
Chapter 1

Introduction

1.1 Image super-resolution

The technique of obtaining a high-resolution (HR) image from corresponding single

or multiple low-resolution (LR) image(s) along with enhancements of the underlying

detail features is known as super-resolution (SR) imaging. Spatial resolution of an

image is calculated as the number of pixels used to represent the image, where each

pixel embodies the smallest distinguishable element of the image. While, resolution

of a digital camera is specified by the spatial density of the optical sensor; low-cost

sensors generally have less spatial density. If an image is captured by a LR sensor

(e.g. QVGA: 320×240) and displayed using a HDTV (1024×720) display, it will be

distorted and blurred. Objects in the image will become unrecognizable. This is

due to the fact that the number of pixels available in the LR image are stretched

to fit the HDTV screen’s dimensions. To overcome this, SR imaging employs signal

processing techniques to recover the missing pixels in a given LR image in order to

obtain the corresponding HR image. The imaging method also includes steps for

removal of blur effects induced during the capture of the input LR image(s).

Figure 1.1: Image super-resolution vs. interpolation
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1.2. Super-resolution in remote sensing

Fig. 1.1 shows twofold enhancement of resolution of an image using SR imaging.

SR reconstructed image has clear evidence of containing more sharp details than the

image resized via simple nearest neighbour interpolation (NNI) technique. Resolu-

tion enhancement of images has urged very much importance now-a-days owing to

the rapidly growing high-definition (HD) applications in the areas of video surveil-

lance, medical diagnosis, remote sensing, and many more [2, 19, 40, 74, 115, 131].

1.2 Super-resolution in remote sensing

Environmental monitoring, disaster management, land-cover mapping, and other re-

mote sensing applications necessitate images with high spatial/spectral resolutions.

The high spatial and spectral resolutions of remote sensing images can provide more

precise geometric and thematic studies. Despite the fact that multispectral (MS)

images typically contain significant amount of spectral information, their spatial

resolutions are poor. HR MS images are used in a variety of remote sensing applica-

tions, where LR images fail to deliver high-quality detail information for meaningful

analysis.

Figure 1.2: Demonstration of image acquisition by Landsat satellite

SR is very important for remote sensing applications as most satellites capture

images at relatively lower spatial resolutions. Fig. 1.2 shows a schematic of the
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Chapter 1. Introduction

image acquisition process by a satellite. Since these images cover a large area (say,

50-100 square kilometers) on the earth, an object in such an image is hardly recogniz-

able. Besides, images are also degraded due to the satellite movements, atmospheric

condition, etc. Two MS images with spatial resolutions of 30 m (LR) and 10 m

(HR) acquired from the same location are shown in Fig. 1.3.

Figure 1.3: Example of satellite image super-resolution

Remote sensing satellites once lunched into the orbit, it is not possible to replace

their integrated LR imaging sensors with the recent one. As, the ground stations

keep receiving such LR images regularly, a SR software module installed in the base

station can be very handy for processing images from these LR satellites. It also

helps in reduction of costs and time; promoting HR-based applications using existing

LR satellites. Moreover, a carefully developed embedded hardware module capable

of performing SR can be placed on-board in an aircraft for obtaining HR imagery.

1.2.1 Limitations of remote sensing image SR

Satellite images are generally very big (e.g. 7000×8000 pixels). Moreover, multi-

spectral images consist of several bands. So, the data size becomes an issue for

remote sensing image SR. Additionally, it is a challenge to estimate the correspond-

ing spectral features, while targeting the HR spatial reconstruction. Therefore, the

computational complexity of MS SR methods becomes high as it needs to upscale all

the spectral bands at a time. Nevertheless, creating a standard database is an issue

as the images need complicated pre-processing steps, like radiometric and geometric

corrections. For example, there are no publicly available database for the Indian

multispectral satellite ResourceSat-2.
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1.3. SR approaches and their limitations

1.3 SR approaches and their limitations

One straightforward way to get images with higher spatial-resolution is to upgrade

the imaging system by replacing the sensor with technological advancements. There

are two possible ways for this as follows [76]:

(i) Reduce the pixel size:

It is possible to acquire images with a higher pixel count per unit area using

cutting-edge sensing technologies. However, this results in smaller pixel sizes,

and as a result, less average incident light on each pixel. As a result, more

shot noise is generated, degrading the image quality even further.

