$
\begin{aligned}
& \left|n-3-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|n-3-\frac{(n-1)(n-3)}{2(n+1)}\right|=\frac{(n-3)(n+3)}{2(n+1)} \quad \text { and } \\
& \quad\left|\frac{n-5}{2}-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|\frac{n-5}{2}-\frac{(n-1)(n-3)}{2(n+1)}\right|=\left|\frac{-4}{n+1}\right|=\frac{4}{n+1}
\end{aligned}
$$

By (1.1.f), we have

$$
L E^{+}(\mathcal{C C C}(G))=\frac{(n-1)(n-3)}{2(n+1)}+\frac{(n-3)(n+3)}{2(n+1)}+\frac{n-3}{2} \times \frac{4}{n+1}=\frac{(n-3)(n+3)}{n+1} .
$$

Case 2. n is even.

Consider the following subcases.
Subcase $2.1 \frac{n}{2}$ is even.
By Result 1.3 .18 we have $\mathcal{C C C}(G)=2 K_{1} \sqcup K_{\frac{n}{2}-1}$. Therefore, by Result 1.1.6, it follows that

$$
\operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{\frac{n}{2}-2}, 0^{2},\left(\frac{n}{2}-2\right)^{1}\right\}, \quad \text { L-spec }(\mathcal{C C C}(G))=\left\{0^{3},\left(\frac{n}{2}-1\right)^{\frac{n}{2}-2}\right\}
$$

and $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{2},(n-4)^{1},\left(\frac{n}{2}-3\right)^{\frac{n}{2}-2}\right\}$.
Hence, by (1.1.d), we get

$$
E(\mathcal{C C C}(G))=\frac{n}{2}-2+\frac{n}{2}-2=n-4 .
$$

We have $|\operatorname{V}(\operatorname{CCC}(G))|=\frac{n}{2}+1$ and $|e(\mathcal{C C C}(G))|=\frac{(n-2)(n-4)}{8}$. So,

$$
\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=\frac{(n-2)(n-4)}{2(n+2)}
$$

Also,

$$
\begin{aligned}
& \left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{(n-2)(n-4)}{2(n+2)}\right|=\frac{(n-2)(n-4)}{2(n+2)} \quad \text { and } \\
& \left|\frac{n}{2}-1-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|\frac{n}{2}-1-\frac{(n-2)(n-4)}{2(n+2)}\right|=\frac{3(n-2)}{n+2} .
\end{aligned}
$$

Now, by (1.1.e), we have

$$
L E(\mathcal{C C C}(G))=3 \times \frac{(n-2)(n-4)}{2(n+2)}+\left(\frac{n}{2}-2\right) \times \frac{3(n-2)}{n+2}=\frac{3(n-2)(n-4)}{n+2} .
$$

Again,

$$
\begin{gathered}
\left|n-4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|n-4-\frac{(n-2)(n-4)}{2(n+2)}\right|=\frac{(n-4)(n+6)}{2(n+2)} \quad \text { and } \\
\left|\frac{n}{2}-3-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|\frac{n}{2}-3-\frac{(n-2)(n-4)}{2(n+2)}\right|=\left|\frac{n-10}{n+2}\right|= \begin{cases}\frac{-n+10}{n+2}, & \text { if } n=4,8 \\
\frac{n-10}{n+2}, & \text { if } n \geq 12 .\end{cases}
\end{gathered}
$$

By (1.1.f), we have
$L E^{+}(\mathcal{C C C}(G))=2 \times \frac{(n-2)(n-4)}{2(n+2)}+\frac{(n-4)(n+6)}{2(n+2)}+\left(\frac{n}{2}-2\right) \times \frac{-n+10}{n+2}=\frac{(n-4)(n+6)}{n+2}$, if $n=4,8$. If $n \geq 12$ then
$L E^{+}(\mathcal{C C C}(G))=2 \times \frac{(n-2)(n-4)}{2(n+2)}+\frac{(n-4)(n+6)}{2(n+2)}+\left(\frac{n}{2}-2\right) \times \frac{n-10}{n+2}=\frac{2(n-2)(n-4)}{n+2}$.
Subcase $2.2 \frac{n}{2}$ is odd.
By Result 1.3.18 we have $\mathcal{C C C}(G)=K_{2} \sqcup K_{\frac{n}{2}-1}$. Therefore, by Result 1.1.6, it follows that

$$
\begin{aligned}
& \operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{\frac{n}{2}-1}, 1^{1},\left(\frac{n}{2}-2\right)^{1}\right\}, \quad \mathrm{L}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{2}, 2^{1},\left(\frac{n}{2}-1\right)^{\frac{n}{2}-2}\right\} \\
& \text { and } \mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{2^{1}, 0^{1},(n-4)^{1},\left(\frac{n}{2}-3\right)^{\frac{n}{2}-2}\right\}
\end{aligned}
$$

Hence, by (1.1.d), we get

$$
E(\mathcal{C C C}(G))=\frac{n}{2}-1+1+\frac{n}{2}-2=n-2 .
$$

We have $|V(\operatorname{CCC}(G))|=\frac{n}{2}+1$ and $|e(\mathcal{C C C}(G))|=\frac{(n-2)(n-4)+8}{8}$. Therefore, $\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=$ $\frac{(n-2)(n-4)+8}{2(n+2)}$. Also,

$$
\begin{aligned}
\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|0-\frac{(n-2)(n-4)+8}{2(n+2)}\right|=\frac{(n-2)(n-4)+8}{2(n+2)} \\
\left|2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|2-\frac{(n-2)(n-4)+8}{2(n+2)}\right| \\
& =\left|\frac{-n^{2}+10 n-8}{2(n+2)}\right|= \begin{cases}1, & \text { if } n=6 \\
\frac{n^{2}-10 n+8}{2(n+2)}, & \text { if } n \geq 10\end{cases}
\end{aligned}
$$

and

$$
\left|\frac{n}{2}-1-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|\frac{n}{2}-1-\frac{(n-2)(n-4)+8}{2(n+2)}\right|=\frac{3 n-10}{n+2} .
$$

Now, by (1.1.e), we have

$$
\operatorname{LE}(\mathcal{C C C}(G))=2 \times \frac{(n-2)(n-4)+8}{2(n+2)}+1+\left(\frac{n}{2}-2\right) \times \frac{3 n-10}{n+2}=4,
$$

if $n=6$. If $n \geq 10$ then

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G)) & =2 \times \frac{(n-2)(n-4)+8}{2(n+2)}+\frac{n^{2}-10 n+8}{2(n+2)}+\left(\frac{n}{2}-2\right) \times \frac{3 n-10}{n+2} \\
& =\frac{3 n^{2}-22 n-40}{n+2}=\frac{(n-4)(3 n-10)}{n+2} .
\end{aligned}
$$

Again,

$$
\begin{aligned}
&\left|n-4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|n-4-\frac{(n-2)(n-4)+8}{2(n+2)}\right|=\frac{n^{2}+2 n-32}{2(n+2)} \text { and } \\
&\left|\frac{n}{2}-3-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|\frac{n}{2}-3-\frac{(n-2)(n-4)+8}{2(n+2)}\right| \\
&=\left|\frac{n-14}{n+2}\right|= \begin{cases}\frac{-n+14}{n+2}, & \text { if } n=6,10 \\
\frac{n-14}{n+2}, & \text { if } n \geq 14\end{cases}
\end{aligned}
$$

By (1.1.f), we have

$$
L E^{+}(\mathcal{C C C}(G))=1+\frac{(n-2)(n-4)+8}{2(n+2)}+\frac{n^{2}+2 n-32}{2(n+2)}+\left(\frac{n}{2}-2\right) \times \frac{-n+14}{n+2}=4
$$

if $n=6$. If $n=10$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =\frac{n^{2}-10 n+8}{2(n+2)}+\frac{(n-2)(n-4)+8}{2(n+2)}+\frac{n^{2}+2 n-32}{2(n+2)}+\left(\frac{n}{2}-2\right) \times \frac{-n+14}{n+2} \\
& =\frac{22}{3}
\end{aligned}
$$

If $n \geq 14$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =\frac{n^{2}-10 n+8}{2(n+2)}+\frac{(n-2)(n-4)+8}{2(n+2)}+\frac{n^{2}+2 n-32}{2(n+2)}+\left(\frac{n}{2}-2\right) \times \frac{n-14}{n+2} \\
& =\frac{2(n-2)(n-6)}{n+2}
\end{aligned}
$$

This completes the proof.
Theorem 5.1.2. If $G=Q_{4 m}$ then
(a) $\operatorname{Spec}(\mathcal{C C C}(G))= \begin{cases}\left\{(-1)^{m-1}, 1^{1},(m-2)^{1}\right\}, & \text { if } m \text { is odd } \\ \left\{(-1)^{m-2}, 0^{2},(m-2)^{1}\right\}, & \text { if } m \text { is even }\end{cases}$ and $E(\operatorname{CCC}(G))= \begin{cases}2 m-2, & \text { if } m \text { is odd } \\ 2 m-4, & \text { if } m \text { is even. }\end{cases}$
(b) L-spec $(\mathcal{C C C}(G))= \begin{cases}\left\{0^{2}, 2^{1},(m-1)^{m-2}\right\}, & \text { if } m \text { is odd } \\ \left\{0^{3},(m-1)^{m-2}\right\}, & \text { if } m \text { is even }\end{cases}$
and $\operatorname{LE}(\operatorname{CCC}(G))= \begin{cases}4, & \text { if } m=3 \\ \frac{2(m-2)(3 m-5)}{m+1}, & \text { if } m \text { is odd and } m \geq 5 \\ \frac{6(m-1)(m-2)}{m+1}, & \text { if } m \text { is even. }\end{cases}$
(c) Q-spec $(\mathcal{C C C}(G))= \begin{cases}\left\{2^{1}, 0^{1},(2 m-4)^{1},(m-3)^{m-2}\right\}, & \text { if } m \text { is odd } \\ \left\{0^{2},(2 m-4)^{1},(m-3)^{m-2}\right\}, & \text { if } m \text { is even }\end{cases}$
and $L E^{+}(\operatorname{CCC}(G))= \begin{cases}4, & \text { if } m=3 \\ \frac{22}{3}, & \text { if } m=5 \\ \frac{4(m-1)(m-3)}{m+1}, & \text { if } m \text { is odd and } m \geq 7 \\ \frac{2(m-2)(m+3)}{m+1}, & \text { if } m=2,4 \\ \frac{4(m-1)(m-2)}{m+1}, & \text { if } m \text { is even and } m \geq 6 .\end{cases}$
Proof. We shall prove the result by considering the following cases.
Case 1. m is odd.
By Result 1.3.19 we have $\mathcal{C C C}(G)=K_{2} \sqcup K_{m-1}$. Therefore, by Result 1.1.6, it follows that

$$
\operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{m-1}, 1^{1},(m-2)^{1}\right\}, \quad \mathrm{L}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{2}, 2^{1},(m-1)^{m-2}\right\}
$$

and $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{2^{1}, 0^{1},(2 m-4)^{1},(m-3)^{m-2}\right\}$.
Hence, by (1.1.d), we get

$$
E(\operatorname{CCC}(G))=m-1+1+m-2=2 m-2
$$

We have $|V(\mathcal{C C C}(G))|=m+1$ and $|e(\mathcal{C C C}(G))|=\frac{(m-1)(m-2)+2}{2}$. Therefore,

$$
\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=\frac{(m-1)(m-2)+2}{m+1}
$$

Also,

$$
\begin{aligned}
&\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{(m-1)(m-2)+2}{m+1}\right|=\frac{(m-1)(m-2)+2}{m+1} \\
&\left|2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2-\frac{(m-1)(m-2)+2}{m+1}\right| \\
&=\left|\frac{-m^{2}+5 m-2}{m+1}\right|= \begin{cases}1, & \text { if } m=3 \\
\frac{m^{2}-5 m+2}{m+1}, & \text { if } m \geq 5\end{cases}
\end{aligned}
$$

and

$$
\left|m-1-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|m-1-\frac{(m-1)(m-2)+2}{m+1}\right|=\frac{3 m-5}{m+1} .
$$

Now, by (1.1.e), we have

$$
\operatorname{LE}(\mathcal{C C C}(G))=2 \times \frac{(m-1)(m-2)+2}{m+1}+1+(m-2) \times \frac{3 m-5}{m+1}=4
$$

if $m=3$. If $m \geq 5$ then

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G)) & =2 \times \frac{(m-1)(m-2)+2}{m+1}+\frac{m^{2}-5 m+2}{m+1}+(m-2) \times \frac{3 m-5}{m+1} \\
& =\frac{2(m-2)(3 m-5)}{m+1}
\end{aligned}
$$

Again,

$$
\left|2 m-4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 m-4-\frac{(m-1)(m-2)+2}{m+1}\right|=\frac{m^{2}+m-8}{m+1}
$$

and

$$
\begin{aligned}
\left|m-3-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|m-3-\frac{(m-1)(m-2)+2}{m+1}\right| \\
& =\left|\frac{m-7}{m+1}\right|= \begin{cases}\frac{-m+7}{m+1}, & \text { if } m=3,5 \\
\frac{m-7}{m+1}, & \text { if } m \geq 7\end{cases}
\end{aligned}
$$

By (1.1.f), we have

$$
L E^{+}(\mathcal{C C C}(G))=1+\frac{(m-1)(m-2)+2}{m+1}+\frac{m^{2}+m-8}{m+1}+(m-2) \times \frac{-m+7}{m+1}=4,
$$

if $m=3$. If $m=5$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =\frac{m^{2}-5 m+2}{m+1}+\frac{(m-1)(m-2)+2}{m+1}+\frac{m^{2}+m-8}{m+1}+(m-2) \times \frac{-m+7}{m+1} \\
& =\frac{22}{3}
\end{aligned}
$$

If $m \geq 7$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =\frac{m^{2}-5 m+2}{m+1}+\frac{(m-1)(m-2)+2}{m+1}+\frac{m^{2}+m-8}{m+1}+(m-2) \times \frac{m-7}{m+1} \\
& =\frac{4(m-1)(m-3)}{m+1}
\end{aligned}
$$

Case 2. m is even.
By Result 1.3.19 we have $\mathcal{C C C}(G)=2 K_{1} \sqcup K_{m-1}$. Therefore, by Result 1.1.6, it follows that

$$
\operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{m-2}, 0^{2},(m-2)^{1}\right\}, \quad \text { L-spec }(\mathcal{C C C}(G))=\left\{0^{3},(m-1)^{m-2}\right\}
$$

and $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{2},(2 m-4)^{1},(m-3)^{m-2}\right\}$.
Hence, by (1.1.d), we get

$$
E(\mathcal{C C C}(G))=m-2+m-2=2 m-4
$$

We have $|V(\mathcal{C C C}(G))|=m+1$ and $|e(\mathcal{C C C}(G))|=\frac{(m-1)(m-2)}{2}$. Therefore, $\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=$ $\frac{(m-1)(m-2)}{m+1}$. Also,

$$
\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{(m-1)(m-2)}{m+1}\right|=\frac{(m-1)(m-2)}{m+1}
$$

and

$$
\left|m-1-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|m-1-\frac{(m-1)(m-2)}{m+1}\right|=\frac{3(m-1)}{m+1} .
$$

Now, by (1.1.e), we have

$$
L E(\mathcal{C C C}(G))=3 \times \frac{(m-1)(m-2)}{m+1}+(m-2) \times \frac{3(m-1)}{m+1}=\frac{6(m-1)(m-2)}{m+1} .
$$

Again,

$$
\left|2 m-4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 m-4-\frac{(m-1)(m-2)}{m+1}\right|=\frac{(m-2)(m+3)}{m+1}
$$

and

$$
\left|m-3-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|m-3-\frac{(m-1)(m-2)}{m+1}\right|=\left|\frac{m-5}{m+1}\right|= \begin{cases}\frac{-m+5}{m+1}, & \text { if } m=2,4 \\ \frac{m-5}{m+1}, & \text { if } m \geq 6\end{cases}
$$

By (1.1.f), we have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =2 \times \frac{(m-1)(m-2)}{m+1}+\frac{(m-2)(m+3)}{m+1}+(m-2) \times \frac{-m+5}{m+1} \\
& =\frac{2(m-2)(m+3)}{m+1},
\end{aligned}
$$

if $m=2,4$. If $m \geq 6$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =2 \times \frac{(m-1)(m-2)}{m+1}+\frac{(m-2)(m+3)}{m+1}+(m-2) \times \frac{m-5}{m+1} \\
& =\frac{4(m-1)(m-2)}{m+1}
\end{aligned}
$$

This completes the proof.
Theorem 5.1.3. If $G=U_{(n, m)}$ then
(a) $\operatorname{Spec}(\mathcal{C C C}(G))=$

$$
\begin{cases}\left\{(-1)^{\left.\frac{n(m+1)-4}{2},\left(\frac{n(m-1)-2}{2}\right)^{1},(n-1)^{1}\right\},}\right. & \text { if } m \text { is odd and } n \geq 2 \\ \left\{(-1)^{\frac{n(m+2)-6}{2}},\left(\frac{n(m-2)-2}{2}\right)^{1},(n-1)^{2}\right\}, & \text { if } m \text { is even, } m \geq 4 \text { and } n \geq 2\end{cases}
$$

and
$E(\mathcal{C C C}(G))= \begin{cases}n(m+1)-4, & \text { if } m \text { is odd and } n \geq 2 \\ n(m+2)-6, & \text { if } m \text { is even, } m \geq 4 \text { and } n \geq 2 .\end{cases}$
(b)
$\mathrm{L}-\operatorname{spec}(\mathcal{C C C}(G))= \begin{cases}\left\{0^{2},\left(\frac{n(m-1)}{2}\right)^{\frac{n(m-1)-2}{2}}, n^{n-1}\right\}, & \text { if } m \text { is odd and } n \geq 2 \\ \left\{0^{3},\left(\frac{n(m-2)}{2}\right)^{\frac{n(m-2)-2}{2}}, n^{2 n-2}\right\}, & \text { if } m \text { is even, } m \geq 4 \text { and } n \geq 2\end{cases}$
and
$\operatorname{LE}(\mathcal{C C C}(G))= \begin{cases}4(n-1), & \text { if } m=3 \text { and } n \geq 2 \\ \frac{2(2 n-1)(n+3)}{3}, & \text { if } m=5 \text { and } n \geq 2 \\ \frac{m^{2} n^{2}-4 m n^{2}+m^{2} n+3 n^{2}-2 m n-2 m+5 n-2}{m+1}, & \text { if } m \text { is odd, } m \geq 7 \\ & \text { and } n \geq 2 \\ 6(n-1), & \text { if } m=4 \text { and } n \geq 2 \\ \frac{2 m^{2} n^{2}-12 m n^{2}+m^{2} n+16 n^{2}-4 m n-2 m+12 n-4}{m+2}, & \text { if } m \text { is even, } m \geq 6 \\ & \text { and } n \geq 2 .\end{cases}$

(c) $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))$

$$
=\left\{\begin{array}{l}
\left\{(n(m-1)-2)^{1},\left(\frac{n(m-1)-4}{2}\right)^{\frac{n(m-1)-2}{2}},(2 n-2)^{1},(n-2)^{n-1}\right\} \\
\left\{(n(m-2)-2)^{1},\left(\frac{n(m-2)-4}{2}\right)^{\frac{n(m-2)-2}{2}},(2 n-2)^{2},(n-2)^{2 n-2}\right\} \\
\text { if } m \text { is odd and } n \geq 2 \\
\quad \text { if } m \text { is even, } m \geq 4 \text { and } n \geq 2
\end{array}\right.
$$

$$
\text { and } L E^{+}(\operatorname{CCC}(G))= \begin{cases}4(n-1), & \text { if } m=3 \text { and } n \geq 2 \\ \frac{22}{3}, & \text { if } m=5 \text { and } n=2 \\ \frac{2(2 n+3)(n-1)}{3}, & \text { if } m=5 \text { and } n \geq 3 \\ \frac{n^{2}(m-1)(m-3)}{m+1}, & \text { if } m \text { is odd, } m \geq 7 \text { and } n \geq 2 \\ 6(n-1), & \text { if } m=4 \text { and } n \geq 2 \\ 2(n+2)(n-1), & \text { if } m=6 \text { and } n \geq 2 \\ \frac{2 n^{2}(m-2)(m-4)}{m+2}, & \text { if } m \text { is even, } m \geq 8 \text { and } n \geq 2 .\end{cases}
$$

Proof. We shall prove the result by considering the following cases.
Case 1. m is odd.
By Result 1.3.20 we have $\mathcal{C C C}(G)=K_{\frac{n(m-1)}{2}} \sqcup K_{n}$. Therefore, by Result 1.1.6, it follows that

$$
\begin{aligned}
& \operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{\frac{n(m+1)-4}{2}},\left(\frac{n(m-1)-2}{2}\right)^{1},(n-1)^{1}\right\} \\
& \operatorname{L-spec}(\mathcal{C C C}(G))=\left\{0^{2},\left(\frac{n(m-1)}{2}\right)^{\frac{n(m-1)-2}{2}}, n^{n-1}\right\}
\end{aligned}
$$

and

$$
\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{(n(m-1)-2)^{1},\left(\frac{n(m-1)-4}{2}\right)^{\frac{n(m-1)-2}{2}},(2 n-2)^{1},(n-2)^{n-1}\right\}
$$

Hence, by (1.1.d), we get

$$
E(\mathcal{C C C}(G))=\frac{n(m+1)-4}{2}+\frac{n(m-1)-2}{2}+n-1=n(m+1)-4 .
$$

We have $|V(\mathcal{C C C}(G))|=\frac{n(m+1)}{2}$ and $|e(\operatorname{CCC}(G))|=\frac{n^{2}(m-1)^{2}-2 n(m-2 n+1)}{8}$. Therefore, $\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}$. Also,

$$
\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}\right|=\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}
$$

since $n(m-1)^{2}-2(m-2 n+1)=m^{2} n-2 m(n+1)+5 n-2>0$;

$$
\begin{aligned}
\left|\frac{n(m-1)}{2}-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|\frac{n(m-1)}{2}-\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}\right| \\
& =\frac{n(m-3)+m+1}{m+1}
\end{aligned}
$$

and

$$
\left|n-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|n-\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}\right|=\left|\frac{-f_{1}(m, n)}{2(m+1)}\right|
$$

where $f_{1}(m, n)=n\left(m^{2}+3\right)-(4 m n+2 m+2)$. For $m=3$ and $n \geq 2$ we have $f_{1}(3, n)=-8$. For $m=5$ and $n \geq 2$ we have $f_{1}(5, n)=8 n-12>0$. For $m \geq 7$ and $n \geq 2$ we have $m^{2}+3>m^{2}>4 m+2 m+2$. Therefore, $n\left(m^{2}+3\right)>4 m n+(2 m+2) n>4 m n+2 m+2$ and so $f_{1}(m, n)>0$. Hence,

$$
\left|\frac{-f_{1}(m, n)}{2(m+1)}\right|= \begin{cases}1, & \text { if } m=3 \text { and } n \geq 2 \\ \frac{2 n-3}{3}, & \text { if } m=5 \text { and } n \geq 2 \\ \frac{n\left(m^{2}+3\right)-(4 m n+2 m+2)}{2(m+1)}, & \text { if } m \geq 7 \text { and } n \geq 2\end{cases}
$$

Now, by (1.1.e), we have

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))=2 \times \frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)} & +\frac{n(m-1)-2}{2} \times \frac{n(m-3)+m+1}{m+1} \\
& +(n-1) \times 1 \\
= & 4(n-1),
\end{aligned}
$$

if $m=3$ and $n \geq 2$. If $m=5$ and $n \geq 2$ then

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))= & 2 \times \frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}+\frac{n(m-1)-2}{2} \times \frac{n(m-3)+m+1}{m+1} \\
& =\frac{2(n-1) \times \frac{2 n-3}{3}}{3} .
\end{aligned}
$$

If $m \geq 7$ and $n \geq 2$ then

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))= & 2 \times \frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}+\frac{n(m-1)-2}{2} \times \frac{n(m-3)+m+1}{m+1} \\
& \quad+(n-1) \times \frac{n\left(m^{2}+3\right)-(4 m n+2 m+2)}{2(m+1)} \\
= & \frac{m^{2} n^{2}-4 m n^{2}+m^{2} n+3 n^{2}-2 m n-2 m+5 n-2}{m+1} .
\end{aligned}
$$

Again,

$$
\begin{aligned}
\left|n(m-1)-2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|n(m-1)-2-\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}\right| \\
& =\left|\frac{n(m-1)(m+3)-2(m+2 n+1)}{2(m+1)}\right| \\
& =\frac{n(m-1)(m+3)-2(m+2 n+1)}{2(m+1)},
\end{aligned}
$$

since $n(m-1)(m+3)-2(m+2 n+1)=n\left(m^{2}-4\right)-2+n(m-3)+m(n-2)>0$;

$$
\begin{aligned}
\left|\frac{n(m-1)-4}{2}-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|\frac{n(m-1)-4}{2}-\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}\right| \\
& =\left|\frac{f_{2}(m, n)}{2(m+1)}\right|
\end{aligned}
$$

where $f_{2}(m, n)=n(m-6)-2+m(n-2)$. Clearly, for $m \geq 7$ and $n \geq 2$ we have $f_{2}(m, n) \geq 0$. For $m=3$ and $n \geq 2$ we have $f_{2}(3, n)=-8$. Also for $m=5$ and $n \geq 2$ we have $f_{2}(5, n)=4 n-12$. Therefore, $f_{2}(5,2)=-4$ and $f_{2}(5, n) \geq 0$ for $n \geq 3$. Hence,

$$
\begin{gathered}
\left|\frac{f_{2}(m, n)}{2(m+1)}\right|= \begin{cases}1, & \text { if } m=3 \text { and } n \geq 2 \\
\frac{1}{3}, & \text { if } m=5 \text { and } n=2 \\
\frac{n-3}{3}, & \text { if } m=5 \text { and } n \geq 3 \\
\frac{n(m-3)-m-1}{m+1}, & \text { if } m \geq 7 \text { and } n \geq 2 .\end{cases} \\
\left|2 n-2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 n-2-\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}\right|=\left|-\frac{f_{3}(m, n)}{2(m+1)}\right|,
\end{gathered}
$$

where $f_{3}(m, n)=m n(m-6)+2 m+n+2$. Clearly, $f_{3}(m, n)>0$ if $m \geq 7$ and $n \geq 2$. For $m=3$ and $n \geq 2$ we have $f_{3}(3, n)=-8 n+8<0$. For $m=5$ and $n \geq 2$ we have
$f_{3}(5, n)=-4 n+12$. Therefore, $f_{3}(5,2)=4$ and $f_{3}(5, n) \leq 0$ if $n \geq 3$. Hence,

$$
\begin{gathered}
\left|-\frac{f_{3}(m, n)}{2(m+1)}\right|= \begin{cases}n-1, & \text { if } m=3 \text { and } n \geq 2 \\
\frac{1}{3}, & \text { if } m=5 \text { and } n=2 \\
\frac{n-3}{3}, & \text { if } m=5 \text { and } n \geq 3 \\
\frac{m n(m-6)+2 m+n+2}{2(m+1)}, & \text { if } m \geq 7 \text { and } n \geq 2 .\end{cases} \\
\left|n-2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|n-2-\frac{n(m-1)^{2}-2(m-2 n+1)}{2(m+1)}\right|=\left|-\frac{f_{4}(m, n)}{2(m+1)}\right|,
\end{gathered}
$$

where $f_{4}(m, n)=m n(m-2)+2-(m(n-2)+n(m-3))$. For $m=3$ and $n \geq 2$ we have $f_{4}(3, n)=8$. Also, for $m \geq 5$ and $n \geq 2$ we have

$$
m n(m-2)-2 m n+2=m n(m-4)+2>-2 m-3 n .
$$

Therefore,

$$
m n(m-2)+2>2 m n-2 m-3 n=m(n-2)+n(m-3)
$$

and so $f_{4}(m, n)>0$ for $m \geq 5$ and $n \geq 2$. Hence,

$$
\left|-\frac{f_{4}(m, n)}{2(m+1)}\right|=\frac{f_{4}(m, n)}{2(m+1)}=\frac{m n(m-2)+2-m(n-2)-n(m-3)}{2(m+1)} .
$$

By (1.1.f), we have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & \frac{n(m-1)(m+3)-2(m+2 n+1)}{2(m+1)}+\frac{n(m-1)-2}{2} \times 1+(n-1) \\
& \quad+(n-1) \times \frac{m n(m-2)+2-m(n-2)-n(m-3)}{2(m+1)} \\
= & 4(n-1),
\end{aligned}
$$

if $m=3$ and $n \geq 2$. If $m=5$ and $n=2$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & \frac{n(m-1)(m+3)-2(m+2 n+1)}{2(m+1)}+\frac{n(m-1)-2}{2} \times \frac{1}{3}+\frac{1}{3} \\
& \quad+(n-1) \times \frac{m n(m-2)+2-m(n-2)-n(m-3)}{2(m+1)} \\
= & \frac{22}{3} .
\end{aligned}
$$

If $m=5$ and $n \geq 3$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & \frac{n(m-1)(m+3)-2(m+2 n+1)}{2(m+1)}+\frac{n(m-1)-2}{2} \times \frac{n-3}{3}+\frac{n-3}{3} \\
& +(n-1) \times \frac{m n(m-2)+2-m(n-2)-n(m-3)}{2(m+1)} \\
= & \frac{2\left(2 n^{2}+n-3\right)}{3}=\frac{2(2 n+3)(n-1)}{3} .
\end{aligned}
$$

If $m \geq 7$ and $n \geq 2$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & \frac{n(m-1)(m+3)-2(m+2 n+1)}{2(m+1)}+\frac{n(m-1)-2}{2} \times \frac{n(m-3)-m-1}{m+1} \\
& +\frac{m n(m-6)+2 m+n+2}{2(m+1)} \\
& +(n-1) \times \frac{m n(m-2)+2-m(n-2)-n(m-3)}{2(m+1)} \\
= & \frac{n^{2}(m-1)(m-3)}{m+1} .
\end{aligned}
$$

Case 2. m is even.
By Result 1.3.20 we have $\mathcal{C C C}(G)=K_{\frac{n(m-2)}{2}} \sqcup 2 K_{n}$. Therefore, by Result 1.1.6, it follows that

$$
\begin{aligned}
& \operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{\frac{n(m+2)-6}{2}},\left(\frac{n(m-2)-2}{2}\right)^{1},(n-1)^{2}\right\}, \\
& \text { L-spec }(\mathcal{C C C}(G))=\left\{0^{3},\left(\frac{n(m-2)}{2}\right)^{\frac{n(m-2)-2}{2}}, n^{2 n-2}\right\}
\end{aligned}
$$

and

$$
\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{(n(m-2)-2)^{1},\left(\frac{n(m-2)-4}{2}\right)^{\frac{n(m-2)-2}{2}},(2 n-2)^{2},(n-2)^{2 n-2}\right\} .
$$

We have $\left|\frac{n(m-2)-2}{2}\right|=\frac{n(m-2)-2}{2}$ if $m \geq 4$. Therefore, by (1.1.d), we have

$$
E(\mathcal{C C C}(G))=\frac{n(m+2)-6}{2}+\frac{n(m-2)-2}{2}+2(n-1)=n(m+2)-6 .
$$

if $m \geq 4$.
We have $|V(\mathcal{C C C}(G))|=\frac{n(m+2)}{2}$ and $|e(\mathcal{C C C}(G))|=\frac{n^{2}(m-2)^{2}-2 n(m-4 n+2)}{8}$. Therefore, $\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=\frac{n(m-2)^{2}-2(m-4 n+2)}{2(m+2)}$. Also,

$$
\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{n(m-2)^{2}-2(m-4 n+2)}{2(m+2)}\right|=\left|\frac{-f_{5}(m, n)}{2(m+2)}\right|
$$

where $f_{5}(m, n)=m(n(m-4)-2)+12 n-4$. Note that for $m \geq 6$ we have $f_{5}(m, n)>0$ since $n(m-4)>2$ and $12 n-4>0$. For $m=4$ and $n \geq 2$ we have $f_{5}(4, n)=12 n-12>0$. Therefore, for all $m \geq 4$ and $n \geq 2$, we have

$$
\begin{gathered}
\left|\frac{-f_{5}(m, n)}{2(m+2)}\right|=\left|\frac{f_{5}(m, n)}{2(m+2)}\right|=\frac{m(n(m-4)-2)+12 n-4}{2(m+2)} . \\
\left|\frac{n(m-2)}{2}-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|\frac{n(m-2)}{2}-\frac{n(m-2)^{2}-2(m-4 n+2)}{2(m+2)}\right|=\left|\frac{f_{6}(m, n)}{m+2}\right|,
\end{gathered}
$$

where $f_{6}(m, n)=2 n(m-4)+m+2$. Clearly, $f_{6}(m, n)>0$ if $m \geq 4$ and $n \geq 2$. Therefore $\left|\frac{f_{6}(m, n)}{m+2}\right|=\frac{2 n(m-4)+m+2}{m+2}$ if $m \geq 4$ and $n \geq 2$.

$$
\left|n-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|n-\frac{n(m-2)^{2}-2(m-4 n+2)}{2(m+2)}\right|=\left|\frac{-f_{7}(m, n)}{2(m+2)}\right|,
$$

where $f_{7}(m, n)=m n(m-6)-2 m+8 n-4$. For $m=4$ and $n \geq 2$ we have $f_{7}(4, n)=-12$. For $m=6$ and $n \geq 2$ we have $f_{7}(6, n)=8 n-16 \geq 0$. Also, for $m \geq 8$ and $n \geq 2$ we have $m^{2} \geq 8 m$ which gives $m(m-6) \geq 2 m$ and so $m n(m-6) \geq 2 m n>2 m$. Therefore, $m n(m-6)-2 m>0$ and so $f_{7}(m, n)>0$ since $8 n-4>0$. Hence,

$$
\left|\frac{-f_{7}(m, n)}{2(m+2)}\right|= \begin{cases}1, & \text { if } m=4 \text { and } n \geq 2 \\ \frac{m n(m-6)-2 m+8 n-4}{2(m+2)}, & \text { if } m \geq 6 \text { and } n \geq 2\end{cases}
$$

Now, by (1.1.e), we have

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))= & 3 \times \frac{m(n(m-4)-2)+12 n-4}{2(m+2)}+\frac{n(m-2)-2}{2} \times \frac{2 n(m-4)+m+2}{m+2} \\
& +(2 n-2) \times 1 \\
& =6(n-1),
\end{aligned}
$$

if $m=4$ and $n \geq 2$. If $m \geq 6$ and $n \geq 2$ then

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))= & 3 \times \frac{m(n(m-4)-2)+12 n-4}{2(m+2)}+\frac{n(m-2)-2}{2} \times \frac{2 n(m-4)+m+2}{m+2} \\
& \quad+(2 n-2) \times \frac{m n(m-6)-2 m+8 n-4}{2(m+2)} \\
= & \frac{2 m^{2} n^{2}-12 m n^{2}+m^{2} n+16 n^{2}-4 m n-2 m+12 n-4}{m+2} .
\end{aligned}
$$

Again,

$$
\left|n(m-2)-2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|n(m-2)-2-\frac{n(m-2)^{2}-2(m-4 n+2)}{2(m+2)}\right|
$$

$$
=\left|\frac{f_{8}(m, n)}{2(m+2)}\right|
$$

where $f_{8}(m, n)=n\left(m^{2}-20\right)+2 m(n-1)+2 m n-4$. For $m=4$ and $n \geq 2$ we have $f_{8}(4, n)=12 n-12>0$. For $m \geq 6$ and $n \geq 2$ we have $f_{8}(m, n)>0$. Therefore,

$$
\begin{gathered}
\left|\frac{f_{8}(m, n)}{2(m+2)}\right|= \begin{cases}n-1, & \text { if } m=4 \text { and } n \geq 2 \\
\frac{n\left(m^{2}-20\right)+2 m(n-1)+2 m n-4}{2(m+2)}, & \text { if } m \geq 6 \text { and } n \geq 2 .\end{cases} \\
\left|\frac{n(m-2)-4}{2}-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|\frac{n(m-2)-4}{2}-\frac{n(m-2)^{2}-2(m-4 n+2)}{2(m+2)}\right| \\
=\left|\frac{f_{9}(m, n)}{m+2}\right|,
\end{gathered}
$$

where $f_{9}(m, n)=n(m-8)+m(n-1)-2$. For $m=4$ and $n \geq 2$ we have $f_{9}(4, n)=-6$. For $m=6$ and $n \geq 2$ we have $f_{9}(6, n)=4 n-8 \geq 0$. Further, if For $m \geq 8$ and $n \geq 2$ then $f_{9}(m, n)>0$ since $n(m-8) \geq 0$ and $m(n-1)-2>0$. Hence,

$$
\begin{gathered}
\left|\frac{f_{9}(m, n)}{m+2}\right|= \begin{cases}1, & \text { if } m=4 \text { and } n \geq 2 \\
\frac{n(m-8)+m(n-1)-2}{m+2}, & \text { if } m \geq 6 \text { and } n \geq 2\end{cases} \\
\left|2 n-2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 n-2-\frac{n(m-2)^{2}-2(m-4 n+2)}{2(m+2)}\right|=\left|\frac{-f_{10}(m, n)}{2(m+2)}\right|,
\end{gathered}
$$

where $f_{10}(m, n)=n\left(m^{2}-8 m+4\right)+2 m+4$. Clearly, $f_{10}(m, n)>0$ for $m \geq 8$ and $n \geq 2$. For $m=4$ and $n \geq 2$ we have $f_{10}(4, n)=-12 n+12<0$. For $m=6$ and $n \geq 2$ we have $f_{10}(6, n)=-8 n+16 \leq 0$. Hence,

$$
\begin{gathered}
\left|\frac{f_{10}(m, n)}{m+2}\right|= \begin{cases}n-1, & \text { if } m=4 \text { and } n \geq 2 \\
\frac{n-2}{2}, & \text { if } m=6 \text { and } n \geq 2 \\
\frac{n\left(m^{2}-8 m+4\right)+2 m+4}{2(m+2)}, & \text { if } m \geq 8 \text { and } n \geq 2\end{cases} \\
\left|n-2-\frac{2|e(\operatorname{CCC}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|n-2-\frac{n(m-2)^{2}-2(m-4 n+2)}{2(m+2)}\right|=\left|\frac{-f_{11}(m, n)}{2(m+2)}\right|,
\end{gathered}
$$

where $f_{11}(m, n)=n(m-2)(m-4)+2 m+4$. Note that for $m \geq 4$ and $n \geq 2$ we have $f_{11}(m, n)>0$. Therefore,

$$
\left|\frac{-f_{11}(m, n)}{2(m+2)}\right|=\frac{f_{11}(m, n)}{2(m+2)}=\frac{n(m-2)(m-4)+2 m+4}{2(m+2)} .
$$