(ii) Increase the chip size:

By increasing the chip size, it allows to accommodate more number of transis-

tors on the wafer resulting in high spatial density. However, as the chip size

is increased the capacitance is also increased resulting in a slow rate of charge

transfer.

Nonetheless, the high cost of latest HR sensors is also a matter of concern. In

such scenarios, generation of HR image through super-resolution imaging is more

beneficial as it allows to use the existing low-cost LR sensors for remote sensing

applications [6, 74].

1.4 Fundamentals of single image super-resolution

Super-resolution (SR), in general, is defined as an inverse problem in digital image

processing. Single image SR (SISR) aims at recovering the HR version of a given

LR observation. The LR image is viewed as the degraded version of the HR image

due to many reasons, like blurring, downsampling, and some additive noise due

to measurement error. Therefore, SISR makes an estimate of the unknown HR
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image by reversing the image degradation process. In other words, SR is the inverse

mapping of a degradation process.

1.4.1 Image acquisition/degradation model

SR image reconstruction can be formulated from the basic image degradation model.

An observed image is actually a blurred and downsampled approximation of a real-

world scene. The camera len’s finite aperture leads to diffraction; the point spread

function (PSF) varies spatially and usually results in the blurring effect. Addition-

ally, due to the integration of limited transistors, a digital sensor can capture only a

selective number of sample pixels. It causes downsampling of the original HR scene.

Figure 1.4: Image degradation model

Fig. 1.4 shows the basic image degradation model where the observed LR image

Y is a blurred and downsampled version of the original HR image X. Mathemati-

cally, we the representation can be written as,

Y = SHX + N, (1.1)

where H represents a blurring operator, and S is downsampling operator. For

super-resolution problems, the additional noise parameter N is considered ideally

equal to zero or negligible. Recovering the original HR image is treated as an ill-

posed inverse problem as for any LR input Y infinitely many HR images X may

satisfy the above equation. Also, the blurring operator generally remains uncertain

for different imaging conditions. Moreover, the multiplication SH results in an

overcomplete rectangular matrix, thus the system represented by Eq. 1.1 becomes

an underdetermined linear system [76].
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1.4. Fundamentals of single image super-resolution

1.4.2 Image degradation

For simulation of SR imaging, generally the available image is assumed to be the

given HR image. Then, a corresponding LR image is synthesized from it by applying

the image degradation process. The image degradation model is given by:

ILR = S (H (IHR)) + N (1.2)

Degradation is the reverse process of SR where we first blur the HR image using

a low pass filter followed by downscaling to get the subsampled LR image [41].

Both the PSF for blurring operator H, and additive white Gaussian noise N can be

adequately approximated by the Gaussian distribution function:

G (x) =
1

σ
√

2π
e
−1

2

(
x−µ

σ

)2

, (1.3)

where the parameters µ and σ denotes mean and standard deviations, respectively.

Gaussian filtering is carried out by taking a mask or kernel of size (denoted by k)

5×5 or 7×7 or higher and convolves it with the image by shifting the mask starting

from top-left. The degree of blur depends on the value of σ, a higher value of σ

supported with a larger mask will cause more blur. Ideally, the Gaussian mean µ is

taken as zero. Fig. 1.5 presents a visual of blurred and downsampled image from a

test image using a 5×5 mask with σ = 1.2 and then downscaling by two.

Figure 1.5: Process of LR image synthesis from an image
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1.4.3 Super-resolution versus interpolation

Although some literature refer image interpolation as a SR technique [60], there is

some difference in their working. Fig. 1.6 shows an example of image interpolation,

where the LR image is mapped into a target HR grid and the missing pixels in

the new grid are estimated using interpolation functions, like bilinear, bicubic, etc.

They simply do not consider any process to restore the high-frequency information

in target HR image, albeit a few interpolation methods are also capable of slightly

reducing the aliasing effects caused by the downsampling. On the contrary, SR

methods are more dedicated techniques making efforts to improve the resolution as

well as restoration of HR information as much as possible.