By (1.1.f), we have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & n-1+\frac{n(m-2)-2}{2} \times 1+2 \times(n-1) \\
& +(2 n-2) \times \frac{n(m-2)(m-4)+2 m+4}{2(m+2)} \\
= & 6(n-1),
\end{aligned}
$$

if $m=4$ and $n \geq 2$. If $m=6$ and $n \geq 2$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & \frac{n\left(m^{2}-20\right)+2 m(n-1)+2 m n-4}{2(m+2)} \\
& +\frac{n(m-2)-2}{2} \times \frac{n(m-8)+m(n-1)-2}{m+2} \\
& +2 \times \frac{n-2}{2}+(2 n-2) \times \frac{n(m-2)(m-4)+2 m+4}{2(m+2)} \\
= & 2(n+2)(n-1) .
\end{aligned}
$$

If $m \geq 8$ and $n \geq 2$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & \frac{n\left(m^{2}-20\right)+2 m(n-1)+2 m n-4}{2(m+2)} \\
& +\frac{n(m-2)-2}{2} \times \frac{n(m-8)+m(n-1)-2}{m+2} \\
& +2 \times \frac{n\left(m^{2}-8 m+4\right)+2 m+4}{2(m+2)} \\
& +(2 n-2) \times \frac{n(m-2)(m-4)+2 m+4}{2(m+2)} \\
= & \frac{2 n^{2}(m-2)(m-4)}{m+2} .
\end{aligned}
$$

This completes the proof.
Theorem 5.1.4. If $G=V_{8 n}$ then
(a) $\operatorname{Spec}(\operatorname{CCC}(G))= \begin{cases}\left\{(-1)^{2 n-2}, 0^{2},(2 n-2)^{1}\right\}, & \text { if } n \text { is odd } \\ \left\{(-1)^{2 n-1}, 1^{2},(2 n-3)^{1}\right\}, & \text { if } n \text { is even }\end{cases}$ and $E(\mathcal{C C C}(G))= \begin{cases}4 n-4, & \text { if } n \text { is odd } \\ 4 n-2, & \text { if } n \text { is even. }\end{cases}$
(b) L-spec $(\mathcal{C C C}(G))= \begin{cases}\left\{0^{3},(2 n-1)^{2 n-2}\right\}, & \text { if } n \text { is odd } \\ \left\{0^{3}, 2^{2},(2 n-2)^{2 n-3}\right\}, & \text { if } n \text { is even }\end{cases}$
and $\operatorname{LE}(\operatorname{CCC}(G))= \begin{cases}\frac{6(2 n-1)(2 n-2)}{2 n+1}, & \text { if } n \text { is odd } \\ 6, & \text { if } n=2 \\ \frac{2(2 n-3)(5 n-7)}{n+1}, & \text { if } n \text { is even and } n \geq 4 .\end{cases}$
(c) $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))= \begin{cases}\left\{0^{2},(4 n-4)^{1},(2 n-3)^{2 n-2}\right\}, & \text { if } n \text { is odd } \\ \left\{2^{2}, 0^{2},(4 n-6)^{1},(2 n-4)^{2 n-3}\right\}, & \text { if } n \text { is even }\end{cases}$
and $L E^{+}(\operatorname{CCC}(G))= \begin{cases}\frac{4(2 n-1)(2 n-2)}{2 n+1}, & \text { if } n \text { is odd } \\ 6, & \text { if } n=2 \\ \frac{16(n-1)(n-2)}{n+1}, & \text { if } n \text { is even and } n \geq 4 .\end{cases}$
Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
By Result 1.3.21 we have $\mathcal{C C C}(G)=2 K_{1} \sqcup K_{2 n-1}$. Therefore, by Result 1.1.6, it follows that

$$
\operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{2 n-2}, 0^{2},(2 n-2)^{1}\right\}, \quad \text { L-spec }(\mathcal{C C C}(G))=\left\{0^{3},(2 n-1)^{2 n-2}\right\}
$$

and $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{2},(4 n-4)^{1},(2 n-3)^{2 n-2}\right\}$.
Hence, by (1.1.d), we get

$$
E(\mathcal{C C C}(G))=2 n-2+2 n-2=4 n-4
$$

We have $|V(\mathcal{C C C}(G))|=2 n+1$ and $|e(\mathcal{C C C}(G))|=\frac{(2 n-1)(2 n-2)}{2}$. Therefore,

$$
\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=\frac{(2 n-1)(2 n-2)}{2 n+1}
$$

Also,

$$
\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{(2 n-1)(2 n-2)}{2 n+1}\right|=\frac{(2 n-1)(2 n-2)}{2 n+1}
$$

and

$$
\left|2 n-1-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 n-1-\frac{(2 n-1)(2 n-2)}{2 n+1}\right|=\frac{3(2 n-1)}{2 n+1} .
$$

Now, by (1.1.e), we have

$$
\operatorname{LE}(\mathcal{C C C}(G))=3 \times \frac{(2 n-1)(2 n-2)}{2 n+1}+(2 n-2) \times \frac{3(2 n-1)}{2 n+1}=\frac{6(2 n-1)(2 n-2)}{2 n+1} .
$$

Again,

$$
\left|4 n-4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|4 n-4-\frac{(2 n-1)(2 n-2)}{2 n+1}\right|=\frac{(2 n-2)(2 n+3)}{2 n+1}
$$

and

$$
\left|2 n-3-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 n-3-\frac{(2 n-1)(2 n-2)}{2 n+1}\right|=\frac{2 n-5}{2 n+1}
$$

By (1.1.f), we have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =2 \times \frac{(2 n-1)(2 n-2)}{2 n+1}+\frac{(2 n-2)(2 n+3)}{2 n+1}+(2 n-2) \times \frac{2 n-5}{2 n+1} \\
& =\frac{4(2 n-1)(2 n-2)}{2 n+1}
\end{aligned}
$$

Case 2. n is even.
By Result 1.3.21 we have $\mathcal{C C C}(G)=2 K_{2} \sqcup K_{2 n-2}$. Therefore, by Result 1.1.6, it follows that

$$
\operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{2 n-1}, 1^{2},(2 n-3)^{1}\right\}, \quad \mathrm{L}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{3}, 2^{2},(2 n-2)^{2 n-3}\right\}
$$

and $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{2^{2}, 0^{2},(4 n-6)^{1},(2 n-4)^{2 n-3}\right\}$.
Hence, by (1.1.d), we get

$$
E(\operatorname{CCC}(G))=2 n-1+2+2 n-3=4 n-2 .
$$

We have $\mid \operatorname{VCCC}(G)) \mid=2 n+2$ and $|e(\mathcal{C C C}(G))|=\frac{(2 n-2)(2 n-3)+4}{2}$. Therefore,

$$
\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=\frac{(n-1)(2 n-3)+2}{n+1}
$$

Also,

$$
\begin{aligned}
&\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{(n-1)(2 n-3)+2}{n+1}\right|=\frac{(n-1)(2 n-3)+2}{n+1} \\
&\left|2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2-\frac{(n-1)(2 n-3)+2}{n+1}\right| \\
&=\left|\frac{-(2 n-1)(n-3)}{n+1}\right| \\
&= \begin{cases}1, & \text { if } n=2 \\
\frac{(2 n-1)(n-3)}{n+1}, & \text { if } n \geq 4\end{cases}
\end{aligned}
$$

and

$$
\left|2 n-2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 n-2-\frac{(n-1)(2 n-3)+2}{n+1}\right|=\frac{5 n-7}{n+1} .
$$

Now, by (1.1.e), we have

$$
L E(\mathcal{C C C}(G))=3 \times \frac{(n-1)(2 n-3)+2}{n+1}+2 \times 1+(2 n-3) \times \frac{5 n-7}{n+1}=6
$$

if $n=2$. If $n \geq 4$ then

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G)) & =3 \times \frac{(n-1)(2 n-3)+2}{n+1}+2 \times \frac{(2 n-1)(n-3)}{n+1}+(2 n-3) \times \frac{5 n-7}{n+1} \\
& =\frac{2\left(10 n^{2}-29 n+21\right)}{n+1}=\frac{2(2 n-3)(5 n-7)}{n+1} .
\end{aligned}
$$

Again,

$$
\left|4 n-6-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|4 n-6-\frac{(n-1)(2 n-3)+2}{n+1}\right|=\frac{2 n^{2}+3 n-11}{n+1}
$$

and

$$
\begin{aligned}
\left|2 n-4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|2 n-4-\frac{(n-1)(2 n-3)+2}{n+1}\right| \\
& =\left|\frac{3 n-9}{n+1}\right| \\
& = \begin{cases}1, & \text { if } n=2 \\
\frac{3 n-9}{n+1}, & \text { if } n \geq 4\end{cases}
\end{aligned}
$$

By (1.1.f), we have

$$
L E^{+}(\mathcal{C C C}(G))=2 \times 1+2 \times \frac{(n-1)(2 n-3)+2}{n+1}+\frac{2 n^{2}+3 n-11}{n+1}+(2 n-3) \times 1=6,
$$

if $n=2$. If $n \geq 4$ then

$$
\begin{aligned}
& L E^{+}(\mathcal{C C C}(G)) \\
& =2 \times \frac{(2 n-1)(n-3)}{n+1}+2 \times \frac{(n-1)(2 n-3)+2}{n+1}+\frac{2 n^{2}+3 n-11}{n+1} \\
& \quad \quad+(2 n-3) \times \frac{3 n-9}{n+1} \\
& = \\
& =\frac{16(n-1)(n-2)}{n+1} .
\end{aligned}
$$

This completes the proof.
Theorem 5.1.5. If $G=S D_{8 n}$ then
(a) $\operatorname{Spec}(\mathcal{C C C}(G))= \begin{cases}\left\{(-1)^{2 n}, 3^{1},(2 n-3)^{1}\right\}, & \text { if } n \text { is odd } \\ \left\{(-1)^{2 n-2}, 0^{2},(2 n-2)^{1}\right\}, & \text { if } n \text { is even }\end{cases}$ and $E(\mathcal{C C C}(G))= \begin{cases}4 n, & \text { if } n \text { is odd } \\ 4 n-4, & \text { if } n \text { is even. }\end{cases}$
(b) L-spec $(\mathcal{C C C}(G))= \begin{cases}\left\{0^{2}, 4^{3},(2 n-2)^{2 n-3}\right\}, & \text { if } n \text { is odd } \\ \left\{0^{3},(2 n-1)^{2 n-2}\right\}, & \text { if } n \text { is even }\end{cases}$
and $L E(\operatorname{CCC}(G))= \begin{cases}12, & \text { if } n=3 \\ \frac{2(2 n-3)(5 n-11)}{n+1}, & \text { if } n \text { is odd and } n \geq 5 \\ \frac{6(2 n-1)(2 n-2)}{2 n+1}, & \text { if } n \text { is even. }\end{cases}$
(c) Q-spec $(\mathcal{C C C}(G))= \begin{cases}\left\{6^{1}, 2^{3},(4 n-6)^{1},(2 n-4)^{2 n-3}\right\}, & \text { if } n \text { is odd } \\ \left\{0^{2},(4 n-4)^{1},(2 n-3)^{2 n-2}\right\}, & \text { if } n \text { is even }\end{cases}$
and $L E^{+}(\mathcal{C C C}(G))= \begin{cases}12, & \text { if } n=3 \\ 22, & \text { if } n=5 \\ \frac{16(n-1)(n-3)}{n+1}, & \text { if } n \text { is odd and } n \geq 7 \\ \frac{28}{5}, & \text { if } n=2 \\ \frac{4(2 n-1)(2 n-2)}{2 n+1}, & \text { if } n \text { is even and } n \geq 4 .\end{cases}$
Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
By Result 1.3.22 we have $\mathcal{C C C}(G)=K_{4} \sqcup K_{2 n-2}$. Therefore, by Result 1.1.6, it follows that

$$
\operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{2 n}, 3^{1},(2 n-3)^{1}\right\}, \quad \text { L-spec }(\mathcal{C C C}(G))=\left\{0^{2}, 4^{3},(2 n-2)^{2 n-3}\right\}
$$

and $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{6^{1}, 2^{3},(4 n-6)^{1},(2 n-4)^{2 n-3}\right\}$.
Hence, by (1.1.d), we get

$$
E(\mathcal{C C C}(G))=2 n+3+2 n-3=4 n
$$

We have $|V(\mathcal{C C C}(G))|=2 n+2$ and $|e(\mathcal{C C C}(G))|=\frac{(2 n-2)(2 n-3)+12}{2}$. Therefore,

$$
\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=\frac{(n-1)(2 n-3)+6}{n+1}
$$

Also,

$$
\begin{aligned}
&\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{(n-1)(2 n-3)+6}{n+1}\right|=\frac{(n-1)(2 n-3)+6}{n+1} \\
&\left|4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|4-\frac{(n-1)(2 n-3)+6}{n+1}\right| \\
&=\left|\frac{-2 n^{2}+9 n-5}{n+1}\right|= \begin{cases}1, & \text { if } n=3 \\
\frac{2 n^{2}-9 n+5}{n+1}, & \text { if } n \geq 5\end{cases}
\end{aligned}
$$

and

$$
\left|2 n-2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 n-2-\frac{(n-1)(2 n-3)+6}{n+1}\right|=\frac{5 n-11}{n+1} .
$$

Now, by (1.1.e), we have

$$
L E(\mathcal{C C C}(G))=2 \times \frac{(n-1)(2 n-3)+6}{n+1}+3 \times 1+(2 n-3) \times \frac{5 n-11}{n+1}=12
$$

if $n=3$. If $n \geq 5$ then

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G)) & =2 \times \frac{(n-1)(2 n-3)+6}{n+1}+3 \times \frac{2 n^{2}-9 n+5}{n+1}+(2 n-3) \times \frac{5 n-11}{n+1} \\
& =\frac{2\left(10 n^{2}-37 n+33\right)}{n+1}=\frac{2(2 n-3)(5 n-11)}{n+1} .
\end{aligned}
$$

Again,

$$
\begin{aligned}
&\left|6-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left\lvert\, \begin{array}{l}
\left.6-\frac{(n-1)(2 n-3)+6}{n+1} \right\rvert\,
\end{array}\right. \\
&=\left\lvert\, \begin{array}{ll}
\left.\frac{-2 n^{2}+11 n-3}{n+1} \right\rvert\,
\end{array}\right. \\
&= \begin{cases}\frac{-2 n^{2}+11 n-3}{n+1}, \quad \text { if } n=3,5 \\
\frac{2 n^{2}-11 n+3}{n+1}, \quad \text { if } n \geq 7,\end{cases} \\
&\left|2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2-\frac{(n-1)(2 n-3)+6}{n+1}\right|=\frac{2 n^{2}-7 n+7}{n+1}, \\
&\left|4 n-6-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|4 n-6-\frac{(n-1)(2 n-3)+6}{n+1}\right|=\frac{2 n^{2}+3 n-15}{n+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|2 n-4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|2 n-4-\frac{(n-1)(2 n-3)+6}{n+1}\right| \\
& =\left|\frac{3 n-13}{n+1}\right| \\
& = \begin{cases}1, & \text { if } n=3 \\
\frac{3 n-13}{n+1}, & \text { if } n \geq 5\end{cases}
\end{aligned}
$$

By (1.1.f), we have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =\frac{-2 n^{2}+11 n-3}{n+1}+3 \times \frac{2 n^{2}-7 n+7}{n+1}+\frac{2 n^{2}+3 n-15}{n+1}+(2 n-3) \times 1 \\
& =12
\end{aligned}
$$

if $n=3$. If $n=5$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & \frac{-2 n^{2}+11 n-3}{n+1}+3 \times \frac{2 n^{2}-7 n+7}{n+1}+\frac{2 n^{2}+3 n-15}{n+1} \\
& +(2 n-3) \times \frac{3 n-13}{n+1} \\
= & 22 .
\end{aligned}
$$

If $n \geq 7$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =\frac{2 n^{2}-11 n+3}{n+1}+3 \times \frac{2 n^{2}-7 n+7}{n+1}+\frac{2 n^{2}+3 n-15}{n+1}+(2 n-3) \times \frac{3 n-13}{n+1} \\
& =\frac{16(n-1)(n-3)}{n+1} .
\end{aligned}
$$

Case 2. n is even.
By Result 1.3.22 we have $\mathcal{C C C}(G)=2 K_{1} \sqcup K_{2 n-1}$. Therefore, by Result 1.1.6, it follows that

$$
\operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{2 n-2}, 0^{2},(2 n-2)^{1}\right\}, \quad \text { L-spec }(\mathcal{C C C}(G))=\left\{0^{3},(2 n-1)^{2 n-2}\right\}
$$

and $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{2},(4 n-4)^{1},(2 n-3)^{2 n-2}\right\}$.
Hence, by (1.1.d), we get

$$
E(\mathcal{C C C}(G))=2 n-2+2 n-2=4 n-4 .
$$

We have $V(\mathcal{C C C}(G))=2 n+1$ and $e(\operatorname{CCC}(G))=\frac{(2 n-1)(2 n-2)}{2}$. So, $\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}=$ $\frac{(2 n-1)(2 n-2)}{2 n+1}$.
Also,

$$
\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|0-\frac{(2 n-1)(2 n-2)}{2 n+1}\right|=\frac{(2 n-1)(2 n-2)}{2 n+1}
$$

and

$$
\left|2 n-1-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 n-1-\frac{(2 n-1)(2 n-2)}{2 n+1}\right|=\frac{3(2 n-1)}{2 n+1} .
$$

Now, by (1.1.e), we have

$$
\operatorname{LE}(\mathcal{C C C}(G))=3 \times \frac{(2 n-1)(2 n-2)}{2 n+1}+(2 n-2) \times \frac{3(2 n-1)}{2 n+1}=\frac{6(2 n-1)(2 n-2)}{2 n+1} .
$$

Again,

$$
\begin{aligned}
&\left|4 n-4-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|4 n-4-\frac{(2 n-1)(2 n-2)}{2 n+1}\right|=\frac{(2 n-2)(2 n+3)}{2 n+1} \text { and } \\
&\left|2 n-3-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\left|2 n-3-\frac{(2 n-1)(2 n-2)}{2 n+1}\right| \\
&=\left|\frac{2 n-5}{2 n+1}\right|= \begin{cases}\frac{1}{5}, & \text { if } n=2 \\
\frac{2 n-5}{2 n+1}, & \text { if } n \geq 4 .\end{cases}
\end{aligned}
$$

By (1.1.f), we have

$$
L E^{+}(\mathcal{C C C}(G))=2 \times \frac{(2 n-1)(2 n-2)}{2 n+1}+\frac{(2 n-2)(2 n+3)}{2 n+1}+(2 n-2) \times \frac{1}{5}=\frac{28}{5},
$$

if $n=2$. If $n \geq 4$ then

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & =2 \times \frac{(2 n-1)(2 n-2)}{2 n+1}+\frac{(2 n-2)(2 n+3)}{2 n+1}+(2 n-2) \times \frac{2 n-5}{2 n+1} \\
& =\frac{4(2 n-1)(2 n-2)}{2 n+1} .
\end{aligned}
$$

This completes the proof.
Theorem 5.1.6. If $G=G(p, m, n)$ then
(a) $\operatorname{Spec}(\mathcal{C C C}(G))=\left\{(-1)^{p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2},\left(p^{m}-p^{m-1}-1\right)^{p^{n-1}(p-1)}\right.$,

$$
\begin{array}{r}
\left.\left(p^{m+n-1}-p^{m+n-2}-1\right)^{2}\right\} \text { and } \\
E(\operatorname{CCC}(G))=2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right) .
\end{array}
$$

(b) L-spec $(\mathcal{C C C}(G))=\left\{0^{p^{n}-p^{n-1}+2},\left(p^{m-1}(p-1)\right)^{p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right)}\right.$, $\left.\left(p^{m+n-2}(p-1)\right)^{2\left((p-1) p^{m+n-2}-1\right)}\right\}$ and

$$
\operatorname{LE}(\operatorname{CCC}(G))=\left\{\begin{array}{c}
\frac{2\left(p^{n+1}-p^{n}+2 p\right)\left(2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}\right)}{p^{3}(p+1)}, \\
\text { if } n=1, p \geq 2, m \geq 1 ; \text { or } n=2, p=2, m=1 \\
\frac{4}{p^{4}(p+1)}\left(p^{2 m+2 n+3}-3 p^{2(m+n+1)}+3 p^{2 m+2 n+1}-p^{2(m+n)}\right. \\
-p^{2 m+n+4}+3 p^{2 m+n+3}-3 p^{2 m+n+2}+p^{2 m+n+1} \\
+2 p^{m+n+3}-2 p^{m+n+2}+p^{m+5}-2 p^{m+4}+p^{m+3} \\
\left.-p^{5}-p^{4}\right), \quad \text { otherwise. }
\end{array}\right.
$$

(c) $\mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{\left(2 p^{m}-2 p^{m-1}-2\right)^{p^{n-1}(p-1)},\left(p^{m}-p^{m-1}-2\right)^{p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right)}\right.$,

$$
\left.\left(2 p^{m+n-1}-2 p^{m+n-2}-2\right)^{2},\left(p^{m+n-1}-p^{m+n-2}-2\right)^{2\left(p^{m+n-1}-p^{m+n-2}-1\right)}\right\}
$$

and

$$
L E^{+}(\operatorname{CCC}(G))= \begin{cases}2\left(p^{m+1}-p^{m-1}-p-1\right), & \text { if } n=1, p \geq 2, m \geq 1 \\ \frac{2}{3}\left(7.2^{m}-6\right), & \text { if } n=2, p=2, m \leq 2 \\ \frac{2}{3}\left(4^{m}+2^{m}-6\right), & \text { if } n=2, p=2, m \geq 3 \\ \frac{4 p^{2 m+n-4}}{p+1}(p-1)^{3}\left(p^{n}-p\right), & \text { if } n=2, p \geq 3, m \geq 1 \\ & \text { or } n \geq 3, p \geq 2, m \geq 1 .\end{cases}
$$

Proof. By Result 1.3.23 we have

$$
\mathcal{C C C}(G)=\left(p^{n}-p^{n-1}\right) K_{p^{m-n}\left(p^{n}-p^{n-1}\right)} \sqcup K_{p^{n-1}\left(p^{m}-p^{m-1}\right)} \sqcup K_{p^{m-1}\left(p^{n}-p^{n-1}\right)} .
$$

Let $m_{1}=p^{n}-p^{n-1}, m_{2}=1, m_{3}=1, n_{1}=p^{m-n}\left(p^{n}-p^{n-1}\right), n_{2}=p^{n-1}\left(p^{m}-p^{m-1}\right)$ and $n_{3}=p^{m-1}\left(p^{n}-p^{n-1}\right)$. Then, by Result 1.1.6, it follows that

$$
\begin{aligned}
\operatorname{Spec}(\mathcal{C C C}(G))=\{ & (-1)^{p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2},\left(p^{m}-p^{m-1}-1\right)^{p^{n-1}(p-1)}, \\
& \left.\left(p^{m+n-1}-p^{m+n-2}-1\right)^{2}\right\}
\end{aligned}
$$

$\mathrm{L}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{0^{p^{n}-p^{n-1}+2},\left(p^{m-1}(p-1)\right)^{p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right)}\right.$,

$$
\left.\left(p^{m+n-2}(p-1)\right)^{2\left((-1+p) p^{m+n-2}-1\right)}\right\}
$$

and

$$
\begin{aligned}
& \mathrm{Q}-\operatorname{spec}(\mathcal{C C C}(G))=\left\{\left(2 p^{m}-2 p^{m-1}-2\right)^{p^{n-1}(p-1)},\left(p^{m}-p^{m-1}-2\right)^{p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right)},\right. \\
& \left.\left(2 p^{m+n-1}-2 p^{m+n-2}-2\right)^{2},\left(p^{m+n-1}-p^{m+n-2}-2\right)^{2\left(p^{m+n-1}-p^{m+n-2}-1\right)}\right\}
\end{aligned}
$$

Hence, by (1.1.d), we get

$$
\begin{aligned}
& E(\mathcal{C C C}(G))= p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2+\left(p^{n-1}(p-1)\right)\left(p^{m}-p^{m-1}-1\right) \\
&+2\left(p^{m+n-1}-p^{m+n-2}-1\right) \\
&=2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right)
\end{aligned}
$$

We have $|V(\operatorname{CCC}(G))|=m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}=p^{m+n-2}\left(p^{2}-1\right)$ and

$$
\begin{aligned}
|e(\mathcal{C C C}(G))| & =\frac{m_{1} n_{1}\left(n_{1}-1\right)}{2}+\frac{m_{2} n_{2}\left(n_{2}-1\right)}{2}+\frac{m_{3} n_{3}\left(n_{3}-1\right)}{2} \\
& =\frac{p^{m+n-4}(p-1)}{2}\left(2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|} & =\frac{2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}}{p^{2}(p+1)} \\
& =\frac{p^{m+n}(p-2)+p^{m+2}(p-2)+\left(p^{m+n+1}-p^{3}\right)+\left(p^{m+1}-p^{2}\right)}{p^{2}(1+p)} \geq 0
\end{aligned}
$$

Also,

$$
\begin{aligned}
&\left|0-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right|=\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|} \\
&=\frac{2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}}{p^{2}(p+1)}, \\
& \left\lvert\, \begin{aligned}
\left|p^{m-1}(p-1)-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|\frac{-2 p^{m+n+1}+2 p^{m+n}+2 p^{m+2}-2 p^{m+1}+p^{3}+p^{2}}{p^{2}+p^{3}}\right| \\
& =\left|1-\frac{2 p^{m-1}\left(p^{n-1}-1\right)(p-1)}{p+1}\right| \\
& = \begin{cases}1-\frac{2 p^{m-1}\left(p^{n-1}-1\right)(p-1)}{p+1}, & \text { if } n=1, p \geq 2, m \geq 1 ; \\
\frac{2 p^{m-1}\left(p^{n-1}-1\right)(p-1)}{p+1}-1, & \text { otherwise }\end{cases}
\end{aligned}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
\mid p^{m+n-2}(p-1) & \left.-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|} \right\rvert\, \\
& =\left|\frac{p^{m+n+2}-2 p^{m+n+1}+p^{m+n}-p^{m+3}+2 p^{m+2}-p^{m+1}+p^{3}+p^{2}}{p^{2}(p+1)}\right| \\
& =\left|\frac{p^{m+n}(p-1)^{2}-p^{m+1}(p-1)^{2}+p^{3}+p^{2}}{p^{2}(p+1)}\right| \\
& =\frac{p^{m+n}(p-1)^{2}-p^{m+1}(p-1)^{2}+p^{3}+p^{2}}{p^{2}(p+1)}
\end{aligned}
$$

Now, by (1.1.e), we have

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))= & \left(p^{n}-p^{n-1}+2\right) \times \frac{2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}}{p^{2}(p+1)} \\
& +\left(p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right)\right) \times\left(1-\frac{2 p^{m-1}\left(p^{n-1}-1\right)(p-1)}{p+1}\right) \\
& +2\left((p-1) p^{m+n-2}-1\right) \times \frac{p^{m+n}(p-1)^{2}-p^{m+1}(p-1)^{2}+p^{3}+p^{2}}{p^{2}(p+1)} \\
= & \frac{2\left(p^{n+1}-p^{n}+2 p\right)\left(2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}\right)}{p^{3}(p+1)},
\end{aligned}
$$

if $n=1, p \geq 2, m \geq 1$; or $n=2, p=2, m=1$. Otherwise

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))= & \left(p^{n}-p^{n-1}+2\right) \times \frac{2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}}{p^{2}(p+1)} \\
& +\left(p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right)\right) \times\left(\frac{2 p^{m-1}\left(p^{n-1}-1\right)(p-1)}{p+1}-1\right) \\
& +2\left((p-1) p^{m+n-2}-1\right) \times \frac{p^{m+n}(p-1)^{2}-p^{m+1}(p-1)^{2}+p^{3}+p^{2}}{p^{2}(p+1)} \\
= & \frac{4}{p^{4}(p+1)}\left(p^{2 m+2 n+3}-3 p^{2(m+n+1)}+3 p^{2 m+2 n+1}-p^{2(m+n)}-p^{2 m+n+4}\right. \\
& \quad+3 p^{2 m+n+3}-3 p^{2 m+n+2}+p^{2 m+n+1}+2 p^{m+n+3}-2 p^{m+n+2} \\
& \left.\quad+p^{m+5}-2 p^{m+4}+p^{m+3}-p^{5}-p^{4}\right) .
\end{aligned}
$$

Again,

$$
\begin{aligned}
\mid 2 p^{m}-2 p^{m-1}-2 & \left.-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|} \right\rvert\, \\
& =\left|-\frac{2 p^{m+n+1}-2 p^{m+n}-p^{m+3}-2 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}}{p^{3}+p^{2}}\right| \\
& =\left|\frac{f_{1}(p, m, n)}{p^{3}+p^{2}}\right|
\end{aligned}
$$

where $f_{1}(p, m, n)=-\left(2 p^{m+n+1}-2 p^{m+n}-p^{m+3}-2 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}\right)$. For $n=1, p \geq$ $2, m \geq 1$, we have $f_{1}(p, m, 1)=p(p+1)\left(p^{m+1}-p^{m}-p\right) \geq 0$. For $n=2, p \geq 2, m \geq 1$, we have

$$
f_{1}(p, m, 2)=-\left(p^{m+3}-4 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}\right)=-\left(p^{m+1}(p-1)(p-3)+p^{3}+p^{2}\right)
$$

So, $f_{1}(2, m, 2)=2\left(2^{m}-6\right)>0$ for $m \geq 3$ and $f_{1}(2, m, 2)<0$ for $m=1,2$. Also, $f_{1}(p, m, 2) \leq 0$ for $p \geq 3$ and $m \geq 1$. For $n \geq 3, p \geq 2, m \geq 1$, we have

$$
f_{1}(p, m, n)=-\left((p-1)\left(p^{m+2}\left(p^{n-2}-1\right)+p^{m+1}\left(p^{n-1}-3\right)\right)+p^{3}+p^{2}\right) \leq 0 .
$$

Therefore

$$
\begin{aligned}
&\left|\left(2 p^{m}-2 p^{m-1}-2\right)-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| \\
&= \begin{cases}-\frac{2 p^{m+n+1}-2 p^{m+n}-p^{m+3}-2 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}}{p^{3}+p^{2}}, & \text { if } n=1, p \geq 2, m \geq 1 ; \\
& \text { or } n=2, p=2, m \geq 3 \\
\frac{2 p^{m+n+1}-2 p^{m+n}-p^{m+3}-2 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}}{p^{3}+p^{2}}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

We have

$$
\begin{aligned}
\left|\left(p^{m}-p^{m-1}-2\right)-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| & =\left|-\frac{2 p^{m+n+1}-2 p^{m+n}-2 p^{m+2}+2 p^{m+1}+p^{3}+p^{2}}{p^{3}+p^{2}}\right| \\
& =\left|-\frac{2 p^{m+n}(p-1)-2 p^{m+1}(p-1)+p^{3}+p^{2}}{p^{3}+p^{2}}\right| \\
& =\frac{2 p^{m+n}(p-1)-2 p^{m+1}(p-1)+p^{3}+p^{2}}{p^{3}+p^{2}}, \\
\mid 2 p^{m+n-1}-2 p^{m+n-2}-2- & \left.\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|} \right\rvert\, \\
& =\left|-\frac{-2 p^{m+n+1}+2 p^{m+n}+p^{m+2}-2 p^{m+1}+p^{m}+p^{2}+p}{p+p^{2}}\right| \\
& =\left|\frac{(p-1)\left(2 p^{m+n-1}-p^{m+1}+p^{m}\right)}{p(p+1)}-1\right| \\
& =\left|(p-1) \frac{\left(p^{m+n-1}-p^{m}\right)+\left(p^{m+n-1}+p^{m-1}\right)}{p+1}-1\right| \\
& =(p-1) \frac{\left(p^{m+n-1}-p^{m}\right)+\left(p^{m+n-1}+p^{m-1}\right)}{p+1}-1
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|p^{m+n-1}-p^{m+n-2}-2-\frac{2|e(\mathcal{C C C}(G))|}{|V(\mathcal{C C C}(G))|}\right| \\
& =\left|-\frac{-p^{m+n+2}+2 p^{m+n+1}-p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}+p^{3}+p^{2}}{p^{2}(p+1)}\right| \\
& =\left|-1+\frac{p^{m-1}\left(p^{n-1}-1\right)(p-1)^{2}}{p+1}\right| \\
& = \begin{cases}1-\frac{p^{m-1}\left(p^{n-1}-1\right)(p-1)^{2}}{p+1}, & \text { if } n=1, p \geq 2, m \geq 1 ; \\
& n=2, p=2, m \leq 2 \\
-1+\frac{p^{m-1}\left(p^{n-1}-1\right)(p-1)^{2}}{p+1}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

By (1.1.f), we have

$$
\begin{aligned}
L E^{+} & (\mathcal{C C C}(G)) \\
= & \left(p^{n-1}(p-1)\right) \times\left(-\frac{2 p^{m+n+1}-2 p^{m+n}-p^{m+3}-2 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}}{p^{3}+p^{2}}\right) \\
& +p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right) \times\left(\frac{2 p^{m+n}(p-1)-2 p^{m+1}(p-1)+p^{3}+p^{2}}{p^{3}+p^{2}}\right) \\
& +2 \times\left((p-1) \frac{\left(p^{m+n-1}-p^{m}\right)+\left(p^{m+n-1}+p^{m-1}\right)}{p+1}-1\right) \\
& +2\left(p^{m+n-1}-p^{m+n-2}-1\right) \times\left(1-\frac{p^{m-1}\left(p^{n-1}-1\right)(p-1)^{2}}{p+1}\right) \\
= & 2\left(p^{m+1}-p^{m-1}-p-1\right),
\end{aligned}
$$

if $n=1, p \geq 2, m \geq 1$. If $n=2, p=2, m \leq 2$ then

$$
\begin{aligned}
L E^{+} & (\mathcal{C C C}(G)) \\
= & \left(p^{n-1}(p-1)\right) \times\left(\frac{2 p^{m+n+1}-2 p^{m+n}-p^{m+3}-2 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}}{p^{3}+p^{2}}\right) \\
& +p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right) \times\left(\frac{2 p^{m+n}(p-1)-2 p^{m+1}(p-1)+p^{3}+p^{2}}{p^{3}+p^{2}}\right) \\
& +2 \times\left((p-1) \frac{\left(p^{m+n-1}-p^{m}\right)+\left(p^{m+n-1}+p^{m-1}\right)}{p+1}-1\right) \\
& +2\left(p^{m+n-1}-p^{m+n-2}-1\right) \times\left(1-\frac{p^{m-1}\left(p^{n-1}-1\right)(p-1)^{2}}{p+1}\right) \\
= & \frac{2}{3}\left(7.2^{m}-6\right) .
\end{aligned}
$$

If $n=2, p=2, m \geq 3$ then

$$
\begin{aligned}
& L E^{+}(\mathcal{C C C}(G)) \\
&=\left(p^{n-1}(p-1)\right) \times\left(-\frac{2 p^{m+n+1}-2 p^{m+n}-p^{m+3}-2 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}}{p^{3}+p^{2}}\right) \\
&+p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right) \times\left(\frac{2 p^{m+n}(p-1)-2 p^{m+1}(p-1)+p^{3}+p^{2}}{p^{3}+p^{2}}\right) \\
&+2 \times\left((p-1) \frac{\left(p^{m+n-1}-p^{m}\right)+\left(p^{m+n-1}+p^{m-1}\right)}{p+1}-1\right) \\
&+2\left(p^{m+n-1}-p^{m+n-2}-1\right) \times\left(\frac{p^{m-1}\left(p^{n-1}-1\right)(p-1)^{2}}{p+1}-1\right) \\
&= \frac{2}{3}\left(4^{m}+2^{m}-6\right) .
\end{aligned}
$$

If $n \geq 3, p \geq 2, m \geq 1$ then

$$
\begin{aligned}
& L E^{+}(\mathcal{C C C}(G)) \\
& \quad=\left(p^{n-1}(p-1)\right) \times\left(\frac{2 p^{m+n+1}-2 p^{m+n}-p^{m+3}-2 p^{m+2}+3 p^{m+1}+p^{3}+p^{2}}{p^{3}+p^{2}}\right) \\
& \\
& \quad+p^{n-2}(p-1)\left(p^{m+1}-p^{m}-p\right) \times\left(\frac{2 p^{m+n}(p-1)-2 p^{m+1}(p-1)+p^{3}+p^{2}}{p^{3}+p^{2}}\right) \\
& \\
& \quad+2 \times\left((p-1) \frac{\left(p^{m+n-1}-p^{m}\right)+\left(p^{m+n-1}+p^{m-1}\right)}{p+1}-1\right) \\
& \\
& \\
& \quad+2\left(p^{m+n-1}-p^{m+n-2}-1\right) \times\left(\frac{p^{m-1}\left(p^{n-1}-1\right)(p-1)^{2}}{p+1}-1\right) \\
& = \\
& =\frac{4 p^{2 m+n-4}}{p+1}(p-1)^{3}\left(p^{n}-p\right) .
\end{aligned}
$$

This completes the proof.
We conclude this section with the following corollary.
Corollary 5.1.7. If G is isomorphic to $D_{2 n}, Q_{4 m}, U_{(n, m)}, V_{8 n}, S D_{8 n}$ or $G(p, m, n)$ then $\mathcal{C C C}(G)$ is super integral.

5.2 Comparing various energies

In this section we compare various energies of $\operatorname{CCC}(G)$ that are computed in Section 5.1 and derive the following relations.

Theorem 5.2.1. Let $G=D_{2 n}$.
(a) If $n=3,4,6$ then $E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))$.
(b) If $n=5$ then $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))$.
(c) If $n=10$ then $L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
(d) If $n \geq 7$ but $n \neq 10$ then $E(\mathcal{C C C}(G))<\operatorname{LE}^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
If $n=3$ then, by Theorem 5.1.1, we have

$$
E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=0
$$

If $n=5$ then, by Theorem 5.1.1, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\operatorname{CCC}(G))=n-3-\frac{(n-3)(n+3)}{n+1}=-\frac{4}{5}<0
$$

and $L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=\frac{8}{3}$. Therefore, $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=$ $L E(\mathcal{C C C}(G))$.

If $n \geq 7$ then, by Theorem 5.1.1, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=n-3-\frac{(n-3)(n+3)}{n+1}=-\frac{2(n-3)}{n+1}<0
$$

and
$L E^{+}(\operatorname{CCC}(G))-\operatorname{LE}(\mathcal{C C C}(G))=\frac{(n-3)(n+3)}{n+1}-\frac{2(n-1)(n-3)}{n+1}=-\frac{(n-3)(n-5)}{n+1}<0$.