Figure 1.6: Interpolation of pixels for upscaled image

1.4.4 Super-resolution versus pansharpening

In remote sensing, pansharpening are the methods that combine an HR panchro-

matic image with a LR MS image to obtain the target HR MS image. Although,

both the SR and pansharpening techniques result into an HR MS image, their dis-

tinguishing fact is that the latter targets to restore the missing spectral information

for the panchromatic (PAN) band, whereas the SR method tries to restore both the

spatial and spectral information, simultaneously from the given LR MS image.
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1.4. Fundamentals of single image super-resolution

1.4.5 Approaches for SR of MS images

To obtain SR of a colour image, first RGB to Y CbCr transformation is done where

the luminance channel Y contains the most of the high-frequency information. The

other two channels, Cb and Cr, i.e. the blue- and red-difference chroma components

give the colour information. Figure 1.7 depicts the extracted Y , Cb and Cr channels

from a given RGB satellite image. SR is performed on the Y -channel only and

the remaining two channels are simply upscaled via an interpolation technique.

Finally, Y CbCr to RGB inverse transformation is used to achieve the the target

SR reconstructed RGB image.

Figure 1.7: Visualization of Y , Cb, Cr bands obtained from an RGB image

We know that MS images consists of several bands (3–10) and one straightfor-

ward approach is to obtain a false color RGB image from the available bands (or

the significant bands only) and apply the SR algorithm to the luminance channel.

However, we observe that, by doing so the spectral properties of a MS image is caus-

ing spectral information loss. Therefore, SR is performed on each band separately

of the given LR MS image to keep their individual spectral properties intact.

1.4.6 Evaluation parameters

In SR works, the reconstructed images are compared with the original image using

different evaluation metrics for validation of the results. For simulation purpose,

the ground-truth image is the given image (target HR) from which the test LR

image is formed and reference-based evaluation parameters are computed based on

them. Otherwise, if ground-truth is not available, no-reference-based parameters
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are preferred and computed from the test LR image.

The peak signal-to-noise ratio (PSNR) expressed in dB and the mean structural

similarity (MSSIM) index are two of the most often used reference-based metrics

for objective evaluation. PSNR is inversely proportional to the mean-squared error

between the ground-truth and the reconstructed images. The higher the PSNR,

the better the reconstruction quality. On the other hand MSSIM measures the

structural similarity between the two images whose value lies in the range [-1, 1]. For

two exactly similar images, MSSIM value is 1. Some other well-known quantitative

metrics used in objective evaluation, especially for super-resolution of MS images

are:

(i) Spatial Correlation Coefficient (sCC) [78]: it measures linear relationship

between edges of the reference image to that of the reconstructed image. It is

expressed as:

sCC =
σxy

σxσy

, (1.4)

where σxy denotes covariance between the ground-truth (x) and the SR recon-

structed image (y). Similarly, σx and σy represent standard deviations of x

and y, respectively. Its value lies in the range [-1, 1].

(ii) Universal Image Quality Index (UIQI) [109]: it combines three different prop-

erties of image evaluation, namely, correlation, luminance and contrast. It is

defined by:

Q =
1

K

K∑
j

(
σxy

σxσy

2µxµy

µ2
xµ

2
y

2σxσy

σ2
xσ

2
y

)

j

, (1.5)

where µx, µy denotes the mean values of x and y; and K represents the total

number of MS bands. Its value also lies in the range [-1, 1].

(iii) Erreur Relative Globale Adimensionnelle de Synthese(ERGAS) [84]: it con-

siders scaling factor and RMSE values for quality evaluation and expressed as

follows:

ERGAS =
100

S

√√√√
n∑

k

(
RMSE (x,y)

µx

)2

, (1.6)
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1.5. Sparse representation problem

where S is the SR scaling factor. ERGAS value of 0 indicates the best quality

and higher values indicate distortions in the reconstructed output.

(iv) Spectral Angle Mapper (SAM) [33]: it is widely used for spectral assessment

of MS images, finds the average angle between x and y assuming each band

as a coordinate axis.

SAM =
1

P

P∑
i

arccos
xi.yi

‖xi‖ ‖yi‖ , (1.7)

where P denotes the image’s entire pixel count. Ideally, SAM should be 0.

(v) Natural Image Quality Evaluator (NIQE) [67]: it is a metric for image quality

with no-reference; assumes that a distortion free image can be statistically

represented by a multivariate Gaussian (MVG) distribution. First, it consid-

ers fitting a MVG distribution approximately on a training set of distortion

free images. Next, it calculates the distance between the test image features

(e.g. normalized luminance value fitted to Gaussian distributions, etc.) to

those fitted to previously learnt MVG distribution. A smaller value of NIQE

indicates better reconstruction ability of the SR method.