Case 2. n is even.
Consider the following subcases.
Subcase $2.1 \frac{n}{2}$ is even.
If $n=4$ then, by Theorem 5.1.1, we have

$$
E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))=0
$$

If $n=8$ then, by Theorem 5.1.1, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=n-4-\frac{(n-4)(n+6)}{n+2}=-\frac{8}{5}<0
$$

and

$$
L E^{+}(\mathcal{C C C}(G))-\operatorname{LE}(\mathcal{C C C}(G))=\frac{(n-4)(n+6)}{n+2}-\frac{3(n-2)(n-4)}{n+2}=-\frac{8}{5}<0 .
$$

If $n \geq 12$ then, by Theorem 5.1.1, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\operatorname{CCC}(G))=n-4-\frac{2(n-2)(n-4)}{n+2}=-\frac{(n-4)(n-6)}{n+2}<0
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G)) & =\frac{2(n-2)(n-4)}{n+2}-\frac{3(n-2)(n-4)}{n+2} \\
& =-\frac{(n-2)(n-4)}{n+2}<0 .
\end{aligned}
$$

Therefore, $E(\operatorname{CCC}(G))<L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))$.
Subcase $2.2 \frac{n}{2}$ is odd.
If $n=6$ then, by Theorem 5.1.1, we have

$$
E(\operatorname{CCC}(G))=L E^{+}(\operatorname{CCC}(G))=L E(\operatorname{CCC}(G))=4
$$

If $n=10$ then, by Theorem 5.1.1, we have

$$
L E^{+}(\operatorname{CCC}(G))-E(\mathcal{C C C}(G))=\frac{22}{3}-(n-2)=-\frac{2}{3}<0
$$

and

$$
E(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G))=n-2-\frac{(n-4)(3 n-10)}{n+2}=-2<0
$$

Therefore, $L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
If $n \geq 14$ then, by Theorem 5.1.1, we have

$$
\begin{aligned}
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G)) & =n-2-\frac{2(n-2)(n-6)}{n+2} \\
& =-\frac{(n-2)(n-10)}{n+2}<0
\end{aligned}
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G)) & =\frac{2(n-2)(n-6)}{n+2}-\frac{(n-4)(3 n-10)}{n+2} \\
& =-\frac{n^{2}-6 n+16}{n+2} \\
& =-\frac{n(n-14)+8 n+10}{n+2}<0 .
\end{aligned}
$$

Therefore, $E(\operatorname{CCC}(G))<L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$. Hence, the result follows.
Theorem 5.2.2. Let $G=Q_{4 m}$.
(a) If $m=2,3$ then $E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))$.
(b) If $m=5$ then $L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
(c) If $m=7$ then $L E^{+}(\operatorname{CCC}(G))=E(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))$.
(d) If $m=4,6$ or $m \geq 8$ then $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))$.

Proof. We shall prove the result by considering the following cases.
Case 1. m is odd.
If $m=3$ then, by Theorem 5.1.2, we have

$$
E(\operatorname{CCC}(G))=L E^{+}(\operatorname{CCC}(G))=L E(\mathcal{C C C}(G))=4
$$

If $m=5$ then, by Theorem 5.1.2, we have

$$
L E^{+}(\mathcal{C C C}(G))-E(\mathcal{C C C}(G))=\frac{22}{3}-(2 m-2)=-\frac{2}{3}<0
$$

and

$$
E(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G))=2 m-2-\frac{2(m-2)(3 m-5)}{m+1}=-2<0
$$

Therefore, $L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
If $m=7$ then, by Theorem 5.1.2, we have $L E^{+}(\mathcal{C C C}(G))=E(\mathcal{C C C}(G))=12$ and

$$
\begin{aligned}
L E^{+}(\operatorname{CCC}(G))-L E(\mathcal{C C C}(G)) & =\frac{4(m-1)(m-3)}{m+1}-\frac{2(m-2)(3 m-5)}{m+1} \\
& =-\frac{2(m+4)(m-1)}{m+1}<0 .
\end{aligned}
$$

Therefore, $L E^{+}(\mathcal{C C C}(G))=E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
If $m \geq 9$ then, by Theorem 5.1.2, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=2 m-2-\frac{4(m-1)(m-3)}{m+1}=-\frac{2(m-1)(m-7)}{m+1}<0
$$

and

$$
\begin{aligned}
L E^{+}(\operatorname{CCC}(G))-L E(\mathcal{C C C}(G)) & =\frac{4(m-1)(m-3)}{m+1}-\frac{2(m-2)(3 m-5)}{m+1} \\
& =-\frac{2(m+4)(m-1)}{m+1}<0 .
\end{aligned}
$$

Case 2. m is even.
If $m=2$ then, by Theorem 5.1.2, we have

$$
E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))=0
$$

If $m=4$ then, by Theorem 5.1.2, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=2 m-4-\frac{2(m-2)(m+3)}{m+1}=-\frac{8}{5}<0
$$

and

$$
L E^{+}(\operatorname{CCC}(G))-L E(\mathcal{C C C}(G))=\frac{2(m-2)(m+3)}{m+1}-\frac{6(m-1)(m-2)}{m+1}=-\frac{8}{5}<0
$$

If $m \geq 6$ then, by Theorem 5.1.2, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=2 m-4-\frac{4(m-1)(m-2)}{m+1}=-\frac{2(m-2)(m-3)}{m+1}<0
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G)) & =\frac{4(m-1)(m-2)}{m+1}-\frac{6(m-1)(m-2)}{m+1} \\
& =-\frac{2(m-1)(m-2)}{m+1} .
\end{aligned}
$$

Therefore, $\operatorname{E(CCC}(G))<L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$. Hence, the result follows.
Theorem 5.2.3. Let $G=U_{(n, m)}$.
(a) If $m=3,4$ and $n \geq 2$ then $L E^{+}(\mathcal{C C C}(G))=E(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))$.
(b) If $m=5$ and $n=2,3$; or $m=6$ and $n=2$ then

$$
L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

(c) If $m=5$ and $n \geq 4$; $m \geq 6$ and $n \geq 3$; or $m \geq 8$ and $n \geq 2$ then

$$
E(\mathcal{C C C}(G))<L E^{+}(\operatorname{CCC}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

(d) If $m=7$ and $n=2$ then $E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.

Proof. We shall prove the result by considering the following cases.
Case 1. If m is odd and $n \geq 2$.
If $m=3$ and $n \geq 2$ then, by Theorem 5.1.3, we have

$$
L E^{+}(\operatorname{CCC}(G))=E(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=4(n-1) .
$$

If $m=5$ and $n=2$ then, by Theorem 5.1.3, we have

$$
L E^{+}(\mathcal{C C C}(G))-E(\mathcal{C C C}(G))=\frac{2 n^{2}+10 n-6}{3}-(n(m+1)-4)=-\frac{2}{3}<0
$$

and

$$
E(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G))=n(m+1)-4-\frac{2(2 n-1)(n+3)}{3}=-2<0
$$

Therefore, $L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
If $m=5$ and $n=3$ then, by Theorem 5.1.3, we have

$$
L E^{+}(\operatorname{CCC}(G))-E(\mathcal{C C C}(G))=\frac{2(2 n+3)(n-1)}{3}-(n(m+1)-4)=-2<0
$$

and

$$
E(\mathcal{C C C}(G))-\operatorname{LE}(\mathcal{C C C}(G))=n(m+1)-4-\frac{2(2 n-1)(n+3)}{3}=-4<0
$$

Therefore, $L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.

If $m=5$ and $n \geq 4$ then, by Theorem 5.1.3, we have

$$
\begin{aligned}
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G)) & =n(m+1)-4-\frac{2(2 n+3)(n-1)}{3} \\
& =\frac{-2\left(2 n^{2}-8 n+3\right)}{3} \\
& =\frac{-2(2 n(n-4)+3)}{3}<0
\end{aligned}
$$

and

$$
L E^{+}(\mathcal{C C C}(G))-\operatorname{LE}(\mathcal{C C C}(G))=\frac{2(2 n+3)(n-1)}{3}-\frac{2(2 n-1)(n+3)}{3}=\frac{-8 n}{3}<0
$$

Therefore, $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
If $m \geq 7$ and $n \geq 2$ then, by Theorem 5.1.3, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=n(m+1)-4-\frac{n^{2}(m-1)(m-3)}{m+1}=-\frac{f_{1}(m, n)}{m+1}
$$

where $f_{1}(m, n)=m n(m-4)(n-3)+2 m n(m-7)+3 n(n-1)+4(m+1)$. For $m \geq 7$ and $n=2$ we have $f_{1}(m, n)=2(m-1)(m-7) \geq 0$. Hence, $f_{1}(7,2)=0$ and $f_{1}(m, 2)>0$ if $m \geq 9$. Thus, $E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))$ and $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))$ according as if $m=7, n=2$ and $m \geq 9, n=2$. For $m \geq 7$ and $n \geq 3$ we have $f_{1}(m, n)>0$ and so $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))$.

If $m \geq 7$ and $n \geq 2$ then, by Theorem 5.1.3, we also have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & -L E(\mathcal{C C C}(G)) \\
& =\frac{n^{2}(m-1)(m-3)}{m+1}-\frac{m^{2} n^{2}-4 m n^{2}+m^{2} n+3 n^{2}-2 m n-2 m+5 n-2}{m+1} \\
& =-\frac{m^{2} n-2 m n-2 m+5 n-2}{m+1} \\
& =-\frac{(m n-2)(m-2)+5(n-2)+4}{m+1}<0 .
\end{aligned}
$$

Therefore, $L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$. Thus, if $m=7$ and $n=2$ then

$$
E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

and if $m \geq 7$ and $n \geq 3$ or $m \geq 9$ and $n=2$ then

$$
E(\mathcal{C C C}(G))<L E^{+}(\operatorname{CCC}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

Case 2. m is even and $n \geq 2$.
If $m=4$ and $n \geq 2$ then, by Theorem 5.1.3, we have

$$
L E^{+}(\mathcal{C C C}(G))=E(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=6(n-1)
$$

If $m=6$ and $n=2$ then, by Theorem 5.1.3, we have

$$
L E^{+}(\mathcal{C C C}(G))-E(\mathcal{C C C}(G))=2(n+2)(n-1)-(n(m+2)-6)=-4<0
$$

and

$$
\begin{aligned}
& E(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G)) \\
& \quad=n(m+2)-6-\frac{2 m^{2} n^{2}-12 m n^{2}+m^{2} n+16 n^{2}-4 m n-2 m+12 n-4}{m+2} \\
& \quad=-2<0 .
\end{aligned}
$$

Therefore, $L E E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
If $m=6$ and $n \geq 3$ then, by Theorem 5.1.3, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=n(m+2)-6-2(n+2)(n-1)=2 n(3-n)-2<0
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & -\operatorname{LE}(\mathcal{C C C}(G)) \\
& =2(n+2)(n-1)-\frac{2 m^{2} n^{2}-12 m n^{2}+m^{2} n+16 n^{2}-4 m n-2 m+12 n-4}{m+2} \\
& =-(n+2)<0 .
\end{aligned}
$$

Therefore $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))$.
If $m \geq 8$ and $n \geq 2$ then, by Theorem 5.1.3, we have

$$
\begin{aligned}
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G)) & =n(m+2)-6-\frac{2 n^{2}(m-2)(m-4)}{m+2} \\
& =-\frac{2 m^{2} n^{2}-12 m n^{2}-m^{2} n+16 n^{2}-4 m n+6 m-4 n+12}{m+2} \\
& =-\frac{f_{2}(m, n)}{m+2},
\end{aligned}
$$

where $f_{2}(m, n)=m n(2 n-1)(m-8)+2 m(2 n(n-3)+3)+4 n(4 n-1)+12$. For $n=2$ and $m \geq 8$ we have $f_{2}(m, n)=(6 m-2)(m-8)+52>0$. For $n \geq 3$ and $m \geq 8$ we have $f_{2}(m, n)>0$. Therefore, if $m \geq 8$ and $n \geq 2$ then $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))$.

If $m \geq 8$ and $n \geq 2$ then, by Theorem 5.1.3, we also have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))= & L E(\mathcal{C C C}(G)) \\
= & \frac{2 n^{2}(m-2)(m-4)}{m+2} \\
& -\frac{2 m^{2} n^{2}-12 m n^{2}+m^{2} n+16 n^{2}-4 m n-2 m+12 n-4}{m+2} \\
= & -\frac{m^{2} n-4 m n-2 m+12 n-4}{m+2} \\
= & -\frac{m n(m-8)+2 m(2 n-1)+4(3 n-1)}{m+2}<0 .
\end{aligned}
$$

Therefore, $\operatorname{LE}^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$. Thus, if $m \geq 8$ and $n \geq 2$ then

$$
E(\mathcal{C C C}(G))<L E^{+}(\operatorname{CCC}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

Hence, the result follows.
Theorem 5.2.4. If $G=V_{8 n}$ then $E(\mathcal{C C C}(G)) \leq L E^{+}(\mathcal{C C C}(G)) \leq L E(\mathcal{C C C}(G))$. The equality holds if and only if $n=2$.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
By Theorem 5.1.4, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=4 n-4-\frac{4(2 n-1)(2 n-2)}{2 n+1}=-\frac{4(n-1)(2 n-3)}{2 n+1}
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-\operatorname{LE}(\mathcal{C C C}(G)) & =\frac{4(2 n-1)(2 n-2)}{2 n+1}-\frac{6(2 n-1)(2 n-2)}{2 n+1} \\
& =-\frac{2(2 n-1)(2 n-2)}{2 n+1}<0 .
\end{aligned}
$$

Case 2. n is even.
If $n=2$ then, by Theorem 5.1.4, we have

$$
E(\mathcal{C C C}(G))=L E^{+}(\operatorname{CCC}(G))=\operatorname{LE}(\operatorname{CCC}(G))=6
$$

If $n \geq 4$ then, by Theorem 5.1.4, we have

$$
\begin{aligned}
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G)) & =4 n-2-\frac{16(n-1)(n-2)}{n+1} \\
& =-\frac{2\left(6 n^{2}+25 n-17\right)}{n+1}=-\frac{2(6 n(n-4)+49 n-7)}{n+1}<0
\end{aligned}
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G)) & =\frac{16(n-1)(n-2)}{n+1}-\frac{2(2 n-3)(5 n-7)}{n+1} \\
& =-\frac{2\left(2 n^{2}-5 n+5\right)}{n+1}=-\frac{2(2 n(n-4)+3 n+5)}{n+1}<0 .
\end{aligned}
$$

Therefore, $E(\operatorname{CCC}(G))<L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$. Hence, the result follows.
Theorem 5.2.5. If $G=S D_{8 n}$ then $E(\mathcal{C C C}(G)) \leq L E^{+}(\mathcal{C C C}(G)) \leq L E(\mathcal{C C C}(G))$. The equality holds if and only if $n=3$.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
If $n=3$ then, by Theorem 5.1.5, we have

$$
E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=12 .
$$

If $n=5$ then, by Theorem 5.1.5, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=4 n-22=-2<0
$$

and

$$
L E^{+}(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G))=22-\frac{2(2 n-3)(5 n-11)}{n+1}=-\frac{32}{3}<0 .
$$

If $n \geq 7$ then, by Theorem 5.1.5, we have

$$
\begin{aligned}
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G)) & =4 n-\frac{16(n-1)(n-3)}{n+1} \\
& =-\frac{4\left(3 n^{2}-17 n+12\right)}{n+1}=-\frac{4(3 n(n-7)+4 n+12)}{n+1}<0
\end{aligned}
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-\operatorname{LE}(\mathcal{C C C}(G)) & =\frac{16(n-1)(n-3)}{n+1}-\frac{2(2 n-3)(5 n-11)}{n+1} \\
& =-\frac{2\left(2 n^{2}-5 n+9\right)}{n+1}=-\frac{2(2 n(n-7)+9 n+9)}{n+1}<0 .
\end{aligned}
$$

Case 2. n is even.
If $n=2$ then, by Theorem 5.1.5, we have

$$
E(\operatorname{CCC}(G))-L E^{+}(\operatorname{CCC}(G))=4 n-4-\frac{28}{5}=-\frac{8}{5}<0
$$

and

$$
L E^{+}(\mathcal{C C C}(G))-L E(\mathcal{C C C}(G))=\frac{28}{5}-\frac{6(2 n-1)(2 n-2)}{2 n+1}=-\frac{8}{5}<0
$$

If $n \geq 4$ then, by Theorem 5.1.5, we have

$$
E(\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G))=4 n-4-\frac{4(2 n-1)(2 n-2)}{2 n+1}=-\frac{4(n-1)(2 n-3)}{2 n+1}<0
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-\operatorname{LE}(\mathcal{C C C}(G)) & =\frac{4(2 n-1)(2 n-2)}{2 n+1}-\frac{6(2 n-1)(2 n-2)}{2 n+1} \\
& =-\frac{2(2 n-1)(2 n-2)}{2 n+1}<0 .
\end{aligned}
$$

Therefore, $\operatorname{E(CCC}(G))<L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$. Hence, the result follows.
Theorem 5.2.6. Let $G=G(p, m, n)$.
(a) If $n=1, p \geq 2$ and $m \geq 1$ then $E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))$.
(b) If $n=2, p=2$ and $m=1$ then $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))$.
(c) If $n=2, p=2$ and $m=2$ then $L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
(d) If $n=2$, $p=2$, $m \geq 3$; $n=2, p \geq 3, m \geq 1$; or $n \geq 3, p \geq 2$, $m \geq 1$ then

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

Proof. We shall proof the result by considering the following cases.
Case 1. $n=1, p \geq 2$ and $m \geq 1$.
By Theorem 5.1.6, we have

$$
E(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=2\left(p^{m+1}-p^{m-1}-p-1\right) .
$$

Case 2. $n=2, p=2$ and $m \geq 1$.
If $n=2, p=2$ and $m=1$ then, by Theorem 5.1.6, we have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-E(\mathcal{C C C}(G)) & =\frac{2}{3}\left(7.2^{m}-6\right)-2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right) \\
& =\frac{16}{3}-4=\frac{4}{3}>0
\end{aligned}
$$

and

$$
L E(\operatorname{CCC}(G))=L E^{+}(\operatorname{CCC}(G))=\frac{16}{3}
$$

Therefore, $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))$.
If $n=2, p=2$ and $m=2$ then, by Theorem 5.1.6, we have

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G)) & -E(\mathcal{C C C}(G)) \\
= & \frac{4}{p^{4}(p+1)}\left(p^{2 m+2 n+3}-3 p^{2(m+n+1)}+3 p^{2 m+2 n+1}-p^{2(m+n)}-p^{2 m+n+4}+3 p^{2 m+n+3}\right. \\
& \left.-3 p^{2 m+n+2}+p^{2 m+n+1}+2 p^{m+n+3}-2 p^{m+n+2}+p^{m+5}-2 p^{m+4}+p^{m+3}-p^{5}-p^{4}\right) \\
& -2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right) \\
= & 20-16=4>0
\end{aligned}
$$

and

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))-E(\mathcal{C C C}(G)) & =\frac{2}{3}\left(7.2^{m}-6\right)-2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right) \\
& =\frac{44}{3}-16=-\frac{4}{3}<0
\end{aligned}
$$

Therefore, $L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$.
If $n=2, p=2$ and $m \geq 3$ then, by Theorem 5.1.6, we have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G)) & -E(\mathcal{C C C}(G)) \\
& =\frac{2}{3}\left(4^{m}+2^{m}-6\right)-2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right) \\
& =\frac{2}{3}\left(4^{m}+2^{m}-6\right)-2\left(3.2^{m}-4\right) \\
& =-\frac{2}{3}\left(2^{2 m}-2^{m+3}+6\right) \\
& =-\frac{2}{3}\left(2^{m}\left(2^{m}-8\right)+6\right)<0
\end{aligned}
$$

and

$$
\begin{aligned}
L E(& (\mathcal{C C C}(G))-L E^{+}(\mathcal{C C C}(G)) \\
= & \frac{4}{p^{4}(p+1)}\left(p^{2 m+2 n+3}-3 p^{2(m+n+1)}+3 p^{2 m+2 n+1}-p^{2(m+n)}-p^{2 m+n+4}+3 p^{2 m+n+3}\right. \\
& \left.-3 p^{2 m+n+2}+p^{2 m+n+1}+2 p^{m+n+3}-2 p^{m+n+2}+p^{m+5}-2 p^{m+4}+p^{m+3}-p^{5}-p^{4}\right) \\
& -\frac{2}{3}\left(4^{m}+2^{m}-6\right) \\
= & \frac{2}{3}\left(4^{m}+5.2^{m}-6\right)-\frac{2}{3}\left(4^{m}+2^{m}-6\right) \\
= & \frac{2^{m+3}}{3}>0 .
\end{aligned}
$$

Case 3. $n=2, p \geq 3, m \geq 1$; or $n \geq 3, p \geq 2, m \geq 1$.
By Theorem 5.1.6, we have

$$
\begin{aligned}
L E^{+}(\mathcal{C C C}(G))- & E(\mathcal{C C C}(G)) \\
= & \frac{4 p^{2 m+n-4}}{p+1}(p-1)^{3}\left(p^{n}-p\right)-2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right) \\
= & \frac{2}{p^{4}(p+1)}\left(2 p^{2 m+2 n+3}-6 p^{2(m+n+1)}+6 p^{2 m+2 n+1}-2 p^{2(m+n)}-2 p^{2 m+n+4}\right. \\
& +6 p^{2 m+n+3}-6 p^{2 m+n+2}+2 p^{2 m+n+1}-p^{m+n+5}-p^{m+n+4}+p^{m+n+3} \\
& \left.+p^{m+n+2}+p^{n+5}-p^{n+3}+2 p^{5}+2 p^{4}\right) \\
:= & f(p, m, n) .
\end{aligned}
$$

Therefore, for $n=2$, we have

$$
\begin{aligned}
f(p, m, 2)= & \frac{2}{p(p+1)}\left(2 p^{2 m+4}-8 p^{2 m+3}+12 p^{2 m+2}-8 p^{2 m+1}+2 p^{2 m}-p^{m+4}\right. \\
& \left.-p^{m+3}+p^{m+2}+p^{m+1}+p^{4}+p^{2}+2 p\right)
\end{aligned}
$$

and so $f(3, m, 2)=\frac{16}{3}\left(9^{m}-3^{m+1}+3\right)>0$ for $m \geq 1$. Also,

$$
\begin{aligned}
f(p, m, 2)= & \frac{2}{p(p+1)}\left(p^{2 m+3}(2 p-9)+\left(p^{2 m+3}-p^{m+4}\right)+\left(p^{2 m+2}-p^{m+3}\right)+p^{2 m+1}(11 p-8)\right. \\
& \left.+2 p^{2 m}+p^{m+2}+p^{m+1}+p^{4}+p^{2}+2 p\right)>0,
\end{aligned}
$$

if $m \geq 1$ and $p \geq 5$. For $p=2$, we have

$$
f(2, m, n)=\frac{1}{12}\left(2^{m+n}\left(\left(2^{n-1}-1\right) 2^{m+1}-18\right)+3.2^{n+2}+48\right)>0,
$$

if $n \geq 4, p=2, m \geq 1$. For $n=3, p=2, m \geq 1$ we have $f(2, m, 3)=48\left(4^{m}-3.2^{m}+3\right)=$ $48\left(\left(2^{m}-2\right)^{2}+2^{m}-1\right)>0$.

For $p \geq 3, n \geq 3, m \geq 1$, we have

$$
\begin{aligned}
f(p, m, n)= & \frac{2}{p^{4}(p+1)}\left(2 p^{2 m+2 n+2}(p-3)+\left(p^{2 m+2 n+1}-p^{m+n+5}\right)+2 p^{2 m+n+1}+4 p^{2 m+n+3}\right. \\
& +\left(p^{2 m+2 n+1}-2 p^{2 m+2 n}\right)+\left(p^{2 m+2 n+1}-2 p^{2 m+n+4}\right)+2 p^{2 m+2 n+1} \\
& +2 p^{2 m+n+2}(p-3)+\left(p^{2 m+2 n+1}-p^{m+n+4}\right)+p^{m+n+3} \\
& \left.+p^{m+n+2}+p^{n+3}\left(p^{2}-1\right)+2 p^{5}+2 p^{4}\right)>0 .
\end{aligned}
$$

Therefore, $L E^{+}(\mathcal{C C C}(G))>E(\mathcal{C C C}(G))$ if $n=2, p \geq 3, m \geq 1$; or $n \geq 3, p \geq 2, m \geq 1$.
Again,

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))- & L E^{+}(\mathcal{C C C}(G)) \\
= & \frac{4}{p^{4}(p+1)}\left(p^{2 m+2 n+3}-3 p^{2(m+n+1)}+3 p^{2 m+2 n+1}-p^{2(m+n)}-p^{2 m+n+4}+3 p^{2 m+n+3}\right. \\
& -3 p^{2 m+n+2}+p^{2 m+n+1}+2 p^{m+n+3}-2 p^{m+n+2}+p^{m+5}-2 p^{m+4}+p^{m+3} \\
& \left.-p^{5}-p^{4}\right)-\frac{4 p^{2 m+n-4}}{p+1}(p-1)^{3}\left(p^{n}-p\right) \\
= & \frac{4\left(2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}\right)}{p^{2}(p+1)} \\
= & \frac{4\left(\left(p^{m+n}(p-2)+\left(p^{m+n+1}-p^{3}\right)+p^{m+2}(p-2)+p^{m+1}-p^{2}\right)\right)}{p^{2}(1+p)}>0
\end{aligned}
$$

if $p \geq 2, n \geq 2, m \geq 1$. Therefore, $\operatorname{LE}(\mathcal{C C C}(G))>L E^{+}(\mathcal{C C C}(G))$, if $n=2, p \geq 3, m \geq 1$; or $n \geq 3, p \geq 2, m \geq 1$. Hence,

$$
E(\mathcal{C C C}(G))<L E^{+}(\operatorname{CCC}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

if $n=2, p \geq 3, m \geq 1$; or $n \geq 3, p \geq 2, m \geq 1$. This completes the proof.
Note that Theorems 5.2.1-5.2.6 can be summarized in the following way.
Theorem 5.2.7. Let G be a finite non-abelian group. Then we have the following.
(a) If G is isomorphic to $D_{6}, D_{8}, D_{12}, Q_{8}, Q_{12}, U_{(n, 2)}, U_{(n, 3)}, U_{(n, 4)}(n \geq 2), V_{16}, S D_{24}$ or $G(p, m, 1)(p \geq 2, m \geq 1)$ then

$$
E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))
$$

(b) If G is isomorphic to $D_{20}, Q_{20}, U_{(2,5)}, U_{(3,5)}, U_{(2,6)}$ or $G(2,2,2)$ then

$$
L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

(c) If G is isomorphic to $D_{14}, D_{16}, D_{18}, D_{2 n}(n \geq 11), Q_{16}, Q_{24}, Q_{4 m}(m \geq 8), U_{(n, 5)},(n \geq$ 4), $U_{(n, m)}(m \geq 6$ and $n \geq 3)$, $U_{(n, m)}(m \geq 8$ and $n \geq 2)$, $V_{8 n}(n \geq 3)$, $S D_{16}$, $S D_{8 n}(n \geq 4), G(2, m, 2)(m \geq 3), G(p, m, 2)(p \geq 3, m \geq 1)$ or $G(p, m, n)(n \geq 3, p \geq$ $2, m \geq 1)$ then

$$
E(\mathcal{C C C}(G))<\operatorname{LE}^{+}(\operatorname{CCC}(G))<\operatorname{LE}(\operatorname{CCC}(G))
$$

(d) If G is isomorphic to Q_{28} or $U_{(2,7)}$ then $E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))$.
(e) If G is isomorphic to D_{10} and $G(2,1,2)$ then $E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))$.

We conclude this section with the following remark regarding Conjecture 1.1.7 and Question 1.1.8.

Remark 5.2.8. By Theorem 5.2.7, it follows that

$$
E(\mathcal{C C C}(G)) \leq L E(\mathcal{C C C}(G)) \text { and } L E^{+}(\mathcal{C C C}(G)) \leq L E(\mathcal{C C C}(G))
$$

for commuting conjugacy class graph of the groups $D_{2 n}, Q_{4 m}, U_{(n, m)}, V_{8 n}, S D_{8 n}$ and $G(p, m, n)$. Therefore, Conjecture 1.1.7 holds for commuting conjugacy class graph of these groups whereas the inequality in Question 1.1.8 does not. However, $\operatorname{LE}(\mathcal{C C C}(G))=$ $L E^{+}(\mathcal{C C C}(G))$ if $G=D_{6}, D_{8}, D_{10}, D_{12}, Q_{8}, Q_{12}, V_{16}, S D_{24}, U_{(n, m)}$ where $m=3,4 ; n \geq 2$ and $G(p, m, n)$ where $n=1,2 ; p \geq 2 ; m \geq 1$.

5.3 Hyperenergetic and borderenergetic graph

In this section we consider CCC-graph for the groups considered in Section 5.1 and determine whether they are hyperenergetic, L-hyperenergetic or Q-hyperenergetic. We shall also determine whether they are borderenergetic, L-borderenergetic or Q -borderenergetic.

Theorem 5.3.1. Let $G=D_{2 n}$.
(a) If n is odd or $n=4,6$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(b) If $n=8,10,12,14$ then $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(c) If n is even and $n \geq 16$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
We have $|V(\mathcal{C C C}(G))|=\frac{n+1}{2}$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=n-1 \tag{5.3.a}
\end{equation*}
$$

If $n=3$ then, by Theorem 5.2.1 and Theorem 5.1.1, we get

$$
\begin{equation*}
E(\mathcal{C C C}(G))=\operatorname{LE}^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=0<2=E\left(K_{|V(\mathcal{C C C}(G))|}\right) \tag{5.3.b}
\end{equation*}
$$

If $n=5$ then, by Theorem 5.2.1 and Theorem5.1.1, we get

$$
\begin{equation*}
E(\mathcal{C C C}(G))<\operatorname{LE} E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=\frac{8}{3}<4=E\left(K_{|V(\mathcal{C C C}(G))|}\right) \tag{5.3.c}
\end{equation*}
$$

Therefore $\operatorname{CCC}(G)$ is neither hyperenergetic nor L-hyperenergetic nor Q-hyperenergetic for $n=5$.

If $n \geq 7$ then, by Theorem 5.2.1 and Theorem5.1.1, we get

$$
E(\operatorname{CCC}(G))<L E^{+}(\operatorname{CCC}(G))<\operatorname{LE}(\mathcal{C C C}(G))=\frac{(n-3)(n+3)}{n+1}
$$

Again,

$$
\frac{(n-3)(n+3)}{n+1}-(n-1)=-\frac{8}{n+1}<0
$$

Therefore,

$$
\begin{equation*}
E(\mathcal{C C C}(G))<\operatorname{LE}^{+}(\operatorname{CCC}(G))<\operatorname{LE}(\mathcal{C C C}(G))<n-1=E\left(K_{|V(\mathcal{C C C}(G))|}\right) \tag{5.3.d}
\end{equation*}
$$

Hence, in view of $5.3 . a)-5.3 . d)$, it follows that $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
Case 2. n is even.
We have $|V(\mathcal{C C C}(G))|=\frac{n}{2}+1$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)=n . \tag{5.3.e}
\end{equation*}
$$

Subcase 2.1. $\frac{n}{2}$ is even.
If $n=4$ then, by Theorem 5.2.1 and Theorem 5.1.1, we get

$$
\begin{equation*}
E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=0<4=E\left(K_{|V(\mathcal{C C C}(G))|}\right) \tag{5.3.f}
\end{equation*}
$$

Therefore, by (5.3.e) and by (5.3.f), it follows that $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $n=8$ then, by Theorem 5.2.1 and Theorem 5.1.1, we get

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=6<8=E\left(K_{|V(\mathcal{C C C}(G))|}\right) .
$$

Also,

$$
L E(\mathcal{C C C}(G))=9>8=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

So, $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q -borderenergetic.

If $n \geq 12$ then, by Theorem 5.1.1, we get

$$
L E(\operatorname{CCC}(G))=\frac{3(n-2)(n-4)}{n+2}
$$

We have

$$
n-\frac{3(n-2)(n-4)}{n+2}=-\frac{2(n(n-12)+2 n+12)}{n+2}<0 .
$$

Therefore, $\quad L E\left(K_{|V(\mathcal{C C C}(G))|}\right)<\operatorname{LE}(\mathcal{C C C}(G))$ and so $\mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic.

By Theorem 5.2.1 and Theorem 5.1.1, we also get

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\frac{2(n-2)(n-4)}{n+2}
$$

We have

$$
\begin{equation*}
\frac{2(n-2)(n-4)}{n+2}-n=\frac{n^{2}-14 n+16}{n+2}=\frac{n(n-16)+2 n+16}{n+2}:=f_{1}(n) \tag{5.3.g}
\end{equation*}
$$

Therefore, for $n=12$, we have $f_{1}(n)<0$ and so

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\frac{2(n-2)(n-4)}{n+2}<n=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Thus, if $n=12$ then $\operatorname{CCC}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $n \geq 16$ then, by (5.3.g), we have $f_{1}(n)>0$ and so $L E^{+}(\mathcal{C C C}(G))>n=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)$. Therefore $\operatorname{CCC}(G)$ is Q-hyperenergetic but not Q-borderenergetic. Also,

$$
E(\mathcal{C C C}(G))=n-4<n=E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

and so $\operatorname{CCC}(G)$ is neither hyperenergetic nor borderenergetic. Thus, if $n \geq 16$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q -hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.
Subcase 2.2. $\frac{n}{2}$ is odd.
If $n=6$ then, by Theorem 5.2.1 and Theorem 5.1.1, we get

$$
E(\mathcal{C C C}(G))=\operatorname{LE}^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=4<6=E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $n=10$ then, by Theorem 5.2.1 and Theorem 5.1.1, we get

$$
L E^{+}(\operatorname{CCC}(G))<E(\operatorname{CCC}(G))<\operatorname{LE}(\operatorname{CCC}(G))=10=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

So, $\operatorname{CCC}(G)$ is L-bordererenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $n \geq 14$ then, by Theorem 5.1.1, we get

$$
\operatorname{LE}(\operatorname{CCC}(G))=\frac{(n-4)(3 n-10)}{n+2}
$$

We have

$$
n-\frac{(n-4)(3 n-10)}{n+2}=-\frac{2 n(n-14)+4 n+40}{n+2}<0 .
$$

So, $\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)<\operatorname{LE}(\mathcal{C C C}(G))$ and so $\mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic.

By Theorem 5.2.1 and Theorem 5.1.1, we also get

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\frac{2(n-2)(n-6)}{n+2}
$$

We have

$$
\begin{equation*}
\frac{2(n-2)(n-6)}{n+2}-n=\frac{n^{2}-18 n+24}{n+2}=\frac{n(n-18)+24}{n+2}:=f_{2}(n) . \tag{5.3.h}
\end{equation*}
$$

Therefore, for $n=14$, we have $f_{2}(n)<0$ and so

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\frac{2(n-2)(n-4)}{n+2}<n=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Thus, if $n=14$ then $\operatorname{CCC}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic. If $n \geq 18$ then, by (5.3.h), we have $f_{2}(n)>0$ and so $L E^{+}(\mathcal{C C C}(G))>n=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)$. Therefore, $\mathcal{C C C}(G)$ is Q-hyperenergetic but not Q-borderenergetic. Also, $E(\mathcal{C C C}(G))=n-2<n=$ $E\left(K_{|V(\mathcal{C C C}(G))|}\right)$ and so $\mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic. Thus, if $n \geq 18$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Theorem 5.3.2. Let $G=Q_{4 m}$.
(a) If $m=2,3,4$ then $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(b) If $m=5$ then $\operatorname{CCC}(G)$ is L-borderenergetic but neither hyperenergetic, borderenergetic, L-hyperenergetic, Q-hyperenergetic nor Q-borderenergetic.
(c) If $m=6,7$ then $\operatorname{CCC}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(d) If $m \geq 8$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. m is odd.
We have $|V(\mathcal{C C C}(G))|=m+1$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=2 m . \tag{5.3.i}
\end{equation*}
$$

If $m=3$ then, by Theorem 5.2.2 and Theorem 5.1.2, we get

$$
\begin{equation*}
E(\mathcal{C C C}(G))=\operatorname{LE}^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=4<6=E\left(K_{|V(\mathcal{C C C}(G))|}\right) \tag{5.3.j}
\end{equation*}
$$

So, by (5.3.i and (5.3.j), $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=5$ then, by Theorem 5.2.2 and Theorem 5.1.2, we get

$$
L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))=10=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

So, $\mathcal{C C C}(G)$ is L-borderenergetic but neither hyperenergetic, borderenergetic, L-hyperenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=7$ then, by Theorem 5.2.2 and Theorem 5.1.2, we get

$$
L E^{+}(\mathcal{C C C}(G))=E(\mathcal{C C C}(G))=12<14=E\left(K_{|V(\mathcal{C C C}(G))|}\right) .
$$

Also,

$$
\operatorname{LE}(\operatorname{CCC}(G))=20>14=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

So, $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m \geq 9$ then, by Theorem 5.2.2 and Theorem 5.1.2, we get

$$
\frac{4(m-1)(m-3)}{m+1}=L E^{+}(\operatorname{CCC}(G))<L E(\mathcal{C C C}(G))
$$

We have

$$
2 m-\frac{4(m-1)(m-3)}{m+1}=-\frac{2(m(m-9)+6)}{m+1}<0
$$

and so $L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=2 m<\frac{4(m-1)(m-3)}{m+1}=L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))$. Hence, $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor Qborderenergetic. Also,

$$
E(\mathcal{C C C}(G))=2 m-2<2 m=E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic. Thus, if $m \geq 9$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q -hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.
Case 2. m is even.
We have $|V(\mathcal{C C C}(G))|=m+1$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=2 m . \tag{5.3.k}
\end{equation*}
$$

If $m=2$ then, by Theorem 5.2.2 and Theorem 5.1.2, we get

$$
\begin{equation*}
E(\mathcal{C C C}(G))=\operatorname{LE}^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=0<4=E\left(K_{|V(\mathcal{C C C}(G))|}\right) \tag{5.3.l}
\end{equation*}
$$

So, by $(5.3 . k)$ and $(5.3 .1), \mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=4$ then, by Theorem 5.2.2 and Theorem 5.1.2, we get

$$
\begin{equation*}
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))=\frac{36}{5}<8=E\left(K_{|V(\mathcal{C C C}(G))|}\right) \tag{5.3.m}
\end{equation*}
$$

So, by (5.3.k) and (5.3.m), $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m \geq 6$ then, by Theorem 5.1.2, we get

$$
L E(\mathcal{C C C}(G))=\frac{6(m-1)(m-2)}{m+1}
$$

We have

$$
2 m-\frac{6(m-1)(m-2)}{m+1}=-\frac{4\left(m^{2}-5 m+3\right)}{m+1}=-\frac{4(m(m-6)+m+3)}{m+1}<0
$$

and so

$$
L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=2 m<\frac{6(m-1)(m-2)}{m+1}=\operatorname{LE}(\mathcal{C C C}(G)) .
$$