1.5 Sparse representation problem

A natural image is compressible because when it is transformed to the frequency

domain using an image transformation technique, like, the discrete cosine trans-

form (DCT) or the discrete Fourier transform (DFT), which uses sinusoidal basis

functions, only a few coefficients are found significant and the rest are either small

or negligible. The non-significant transform coefficients may be discarded by mag-

nitude thresholding, while retaining only the significant ones for representing the

image. On the other hand, a signal is said to be sparse if it can be expressed or

approximated as a linear combination of a few elementary signals or basis functions

selected from a proper dictionary or transform. The basis functions or vectors are

also called the ‘atoms’ of the dictionary [37, 115]. A natural image is not sparse in
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Figure 1.8: A sparse representation problem

any transform domain either by a fixed transform (e.g. DFT, DCT, etc.) or learned

dictionary, but we can approximate it as a k-sparse signal having only k nonzero

coefficients in the transform domain. A sparse representation problem typically seeks

a sparse solution using a learned overcomplete dictionary, where number of atoms

sufficiently exceeds the dimension of the signal of interest [14].

A pictorial demonstration of a typical sparse representation problem is given in

Fig. 1.8. Here, we consider the problem of finding sparse vector αK×1 such that

Dα = y, where vector ym×1 and matrix Dm×K are given with m ¿ K. It is an

under-determined system with infinite candidate solutions but we want a sparse

solution out of it. Therefore, in order to restrict the solution space, the problem can

be reformulated with the inclusion of some a priori information about our signal of

interest, i.e. the signal in question has a sparse representation. It follows:

min
α

‖α‖0 subject to Dα = y, (1.8)

where ‖α‖0 represents the `0-norm and gives the count of non-zeros present in α.

Solving Eq. 1.8 is a non-deterministic polynomial time (NP) hard. Such `0-norm

problems can be solved by either greedy algorithms or convex `1-norm minimization

techniques [81]. A greedy algorithm, as the name implies, always selects the solution

that appears to be the best at that time. This means that it makes a locally optimal

decision in the hope of finding a globally optimal solution. However, they often

fail to identify a globally optimal solution because they do not run through all of

the data exhaustively. They may make hasty commitments to certain solutions,
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1.6. Sparse representation in image processing

preventing them from subsequently finding the best possible solution. Although

these techniques are simple to use and computationally efficient, they do not provide

recovery assurances, such as how well each sample can be reconstructed using the

dictionary and sparse codes [13]. A method called ‘Basis Pursuit’ (BP) replaces

`0-norm with `1-norm and thereby converting the non-convex problem into a convex

optimization problem, i.e.

min
α

‖α‖1 subject to ‖Dα− y‖2
2 ≤ ε (1.9)

The above problem is the standard basis pursuit denoising (BPDN) problem [36]. It

will find a sparse solution or even the sparsest one under certain conditions [86]. It

is a convex optimization problem with accurate solvers like interior point methods

already available [79]. A specific class of algorithms that are faster than interior point

methods have been reported for larger problems. Algorithms in this category are

based on soft-thresholding/shrinkage, such as the iterative shrinkage-thresholding

(IST) [29] and fast iterative shrinkage-thresholding algorithm (FISTA) [8] to name

a few.

1.6 Sparse representation in image processing

Sparse representation has attracted a lot of attention since it works well in a wide

range of image analysis applications, including image inpainting, denoising, com-

pression, demosaicking, and so on [36, 63, 88, 124]. Many researchers use sparse

representation to build sparse dictionaries or to find sparse coefficients in existing

dictionaries. The sparse representation approach, as shown in Fig. 1.9, tries to

compute the sparse decomposition of each patch in the image by finding a linear

combination of a few atoms/ bases from the learned dictionary [89].