Hence, $\mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic.
By Theorem 5.2.2 and Theorem 5.1.2, we also get

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\frac{4(m-1)(m-2)}{m+1}
$$

We have

$$
\begin{equation*}
\frac{4(m-1)(m-2)}{m+1}-2 m=\frac{2\left(m^{2}-7 m+4\right)}{m+1}=\frac{2(m(m-8)+m+4)}{m+1}=f(m) . \tag{5.3.n}
\end{equation*}
$$

Therefore, for $m=6$, we have $f(m)<0$ and so

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\frac{4(m-1)(m-2)}{m+1}<2 m=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Thus, if $m=6$ then $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $n \geq 8$ then, by (5.3.n), we have $f(m)>0$ and so

$$
L E^{+}(\mathcal{C C C}(G))>2 m=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is Q-hyperenergetic but not Q-borderenergetic. Also, $E(\mathcal{C C C}(G))=$ $2 m-4<2 m=E\left(K_{|V(\mathcal{C C C}(G))|}\right)$ and so $\mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic. Thus, if $n \geq 8$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q -hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Theorem 5.3.3. Let $G=U_{(n, m)}$.
(a) If $m=3,4$ and $n \geq 2$ or $m=6$ and $n=2$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q borderenergetic.
(b) If $m=5$ and $n=2$ then $\operatorname{CCC}(G)$ is L-borderenergetic but neither hyperenergetic, borderenergetic, L-hyperenergetic, Q-hyperenergetic nor Q-borderenergetic.
(c) If $m=5$ and $n=3, m=6$ and $n=3$ or $m=7$ and $n=2$ then $\mathcal{C C C}(G)$ is L-hyper-energetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q hyperenergetic nor Q-borderenergetic.
(d) If $m=5,6$ and $n \geq 4$; $m=7$ and $n \geq 3$ or $m \geq 8$ and $n \geq 2$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-border-energetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. m is odd and $n \geq 2$.
We have $|V(\mathcal{C C C}(G))|=\frac{n(m+1)}{2}$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=m n+n-2 . \tag{5.3.o}
\end{equation*}
$$

By Theorem 5.1.3 we get

$$
E(\mathcal{C C C}(G))=m n+n-4<m n+n-2 .
$$

Therefore, $\mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic.
If $m=3$ and $n \geq 2$ then, by Theorem 5.1.3, we get

$$
L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=4 n-4<4 n-2=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic. Thus, if $m=3$ and $n \geq 2$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=5$ and $n=2$ then, by Theorem 5.2.3 and Theorem 5.1.3, we get

$$
L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))=10=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right) .
$$

Therefore, $\mathcal{C C C}(G)$ is L-borderenergetic but neither L-hyperenergetic, Q-hyperenergetic nor Q-borderenergetic. Thus, if $m=5$ and $n=2$ then $\mathcal{C C C}(G)$ is L-borderenergetic but neither hyperenergetic, borderenergetic, L-hyperenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=5$ and $n=3$ then, by Theorem 5.1.3, we get

$$
L E(\mathcal{C C C}(G))=20>16=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is L-hyperenergetic but not L-borderenergetic. Also,

$$
L E^{+}(\operatorname{CCC}(G))=12<16=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is neither Q-hyperenergetic nor Q-borderenergetic. Thus, if $m=5$ and $n=3$ then $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=5$ and $n \geq 4$ then, by Theorem 5.2.3 and Theorem 5.1.3, we get

$$
\frac{2(2 n+3)(n-1)}{3}=L E^{+}(\operatorname{CCC}(G))<L E(\mathcal{C C C}(G))
$$

We have

$$
6 n-2-\frac{2(2 n+3)(n-1)}{3}=-\frac{4\left(n^{2}-n-1\right)}{3}=-\frac{4(n(n-4)+3 n-1)}{3}<0
$$

and so $L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=6 n-2<\frac{2(2 n+3)(n-1)}{3}=L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))$. Therefore, $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor Q-border-energetic. Thus, if $m=5$ and $n \geq 4$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Qborderenergetic.

If $m \geq 7$ and $n \geq 2$ then, by Theorem 5.1.3, we get

$$
\operatorname{LE}(\mathcal{C C C}(G))=\frac{m^{2} n^{2}-4 m n^{2}+m^{2} n+3 n^{2}-2 m n-2 m+5 n-2}{m+1} .
$$

We have

$$
\begin{aligned}
m n+n-2-\operatorname{LE}(\mathcal{C C C}(G)) & =-\frac{m^{2} n^{2}-4 m n^{2}-4 m n+3 n^{2}+4 n}{m+1} \\
& =-\frac{m n^{2}(m-7)+2 m n(n-2)+m n^{2}+3 n^{2}+4 n}{m+1}<0
\end{aligned}
$$

and so $\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)=m n+n-2<\operatorname{LE}(\mathcal{C C C}(G))$. Therefore, $\mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic. By Theorem 5.2.3 and Theorem 5.1.3, we also get

$$
\frac{n^{2}(m-1)(m-3)}{m+1}=L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))
$$

Let $f_{1}(m, n)=\frac{n^{2}(m-1)(m-3)}{m+1}-(m n+n-2)$. Then

$$
\begin{aligned}
f_{1}(m, n) & =\frac{2+2 m-2 m n-m^{2} n-n+3 n^{2}-4 m n^{2}+m^{2} n^{2}}{m+1} \\
& =\frac{m n^{2}(m-11)+m n^{2}+m^{2} n(n-2)+2 m n(n-2)+2 n(3 n-1)+2(m+1)}{2(m+1)} .
\end{aligned}
$$

For $m=7$ and $n=2$ we have $f_{1}(m, n)=-2<0$ and so

$$
L E^{+}(\mathcal{C C C}(G))=\frac{n^{2}(m-1)(m-3)}{m+1}<m n+n-2=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right) .
$$

Therefore, $\operatorname{CCC}(G)$ is neither Q-hyperenergetic nor Q-borderenergetic. Thus, if $m=7$ and $n=2$ then $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=7$ and $n \geq 3$ then $f_{1}(m, n)=\frac{n(3 n-8)+16}{8}>0$. Therefore,

$$
L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=m n+n-2<\frac{n^{2}(m-1)(m-3)}{m+1}=L E^{+}(\mathcal{C C C}(G))
$$

and so $\operatorname{CCC}(G)$ is Q-hyperenergetic but not Q-borderenergetic. Thus, if $m=7$ and $n \geq 3$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q -borderenergetic.

Now, for $m=9$ and $n=2$ we have $f_{1}(m, n)=\frac{6}{5}>0$. For $m=9$ and $n \geq 3$ we have $f_{1}(m, n)=\frac{2 n(12 n-25)+10}{5}>0$. For $m \geq 11$ and $n \geq 2$ we have $f_{1}(m, n)>0$. Therefore, for $m \geq 9$ and $n \geq 2$ we have

$$
L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=m n+n-2<\frac{n^{2}(m-1)(m-3)}{m+1}=L E^{+}(\mathcal{C C C}(G))
$$

and so $\operatorname{CCC}(G)$ is Q-hyperenergetic but not Q-borderenergetic. Thus, if $m \geq 9$ and $n \geq 2$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q -hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.
Case 2. m is even and $n \geq 2$.
We have $|V(\mathcal{C C C}(G))|=\frac{n(m+2)}{2}$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=m n+2 n-2 . \tag{5.3.p}
\end{equation*}
$$

By Theorem 5.1.3 we get

$$
E(\mathcal{C C C}(G))=m n+2 n-6<m n+2 n-2=E\left(K_{|V(\mathcal{C C C}(G))|}\right),
$$

if $m \geq 4$. Therefore, $\operatorname{CCC}(G)$ is neither hyperenergetic nor borderenergetic.
If $m=4$ and $n \geq 2$ then, by Theorem 5.1.3, we get

$$
L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=6 n-6<6 n-2 .
$$

Therefore, $\operatorname{CCC}(G)$ is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic. Thus, if $m=4$ and $n \geq 2$ then $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=6$ and $n=2$ then, Theorem 5.2.3 and Theorem5.1.3, we get

$$
\operatorname{LE}^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))=12<14=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right) .
$$

Therefore, $\operatorname{CCC}(G)$ is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic. Thus, if $m=6$ and $n=2$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $m=6$ and $n \geq 3$ then, by Theorem 5.1.3, we get

$$
\operatorname{LE}(\mathcal{C C C}(G))=2 n^{2}+3 n-2 .
$$

We have

$$
8 n-2-\left(2 n^{2}+3 n-2\right)=-n(2 n-5)<0 .
$$

Therefore,

$$
L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=8 n-2<2 n^{2}+3 n-2<\operatorname{LE}(\mathcal{C C C}(G))
$$

and so $\mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic. By Theorem 5.1.3, we also get

$$
L E^{+}(\mathcal{C C C}(G))=2(n+2)(n-1)
$$

Let $g(n)=2(n+2)(n-1)-(8 n-2)$. Then $g(n)=2(n(n-4)+n-1)$. Therefore, if $n=3$ then $g(n)=-2<0$ and so

$$
L E^{+}(\mathcal{C C C}(G))=2(n+2)(n-1)<8 n-2=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right) .
$$

Therefore, $\mathcal{C C C}(G)$ is neither Q -hyperenergetic nor Q-borderenergetic. Thus, if $m=6$ and $n=3$ then $\operatorname{CCC}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $n \geq 4$ then $g(n)>0$ and so

$$
L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=8 n-2<2(n+2)(n-1)=L E^{+}(\mathcal{C C C}(G))
$$

Therefore, $\operatorname{CCC}(G)$ is Q -hyperenergetic but not Q -borderenergetic. Thus, if $m=6$ and $n \geq 4$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q -borderenergetic.

If $m \geq 8$ and $n \geq 2$ then, by Theorem 5.2.3 and Theorem 5.1.3, we get

$$
\frac{2 n^{2}(m-2)(m-4)}{m+2}=L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))
$$

We have

$$
\begin{aligned}
m n+2 n-2-\frac{2 n^{2}(m-2)(m-4)}{m+2} & =-\frac{4+2 m-m^{2} n-4 n-4 m n+16 n^{2}-12 m n^{2}+2 m^{2} n^{2}}{m+2} \\
& =-f_{2}(m, n),
\end{aligned}
$$

where $f_{2}(m, n)=\frac{m n^{2}(m-12)+m^{2} n(n-2)+m n(m-6)+2 n(m-2)+16 n^{2}+2 m+4}{m+2}$.
For $m=8$ and $n=2$ we have $f_{2}(m, n)=\frac{6}{5}>0$. For $m=8$ and $n \geq 3$ we have $f_{2}(m, n)=\frac{2}{5}\left(12 n^{2}-25 n+5\right)=\frac{2}{5}(12 n(n-3)+11 n+5)>0$. For $m=10$ and $n \geq 2$ we have $f_{2}(m, n)=2\left(4 n^{2}-6 n+1\right)=2(4 n(n-2)+2 n+1)>0$. For $m \geq 12$ and $n \geq 2$ we have $f_{2}(m, n)>0$. Therefore,

$$
L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=m n+2 n-2<\frac{2 n^{2}(m-2)(m-4)}{m+2}=L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))
$$

and so $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor Q-borderenergetic. Thus, if $m \geq 8$ and $n \geq 2$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Theorem 5.3.4. Let $G=V_{8 n}$.
(a) If $n=2$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-border-energetic, Q-hyperenergetic nor Q-borderenergetic.
(b) If $n=3,4$ then $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(c) If $n \geq 5$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
We have $|V(\operatorname{CCC}(G))|=2 n+1$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=4 n . \tag{5.3.q}
\end{equation*}
$$

By Theorem 5.1.4 we get

$$
L E(\mathcal{C C C}(G))=\frac{6(2 n-1)(2 n-2)}{2 n+1}
$$

We have

$$
4 n-\frac{6(2 n-1)(2 n-2)}{2 n+1}=-\frac{4\left(4 n^{2}-10 n+3\right)}{2 n+1}=-\frac{4(4 n(n-3)+2 n+3)}{2 n+1}<0
$$

and so $\quad \operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)=4 n<\frac{6(2 n-1)(2 n-2)}{2 n+1}=\operatorname{LE}(\mathcal{C C C}(G))$. Hence, $\quad \mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic.

By Theorem 5.2.4 and Theorem 5.1.4, we also get

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\frac{4(2 n-1)(2 n-2)}{2 n+1}
$$

We have

$$
\begin{equation*}
\frac{4(2 n-1)(2 n-2)}{2 n+1}-4 n=\frac{4\left(2 n^{2}-7 n+2\right)}{2 n+1}=\frac{4(2 n(n-5)+3 n+2)}{2 n+1}:=g_{1}(n) . \tag{5.3.r}
\end{equation*}
$$

Therefore, for $n=3$, we have $g_{1}(n)<0$ and so

$$
E(\mathcal{C C C}(G))<L E^{+}(\mathcal{C C C}(G))=\frac{4(2 n-1)(2 n-2)}{2 n+1}<4 n=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right) .
$$

Thus, if $n=3$ then $\operatorname{CCC}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic. If $n \geq 5$ then, by (5.3.7), we have $g_{1}(n)>0$ and so $L E^{+}(\mathcal{C C C}(G))>4 n=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)$. Therefore, $\mathcal{C C C}(G)$ is Q-hyperenergetic but not Q-borderenergetic. Also, $E(\mathcal{C C C}(G))=4 n-4<4 n=$ $E\left(K_{|V(\mathcal{C C C}(G))|}\right)$ and $\operatorname{so} \mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic. Thus, if $n \geq 5$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q -hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.
Case 2. n is even.
We have $|V(\mathcal{C C C}(G))|=2 n+2$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=4 n+2 . \tag{5.3.s}
\end{equation*}
$$

If $n=2$ then, by Theorem 5.2.4 and Theorem 5.1.4, we get

$$
\begin{equation*}
E(\mathcal{C C C}(G))=L E^{+}(\mathcal{C C C}(G))=L E(\mathcal{C C C}(G))=6<10=E\left(K_{|V(\mathcal{C C C}(G))|}\right) . \tag{5.3.t}
\end{equation*}
$$

Therefore, by (5.3.s) and (5.3.t), we have $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $n \geq 4$ then, Theorem 5.1.4, we get

$$
E(\mathcal{C C C}(G))=4 n-2<4 n+2=E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic.
By Theorem 5.2.4 and Theorem 5.1.4, we also get

$$
\frac{16(n-1)(n-2)}{n+1}=L E^{+}(\operatorname{CCC}(G))<L E(\mathcal{C C C}(G))
$$

We have

$$
\begin{equation*}
\frac{16(n-1)(n-2)}{n+1}-(4 n+2)=\frac{6\left(2 n^{2}-9 n+5\right)}{n+1}=\frac{6(2 n(n-6)+3 n+5)}{n+1}:=g_{2}(n) . \tag{5.3.u}
\end{equation*}
$$

Therefore, for $n=4$ we have $g_{2}(n)<0$ and so

$$
L E^{+}(\mathcal{C C C}(G))=\frac{16(n-1)(n-2)}{n+1}<4 n+2=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is neither Q-hyperenergetic nor Q-borderenergetic. Also,

$$
\operatorname{LE}(\mathcal{C C C}(G))=\frac{130}{5}=26>18=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is L-hyperenergetic but not L-borderenergetic. Thus, if $n=4$ then $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

If $n \geq 6$ then, by (5.3.u), we have $g_{2}(n)>0$ and so

$$
L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=4 n+2<\frac{16(n-1)(n-2)}{n+1}=\operatorname{LE}^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

Therefore, $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor Q-borderenergetic. Thus, if $n \geq 6$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Theorem 5.3.5. Let $G=S D_{8 n}$.
(a) If $n=2,3$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(b) If $n=5$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-borderenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-hyperenergetic.
(c) If $n=4$ or $n \geq 6$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We shall prove the result by considering the following cases.
Case 1. n is odd.
We have $|V(\mathcal{C C C}(G))|=2 n+2$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=4 n+2 . \tag{5.3.v}
\end{equation*}
$$

By Theorem 5.1.5 we get

$$
E(\mathcal{C C C}(G))=4 n<4 n+2 .
$$

Therefore, $\mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic.
If $n=3$ then, by Theorem 5.1.5, we get

$$
L E^{+}(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))=12<14=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic. Thus, if $n=3$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-border-energetic, Q-hyperenergetic nor Q-borderenergetic.

If $n=5$ then, by Theorem 5.2.5 and Theorem 5.1.5, we get

$$
L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=22=L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))
$$

Therefore, $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-borderenergetic but neither L-borderenergetic nor Q-hyperenergetic. Thus, if $n=5$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-borderenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-hyperenergetic.

If $n \geq 7$ then, by Theorem 5.2.5 and Theorem 5.1.5, we get

$$
\frac{16(n-1)(n-3)}{n+1}=L E^{+}(\operatorname{CCC}(G))<L E(\operatorname{CCC}(G))
$$

We have

$$
4 n+2-\frac{16(n-1)(n-3)}{n+1}=-\frac{2\left(6 n^{2}-35 n+23\right)}{n+1}=-\frac{2(6 n(n-7)+7 n+23)}{n+1}<0
$$

So, $L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=4 n+2<\frac{16(n-1)(n-3)}{n+1}=\operatorname{LE}^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))$ and so $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither L-borderenergetic nor Qborderenergetic. Thus, if $n \geq 7$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Case 2. n is even.
We have $|V(\mathcal{C C C}(G))|=2 n+1$. Using (1.1.g), we get

$$
\begin{equation*}
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=4 n . \tag{5.3.w}
\end{equation*}
$$

By Theorem 5.1.5 we get

$$
E(\mathcal{C C C}(G))=4 n-4<4 n .
$$

Therefore, $\mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic.
If $n=2$ then, by Theorem 5.2.5 and Theorem5.1.5, we get

$$
L E^{+}(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))=\frac{36}{5}<8=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is neither L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Qborderenergetic. Thus, if $n=2$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-border-energetic, Q-hyperenergetic nor Q-bordere-nergetic.

If $n \geq 4$ then, by Theorem 5.2.5 and Theorem5.1.5, we get

$$
\frac{4(2 n-1)(2 n-2)}{2 n+1}=L E^{+}(\operatorname{CCC}(G))<L E(\mathcal{C C C}(G)) .
$$

We have

$$
4 n-\frac{4(2 n-1)(2 n-2)}{2 n+1}=-\frac{4\left(2 n^{2}-7 n+2\right)}{2 n+1}=-\frac{4(2 n(n-4)+n+2)}{2 n+1}<0 .
$$

Therefore, $L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=4 n<\frac{4(2 n-1)(2 n-2)}{2 n+1}=L E^{+}(\mathcal{C C C}(G))<L E(\mathcal{C C C}(G))$ and so $\mathcal{C C C}(G)$ is L-hyperenergetic and Q -hyperenergetic but neither L-borderenergetic nor Q borderenergetic. Thus, if $n \geq 4$ then $\mathcal{C C C}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Theorem 5.3.6. Let $G=G(p, m, n)$.
(a) If $n=1, p \geq 2, m \geq 1 ; n=2, p=2, m=1,2$ then $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic, nor Q-borderenergetic.
(b) If $n=2, p=2, m=3$; or $n=3, p=2, m=1$ then $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.
(c) If $n=2, p=2, m \geq 4$; $n=2, p \geq 3, m \geq 1 ; n=3, p=2, m \geq 2$; or $n \geq 4, p \geq 2, m \geq$ 1 then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic.

Proof. We have $|V(\mathcal{C C C}(G))|=p^{m+n-2}\left(p^{2}-1\right)$ and so

$$
E\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)=2\left(p^{m+n}-p^{m+n-2}-1\right)
$$

noting that $E\left(K_{n}\right)=L E\left(K_{n}\right)=L E^{+}\left(K_{n}\right)=2(n-1)$.
We shall prove the result by considering the following cases.
Case 1. $n=1, p \geq 2$ and $m \geq 1$.
If $n=1, p \geq 2$ and $m \geq 1$ then, by Theorem 5.2.6, we get

$$
L E^{+}(\operatorname{CCC}(G))=E(\mathcal{C C C}(G))=\operatorname{LE}(\mathcal{C C C}(G))
$$

By Theorem 5.2.6, we also have

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))- & 2\left(p^{m+n}-p^{m+n-2}-1\right) \\
= & \frac{2\left(p^{n+1}-p^{n}+2 p\right)\left(2 p^{m+n+1}-2 p^{m+n}+p^{m+3}-2 p^{m+2}+p^{m+1}-p^{3}-p^{2}\right)}{p^{3}(1+p)} \\
& -2\left(p^{m+n}-p^{m+n-2}-1\right) \\
= & -2 p<0 .
\end{aligned}
$$

Therefore, $\operatorname{LE}(\mathcal{C C C}(G))<\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)$ and so $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic, nor Q-borderenergetic. Thus, if $n=1, p \geq 2$ and $m \geq 1$ then $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic, nor Q-borderenergetic.
Case 2. $n=2, p=2$ and $m \geq 1$.
If $n=2, p=2$ and $m=1$ then, by Theorem 5.2.6 and Theorem 5.1.6, we get

$$
E(\mathcal{C C C}(G))<L E^{+}(\operatorname{CCC}(G))=\operatorname{LE}(\mathcal{C C C}(G))=\frac{16}{3}<10=\operatorname{LE}\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\mathcal{C C C}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic, nor Q-borderenergetic.

If $n=2, p=2$ and $m=2$ then, by Theorem 5.2.6 and Theorem 5.1.6. we get

$$
L E^{+}(\mathcal{C C C}(G))<E(\mathcal{C C C}(G))<\operatorname{LE}(\mathcal{C C C}(G))=20<22=L E\left(K_{|V(\mathcal{C C C}(G))|}\right)
$$

Therefore, $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic, nor Q-borderenergetic.

If $n=2, p=2$ and $m \geq 3$ then, by Theorem 5.1.6, we get $E(\mathcal{C C C}(G))=2\left(3.2^{m}-4\right)$ and $E\left(K_{|V(\mathcal{C C C}(G))|}\right)=2\left(3.2^{m}-1\right)$ and so $E(\mathcal{C C C}(G))-E\left(K_{|V(\mathcal{C C C}(G))|}\right)=2\left(3.2^{m}-4\right)-6.2^{m}+2=$ $-6<0$. Therefore, $\operatorname{CCC}(G)$ is neither hyperenergetic nor borderenergetic.

By Theorem 5.1.6, we also get $\operatorname{LE}(\mathcal{C C C}(G))=\frac{2}{3}\left(4^{m}+5.2^{m}-6\right)$ for $n=2, p=2$ and $m \geq 3$. Therefore, $\operatorname{LE}(\mathcal{C C C}(G))-\left(3.2^{m}-1\right)=\frac{2}{3}\left(4^{m}-2^{m+2}-3\right)>0$ and so $\operatorname{LE}(\mathcal{C C C}(G))>$ $L E\left(K_{|V(\mathcal{C C C}(G))|}\right)$. Hence, $\mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic for $n=2$, $p=2$ and $m \geq 3$.

If $n=2, p=2$ and $m \geq 3$ then, by Theorem 5.1.6, we get $L E^{+}(\mathcal{C C C}(G))=\frac{2}{3}\left(2^{m}-\right.$ 2) $\left(2^{m}+3\right)$. Therefore, $L E^{+}(\mathcal{C C C}(G))-\left(3.2^{m}-1\right)=\frac{2}{3}\left(2^{m}\left(2^{m}-8\right)-3\right)$ and so $L E^{+}(\mathcal{C C C}(G))<$ $L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)$ or $L E^{+}(\mathcal{C C C}(G))>L E^{+}\left(K_{|V(\mathcal{C C C}(G))|}\right)$ according as $m=3$ or $m \geq 4$. Hence, $\operatorname{CCC}(G)$ is neither Q-hyperenergetic nor Q-borderenergetic if $m=3$; and if $m \geq 4$ then $\operatorname{CCC}(G)$ is Q -hyperenergetic but not Q -borderenergetic. Thus, if $n=2, p=2$ and $m=3$ then $\operatorname{CCC}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, Lborderenergetic, Q-hyperenergetic nor Q-borderenergetic; and if $n=2, p=2$ and $m \geq 4$ then $\operatorname{CCC}(G)$ is L-hyperenergetic and Q -hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q -borderenergetic.
Case 3. $n=2, p \geq 3, m \geq 1$; or $n \geq 3, p \geq 2, m \geq 1$.
By Theorem 5.1.6, we get

$$
\begin{gathered}
E(\mathcal{C C C}(G))=2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right), \\
L E^{+}(\mathcal{C C C}(G))=\frac{4 p^{2 m+n-4}}{p+1}(p-1)^{3}\left(p^{n}-p\right)
\end{gathered}
$$

and

$$
\begin{aligned}
\operatorname{LE}(\mathcal{C C C}(G))= & \frac{4}{p^{4}(p+1)}\left(p^{2 m+2 n+3}-3 p^{2(m+n+1)}+3 p^{2 m+2 n+1}-p^{2(m+n)}-p^{2 m+n+4}\right. \\
& +3 p^{2 m+n+3}-3 p^{2 m+n+2}+p^{2 m+n+1}+2 p^{m+n+3}-2 p^{m+n+2} \\
& \left.+p^{m+5}-2 p^{m+4}+p^{m+3}-p^{5}-p^{4}\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
E(\mathcal{C C C}(G))-2\left(p^{m+n}-p^{m+n-2}-1\right)= & 2\left(p^{m+n}-p^{m+n-2}-p^{n}+p^{n-1}-2\right) \\
& -2\left(p^{m+n}-p^{m+n-2}-1\right) \\
= & -2 p^{n}+2 p^{n-1}-2<0 .
\end{aligned}
$$

Therefore, $\operatorname{CCC}(G)$ is neither hyperenergetic nor borderenergetic. Also,

$$
\begin{aligned}
L E^{+} & (\mathcal{C C C}(G))-2\left(p^{m+n}-p^{m+n-2}-1\right) \\
= & \frac{4 p^{2 m+n-4}}{p+1}(p-1)^{3}\left(p^{n}-p\right)-2\left(p^{m+n}-p^{m+n-2}-1\right) \\
= & \frac{2}{p^{4}(p+1)}\left(2 p^{2 m+2 n+3}-6 p^{2 m+2 n+2}+6 p^{2 m+2 n+1}-2 p^{2 m+2 n}-2 p^{2 m+n+4}+6 p^{2 m+n+3}\right. \\
& \left.-6 p^{2 m+n+2}+2 p^{2 m+n+1}-p^{m+n+5}-p^{m+n+4}+p^{m+n+3}+p^{m+n+2}+p^{5}+p^{4}\right) \\
:= & f_{1}(p, m, n) .
\end{aligned}
$$

Now, for $p=2, n \geq 3$ and $m \geq 2$, we have

$$
f_{1}(2, m, n)=\frac{1}{12}\left(2^{m+n}\left(2^{m}\left(2^{n}-2\right)-18\right)+24\right)>0
$$

For $p=2, n=3, m=1$ we have $f_{23}(2,1,3)=-6<0$. For $n=2, p=3$ we have

$$
f_{1}(3, m, 2)=4^{m+1}-3.2^{m+2}+2>0,
$$

if $m \geq 2$. For $n=2, p=3$ and $m=1$ we have $f_{1}(3,1,2)=2>0$. For $n=2$ we have

$$
\begin{aligned}
f_{1}(p, m, 2)= & \frac{2}{p(p+1)}\left(2 p^{2 m+4}-8 p^{2 m+3}+12 p^{2 m+2}-8 p^{2 m+1}+2 p^{2 m}-p^{m+4}-p^{m+3}\right. \\
& \left.+p^{m+2}+p^{m+1}+p^{2}+p\right) \\
= & \frac{2}{p(p+1)}\left(2 p^{2 m+3}(p-5)+\left(p^{2 m+3}-p^{m+4}\right)+\left(p^{2 m+3}-p^{m+3}\right)\right. \\
& \left.+\left(12 p^{2 m+2}-8 p^{2 m+1}\right)+2 p^{2 m}+p^{m+2}+p^{m+1}+p^{2}+p\right)>0,
\end{aligned}
$$

if $p \geq 5, m \geq 1$. For $n \geq 3, p \geq 3, m \geq 1$ we have

$$
\begin{aligned}
f_{1}(p, m, n)= & \frac{2}{p^{4}(p+1)}\left(2 p^{2 m+2 n+3}-6 p^{2 m+2 n+2}+6 p^{2 m+2 n+1}-2 p^{2 m+2 n}-2 p^{2 m+n+4}\right. \\
& +6 p^{2 m+n+3}-6 p^{2 m+n+2}+2 p^{2 m+n+1}-p^{m+n+5}-p^{m+n+4}+p^{m+n+3} \\
& \left.+p^{m+n+2}+p^{5}+p^{4}\right) \\
= & \frac{2}{p^{4}(p+1)}\left(\left(2 p^{2 m+2 n+3}-6 p^{2(m+n+1)}\right)+\left(2 p^{2 m+2 n+1}-2 p^{2 m+n+4}\right)+\left(6 p^{2 m+n+3}\right.\right. \\
& \left.-6 p^{2 m+n+2}\right)+2 p^{2 m+n+1}+\left(p^{2 m+2 n+1}-p^{m+n+5}\right)+\left(2 p^{2 m+2 n+1}-p^{m+n+4}\right) \\
& \left.+\left(p^{2 m+2 n+1}-2 p^{2(m+n)}\right)+p^{m+n+3}+p^{m+n+2}+p^{5}+p^{4}\right)>0 .
\end{aligned}
$$

Therefore, $\operatorname{CCC}(G)$ is neither Q-hyperenergetic nor Q-borderenergetic for $n=3, p=2, m=$ 1. For $n=2, p \geq 3, m \geq 1 ; n=3, p=2, m \geq 2 ; n \geq 4, p \geq 2, m \geq 1 ; \operatorname{CCC}(G)$ is Q-hyperenergetic but not Q-borderenergetic.

We have

$$
\begin{aligned}
L E(& (\mathcal{C C C}(G))-2\left(p^{m+n}-p^{m+n-2}-1\right) \\
= & \frac{4}{p^{4}(p+1)}\left(p^{2 m+2 n+3}-3 p^{2(m+n+1)}+3 p^{2 m+2 n+1}-p^{2(m+n)}-p^{2 m+n+4}+3 p^{2 m+n+3}\right. \\
& -3 p^{2 m+n+2}+p^{2 m+n+1}+2 p^{m+n+3}-2 p^{m+n+2}+p^{m+5}-2 p^{m+4} \\
& \left.+p^{m+3}-p^{5}-p^{4}\right)-2\left(p^{m+n}-p^{m+n-2}-1\right) \\
= & \frac{2}{p^{4}(p+1)}\left(2 p^{2 m+2 n+3}-6 p^{2(m+n+1)}+6 p^{2 m+2 n+1}-2 p^{2(m+n)}-2 p^{2 m+n+4}+6 p^{2 m+n+3}\right. \\
& -6 p^{2 m+n+2}+2 p^{2 m+n+1}-p^{m+n+5}-p^{m+n+4}+5 p^{m+n+3}-3 p^{m+n+2}+2 p^{m+5} \\
& \left.-4 p^{m+4}+2 p^{m+3}-p^{5}-p^{4}\right):=f_{2}(p, m, n) .
\end{aligned}
$$

For $n=2, p \geq 3$ and $m \geq 1$, we have

$$
\begin{aligned}
f_{2}(p, m, n)= & \frac{2}{p(p+1)}\left(2 p^{2 m+4}-8 p^{2 m+3}+12 p^{2 m+2}-8 p^{2 m+1}+2 p^{2 m}-p^{m+4}-p^{m+3}\right. \\
& \left.+7 p^{m+2}-7 p^{m+1}+2 p^{m}-p^{2}-p\right) .
\end{aligned}
$$

Therefore, for $n=2, p \geq 3$ and $m=1$ we have $f_{2}(p, m, n)=\frac{2}{p+1}\left(2 p^{5}-9 p^{4}+11 p^{3}-p^{2}-\right.$ $6 p+1)=\frac{2}{p+1}\left(p^{3}(p-3)^{2}+p^{4}(p-3)+3 p^{2}(p-1)+2 p(p-3)+1\right)>0$. For $n=2, p \geq 3$ and $m \geq 2$ we have

$$
\begin{aligned}
f_{2}(p, m, n)= & \frac{2}{p(p+1)}\left(\left(2 p^{2 m+2}(p-2)^{2}-p^{m+3}\right)+p^{2 m+1}(3 p-8)+p^{m+2}\left(p^{m}-p^{2}\right)\right. \\
& \left.+\left(2 p^{2 m}-p^{2}\right)+7 p^{m+1}(p-1)+\left(2 p^{m}-p\right)\right)>0
\end{aligned}
$$

Therefore, if $n=2, p \geq 3$ and $m \geq 1$ then $\operatorname{LE}(\mathcal{C C C}(G))>L E\left(K_{|V(\mathcal{C C C}(G))|}\right)$ and so $\mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic.

For $n \geq 3, p=2$ and $m \geq 1$ we have

$$
\begin{aligned}
f_{2}(p, m, n) & =\frac{1}{12}\left(2^{2(m+n)}-2^{2 m+n+1}-5.2^{m+n+1}+2^{m+3}-24\right) \\
& \geq \frac{1}{12}\left(4.2^{2 m+n+1}-2^{2 m+n+1}-5.2^{m+n+1}+2^{m+3}-24\right) \\
& =\frac{1}{12}\left(\left(2^{m+n+1}\left(3.2^{m}-5\right)-24\right)+2^{m+3}\right)>0 .
\end{aligned}
$$

Also, for $n \geq 3, p \geq 3$ and $m \geq 1$ we have

$$
\begin{aligned}
f_{2}(p, m, n)= & \frac{4}{p^{4}(p+1)}\left(2 p^{2 m+2 n+2}(p-3)+p^{m+n+1}\left(p^{m+n}-p^{4}\right)+p^{m+n+1}\left(p^{m+n}-p^{3}\right)\right. \\
& +2 p^{2 m+2 n}(p-1)+6 p^{2 m+n+2}(p-1)+2 p^{2 m+n+1}\left(p^{n}-p^{3}\right)+p^{m+n+1}\left(2 p^{m}\right. \\
& \left.-3 p)+2 p^{m+4}(p-2)+p^{4}\left(2 p^{m-1}-1\right)+p^{3}\left(5 p^{m+n}-p^{2}\right)\right)>0 .
\end{aligned}
$$

Therefore, if $n \geq 3, p \geq 2$ and $m \geq 1$ then $\operatorname{LE}(\mathcal{C C C}(G))>L E\left(K_{|V(\mathcal{C C C}(G))|}\right)$ and so $\mathcal{C C C}(G)$ is L-hyperenergetic but not L-borderenergetic. Thus, if $n=2, p \geq 3$ and $m \geq 1$ or $n \geq 3, p \geq 2$ and $m \geq 1$ then $\operatorname{CCC}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic.

We conclude this chapter with the following characterization of commuting conjugacy class graph.

Theorem 5.3.7. Let G be a finite non-abelian group. Then
(a) $\operatorname{CCC}(G)$ is neither hyperenergetic, borderenergetic, L-hyperenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic if G is isomorphic to $D_{8}, D_{12}, D_{2 n}$ (n is odd), $Q_{8}, Q_{12}, Q_{16}, U_{(2,6)}, U_{(n, 3)}, U_{(n, 4)}(n \geq 2), V_{16}, S D_{16}, S D_{24}, G(p, m, 1)(p \geq 2$ and $m \geq 1), G(2,1,2)$ or $G(2,2,2)$.
(b) $\operatorname{CCC}(G)$ is L-borderenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic if G is isomorphic to Q_{20} or $U_{(2,5)}$.
(c) $\mathcal{C C C}(G)$ is L-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic if G is isomorphic to D_{16}, D_{20}, D_{24}, $D_{28}, Q_{24}, Q_{28}, U_{(3,5)}, U_{(3,6)}, U_{(2,7)}, V_{24}, V_{32}, G(2,3,2)$ or $G(2,1,3)$.
(d) $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-borderenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-hyperenergetic if G is isomorphic to $S D_{40}$.
(e) $\operatorname{CCC}(G)$ is L-hyperenergetic and Q-hyperenergetic but neither hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic if G is isomorphic to $D_{2 n}$ (n is even, $n \geq 16), Q_{4 m}(m \geq 8), U_{(n, 5)}(n \geq 4), U_{(n, 6)}(n \geq 4), U_{(n, 7)}(n \geq 3), U_{(n, m)} \quad(n \geq 2$ and $m \geq 8)$, $V_{8 n} \quad(n \geq 5), S D_{32}, S D_{8 n}(n \geq 6), G(2, m, 2)(m \geq 4), G(p, m, 2)$ $(p \geq 3$ and $m \geq 1), G(2, m, 3)(m \geq 2)$ or $G(p, m, n)(n \geq 4, p \geq 2$ and $m \geq 1)$.

Theorem 5.3.8. Let G be a finite non-abelian group. Then
(a) If G is isomorphic to $D_{2 n}, Q_{4 m}, U_{(n, m)}, V_{8 n}, S D_{8 n}$ or $G(p, m, n)$ then $\mathcal{C C C}(G)$ is neither hyperenergetic nor borderenergetic.
(b) If G is isomorphic to $D_{2 n}$ (n is even, $n \geq 8$), $Q_{4 m}(m \geq 6), U_{(n, 5)}(n \geq 3), U_{(n, 6)}$ $(n \geq 3), U_{(n, m)}(n \geq 2$ and $m \geq 7), \quad V_{8 n}(n \geq 3), S D_{8 n}(n \geq 4), G(2, m, 2)(m \geq$ 3), $G(p, m, 2)(p \geq 3$ and $m \geq 1), G(2, m, 3)(m \geq 1)$ or $G(p, m, n)(n \geq 4, p \geq 2$ and $m \geq 1$) then $\operatorname{CCC}(G)$ is L-hyperenergetic
(c) If G is isomorphic to Q_{20} or $U_{(2,5)}$ then $\mathcal{C C C}(G)$ is L-borderenergetic.
(d) If G is isomorphic to $D_{2 n}$ (n is even, $n \geq 16$), $Q_{4 m}(m \geq 8), U_{(n, 5)}(n \geq 4), U_{(n, 6)}$ $(n \geq 4), \quad U_{(n, 7)}(n \geq 3), U_{(n, m)}(n \geq 2$ and $m \geq 8), \quad V_{8 n}(n \geq 5), S D_{32}, S D_{8 n}(n \geq$ 6), $G(2, m, 2)(m \geq 4), G(p, m, 2)(p \geq 3$ and $m \geq 1), G(2, m, 3)(m \geq 2)$ or $G(p, m, n)$ ($n \geq 4, p \geq 2$ and $m \geq 1$) then $\mathcal{C C C}(G)$ is Q-hyperenergetic.
(e) If G is isomorphic to $S D_{40}$ then $\mathcal{C C C}(G)$ is Q-borderenergetic.