If we assume x as our test patch, then it satisfies the following representation:

x ≈
n∑

i=1

αidi, (1.10)
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Figure 1.9: Example of sparse coding for an image patch using learned basis functions

where di represents basis functions/atoms. Again, n represents total number of

atoms (e.g. n=64) and α represents the sparse coefficients vector (e.g. α =

[0, ..., 0.3, ..., 0.6, ..., 0.8, ..., 0]) used to represent the patch. The dictionary atoms

are trained from a corpus of similar images so that it is capable of representing the

patches of input test image reasonably well. Assuming D = [d1,d2, ...,dn] be the

collection of atoms forming an overcomplete dictionary, we can re-write Eq. 1.10 as,

x ≈
n∑

i=1

αidi = αD. (1.11)

So, sparse representations in image processing deals with the following two major

steps:

(a) Learning: Given the training dataset X = {xj} , j = 1, 2, ..., m is an ensemble

of similar patch vectors collected from similar images that learns the dictionary

D and coefficients α.

Dictionary learning is carried out by formulating the following unconstrained
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1.6. Sparse representation in image processing

optimization problem:

arg min
{di},{αj}

m∑
j=1

∥∥∥∥∥xj −
n∑

i=1

αjdi

∥∥∥∥∥

2

+ λ

m∑
j=1

n∑
i=1

∣∣αj
i

∣∣

subject to ‖di‖2
2 6 c, ∀i = 1, 2, ..., n.

(1.12)

Here, λ is the regularization parameter. If A = [α1,α2, ..., αn] represents

the matrix consisting all the sparse coefficient vectors, the above optimization

problem in matrix form can be written as:

D = arg min
D,A

‖X−DA‖2
F + λ ‖A‖1

subject to
∑

i

D2
i,j 6 c, ∀i = 1, 2, ..., n,

(1.13)

where the symbol F in the first term indicates the Frobenius norm where it

enforces `2-norm constraints to the columns of the dictionary D and the sec-

ond term finds the `1-norm ‖A‖1 enforcing the sparsity constraint [115]. Its an

optimization problem with two unknown variables and not convex in both D

and A. For solving the optimization problem, it can be split into two reduced

subproblems by keeping one fixed and updating the other in an alternative man-

ner [42]. Different techniques are available for solving the dictionary learning

and coefficient estimation problem from such two variable regularization prob-

lems e.g. coupled dictionary learning via efficient sparse coding [56], separable

dictionary learning [51], etc.

(b) Encoding: Given the test data x and dictionary D, computes the sparse

coefficients α.

Encoding, also known as sparse coding, solves an unconstrained quadratic con-

vex optimization problem using a learned overcomplete dictionary D and vector

input data x as given below.

α = arg min
α
‖x−Dα‖2

2 + λ ‖α‖1 (1.14)

This is a linear regression problem with the coefficients regularized using the
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`1-norm. Many solvers are available for solving such sparse approximation

problems e.g. coordinate descent method [47], interior point methods [79],

fixed-point-based method [50], iterative shrinkage-thresholding algorithms [8,

9].

1.7 SR model using sparse representation

Given an LR image Y, sparse representation-based SR model tries to recover the

HR image X by defining two constraints, namely, the sparsity prior and global

reconstruction constraints. The method begins by learning two dictionaries, D` and

Dh, from the training images. The LR dictionary D` is trained by extracting high-

frequency feature patches from LR training images, whereas the HR dictionary Dh

is trained by using actual HR patches.

(a) Correspondence between LR and HR patch pairs

(b) Generation of HR patch
Figure 1.10: Steps of patch-wise sparse representation: (a) example of correspon-
dence between LR and HR patch pairs, (b) generation of HR patch using the sparsity
model.

The HR image is reconstructed by solving the two regularization problems for-

15



1.7. SR model using sparse representation

mulated using the above two constraints and utilizing the learned dictionary pairs.

The detailed procedure is as explained below.

(i) Sparsity prior-based constraint :

The sparsity prior assumes that the LR and HR patches extracted from the

same location of an LR-HR image pair share a sparse coefficients vector. Fig.

1.10(a) shows the correspondence of LR and HR pairs of an image. First,

sparse coefficient vectors are computed for each LR image patch y by solving

a sparse representation problem with LR dictionary D` is as given below:

α̂ = arg min
α
‖α‖1 subject to y = D`α (1.15)

Then a target HR patch x can be generated by multiplying the HR dictionary

Dh with above computed α of Eq. 1.15 as follows:

x = Dα̂. (1.16)

Fig. 1.10(b) pictorially demonstrates the sparsity based generation of a HR

patch using a pair of trained LR-HR dictionaries.

(ii) Global reconstruction-based constraint :

The HR image X0 obtained by organizing all the HR patches x generated using

the sparsity constraint lacks in patch consistency and it is further regularized

using the global image reconstruction constraint i.e. Y = SHX which is

defined as:

X̂ = arg min
X
‖SHX−Y‖F subject toX = X0. (1.17)

Here, S and H represents a blurring and downsampling operator, respectively.

Finally, by solving the quadratic problem below, an approximation of the

target HR image is obtained.

X∗ = arg min
X
‖SHX−Y‖2

2 + c ‖X−X0‖2
2 , (1.18)
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where c is the regularization parameter. Here, back-projection of imaging con-

straint into the patch based HR image helps in inducing the original image’s

blurring or smoothing properties into the target SR output image and thereby

reducing the patch inconsistencies.

1.8 Motivation of the present work

Sparse representation and compressive sensing provide a reliable statistical frame-

work for analyzing high-dimensional data and methods for revealing data structures,

resulting in a substantial repertoire of efficient algorithms. Greedy methods and

convex optimization can correctly and efficiently compute a sufficiently sparse lin-

ear representation [7]. New formulations based on sparse representation allow to

explore and reveal more meaningful structures/features for various data and pro-

pose efficient optimization strategies for such data. We know that MS images suffer

from low spatial resolution which has been a bottleneck for many HR applications.

Generation of HR MS image(s) from a single LR MS image through SR processing

will be highly beneficial in remote sensing image analysis and applications.

From, literature it is studied that, sparse representation-based SISR of natural

images can reproduce the missing fine elements in LR images by learning appropri-

ate dictionary. However, due to the limited spatial resolution of remote sensing MS

images, building a good quality overcomplete dictionary for SR applications is prob-

lematic. Furthermore, existing SISR algorithms are not easily applicable to actual

MS images. Sparse representation methods have the flexibility to develop new strat-

egy using recent advancements in dictionary learning or sparse representation phase.

Recently, examples of sparse representation applied for multidimensional signal or

image processing can be found in the literature. This has motivated the researcher

to apply recently developed sparse representation methodologies and convex opti-

mization tools to the MS image SR problem.

Image processing algorithms are suitable for parallelization as they have high
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1.9. Contributions from the Thesis

level data redundancy. A single instruction is executed iteratively over a million

of pixels or large number of patches in a loop. With recent development of high

performance computing facilitates such computationally expensive algorithms can

be implemented using parallel processing. Since, real-time remote sensing operations

need to process images of large dimension, this motivates to implement the proposed

MS image SR algorithm using parallel processing.

1.9 Contributions from the Thesis

The research works carried out in the thesis result in the following contributions:

i) Developed a multicore SISR method using trained sparse overcomplete dic-

tionaries. Also proposed new dictionary training strategies using MS remote

sensing images and developed a SR reconstruction algorithm (named it as

‘MSISR’) using the concept of patch-wise sparse representation. Furthermore,

for MS datasets that include HR panchromatic images as well as LR MS bands,

a new spatial-spectral SR influenced by the pansharpening technique is pro-

posed to reconstruct HR MS images from only the LR MS image. The pro-

posed method has been found advantageous over pansharpening-based fusion

techniques.

ii) Developed a new MS image SR method using the morphological component

analysis (MCA)-based features and sparse representations. The proposed work

also uses principal component analysis (PCA) to demonstrate a new dictionary

learning methodology from a set of MS images. Moreover, fast implementation

of both the dictionary training as well as SR reconstruction is carried out by

utilizing the Open Multi-Processing (OpenMP) parallelization and achieved a

reasonable speed-up. Reconstructed images have shown better remote sensing

analysis, when subjected to spectral signature evaluation and end-members

identification from the super-resolved images.

iii) Proposed a new joint sparse representation based MS image SR algorithm
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(named it as ‘JAMiSR’) by combining the patch and patch-groups in a common

framework. Also, proposed a self-adaptive dictionary learning approach for

MS images. Extensive comparisons of results are shown with the state-of-the-

art sparse representation- and some deep learning-based SR algorithms. To

make it suitable for near real-time remote sensing applications, the proposed

algorithm has been implemented on general-purpose graphics processing units

(GPGPU) and results are demonstrated. Furthermore, land-cover classification

is performed on the super-resolved images images to show the potential of the

proposed method for real remote sensing applications.
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1.10 Scope of the work

MS images are widely used for different remote sensing applications; reconstruction

of high quality images is of paramount interest. Keeping in mind about the limita-

tions of HR MS image data availability; challenge is to apply the traditional sparse

representation-based SR methods for MS datasets. Learning an effective dictionary

that can enhance the performance of sparse representations and effectively restore

HR MS image is very important. It is noticed that learning a global dictionary from

similar HR images collected from some external databases for many LR imaging

satellites is a challenge. This leads to search for novel techniques and strategies of

MS image dictionary learning.

Moreover, we observe that an SR method capable of producing the target HR

image directly from the input LR image will be more practical because it is not re-

liant on an external HR image. Such an adaptive SR algorithm capable of producing

state-of-the-art results (both visually and in remote sensing aspects) will be suitable

for practical remote sensing applications as long as the computation time is reason-

ably close to that of near real-time operations. Therefore, parallel processing-based

implementations of novel MS image SR algorithm on a high computing facility may

find a place in the real remote sensing applications. For example, a ground station

which collects LR MS images can consider such a system for real time visualization

of corresponding HR images, or an aircraft integrated with LR camera can embed an
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SR hardware module for real-time use; research organizations or companies dealing

with LR satellite image data can consider such a parallel SR imaging system to avail

the benefits of high spatial and spectral reconstructed MS images. Overall, it can

be stated that the proposed works in this thesis have ample scopes in the practical

remote sensing applications.

1.11 Thesis outline

The thesis is organized into six chapters. In the following, a brief introduction to

each chapter is given:

Chapter 1:

A brief introduction to image SR utilizing sparse representation is provided in this

chapter. The principles of image SR, SR in remote sensing, its benefits and draw-

backs, the concept of sparse representation, and how sparse representation solves

the inverse problem of image SR are all covered in this chapter.

Chapter 2:

This chapter presents a comprehensive review of the traditional super-resolution

methods, sparse representation based SR methods and some widely used pansharp-

ening methods. We discuss the different SR techniques, their performances and

limitations in obtaining the HR image. A brief background on parallel processing

in image processing and review of a few related parallel processing-based SR works

are also presented in this chapter. The chapter concludes with a brief summary and

highlighting few research issues on this topic.

Chapter 3:

In this chapter, we present three pansharpening-based fast MS image SR using sparse

representations. First method demonstrates a fast satellite image SR technique using

multicore parallel processing for RGB satellite images, where SR algorithm is ap-

plied on the luminance channel after YCbCr colour transformation. Coupled HR/LR

dictionaries are trained from external HR image datasets using the joint sparse cod-

ing technique. Next, we develop a new dictionary learning scheme by creating an
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HR training dataset from patches of multiple PAN images and an LR dataset from

concatenated patches of corresponding LR MS images. We also propose MSISR,

a sparse representation-based multicore parallel MS image SR reconstruction algo-

rithm. In the third method, a pansharpening-based SR algorithm is developed using

a single pair of PAN and LR MS images, where a coupled dictionary is learned from

the PAN image itself. This method helps in restoring better spatial as well as spec-

tral information compared to some of the existing pansharpening-based methods.

Chapter 4:

This chapter describes a new SR method for reconstruction of MS images collected

by the Indian remote sensing satellite Resourcesat-2. We identify the essence of

morphological feature extraction from MS image for effective sparse representation

and also proposed a PCA led dictionary training technique for images collected by

Linear Imaging and Self Scanning Sensors (LISS), namely, LISS-III and LISS-IV,

respectively. Multicore parallel algorithms are designed using OpenMP; achieves

significant speed-up both in dictionary training and SR image reconstruction.

Chapter 5:

In this chapter, we propose an adaptive SR algorithm exploiting the benefits of joint

sparse representation for MS images super-resolution of Indian satellite as well as

publicly available remote sensing images. The method named as ‘JAMiSR’ utilizes

both patch- and patch-group-based sparse representation and able to produce a bet-

ter image compared to the state-of-the-art sparse- and deep learning-based methods.

Furthermore, we accelerate the proposed algorithm using NVIDIA GPGPU parallel

processing hardware so that it can be used in real-time applications.

Chapter 6:

This chapter brings the thesis to a close by summarizing the works done and out-

lining some potential future research in the same field.
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