
Chapter 2

Review of Literature

2.1 Introduction

Even though the imaging sensors are being continuously upgraded, there are some

physical constraints still, which motivates the computer vision research community

to address them with the help of efficient signal or image processing algorithms.

Super-resolution (SR) is one such image processing technique that deals with low-

resolution (LR) images. However, only a few SR works that focus on improving the

resolution of multispectral (MS) remote sensing images are available in the literature.

In this chapter, we provide a brief history and taxonomy of available SR methods,

highlighting their benefits and drawbacks in the context of MS image SR.

2.2 Taxonomy of image SR methods

In the literature, many authors have presented topy surveys on image SR methods

pertaining to different applications [22, 41, 73, 76, 103]. So, their classification is not

uniform across all the available literature. Here, we present a generalized taxonomy

of major SR methods, selecting only a few significant works for discussion from each

category.

Fig. 2.1 gives an overview of different SR approaches. It is classified into two

types: frequency domain and spatial domain methods.
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Figure 2.1: Taxonomy of some major SR methods in the literature

2.2.1 Frequency domain SR methods

Tsai and Huang [104] developed early methods based on the shifting property of the

discrete Fourier transform (DFT) to generate sub-pixel shifted versions of the

given noise-free LR image. The shifting property relates spatial domain translation

to frequency domain phase shifting and is denoted as follows:

Fs (u,v) = ej2π(uMx+vMy)F (u,v) , (2.1)

where M x and M y signify the subpixel shifts in the image’s x- and y-directions, re-

spectively. The inverse DFT of Fs (u,v) will give the corresponding sub-pixel shifted

LR image f (x + ∆x,y + ∆y) from the available image f (x,y) [76]. Different sub-

pixel motions provide complementing information across LR frames, allowing for SR

reconstruction [107]. The wavelet transform, which decomposes the input image

into structurally correlated sub-images to retrieve high-frequency information, is an-

other approach in this category reported in [16, 27, 32]. These methods exhibit

theoretical simplicity and are straightforward for implementation. They are compu-

tationally efficient too. However, they fail to give good quality results in real-world

applications due to poor translational models, degraded convolution filters, and lack

of prior knowledge.
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2.2.2 Spatial domain SR methods

These methods do not transform the given image into frequency domain, instead

estimate the the high-resolution (HR) image using techniques that operate in the

spatial domain itself. The advantages of spatial domain methods are that they

support unconstrained motion between frames and have scope for easy incorporation

of prior knowledge. These methods are divided into two types based on the number

of LR images: multiple image SR and single image SR.

2.2.2.1 Multiple image SR methods

The iterative back projection (IBP) algorithm was proposed by Irani et al. [54]

for multiple image SR. The HR image is determined by back projecting the differ-

ences between the simulated and observed LR images, as illustrated in Fig. 2.2. The

method starts with a rough estimate of the HR image, then iteratively repeats the

projection for each observed LR image, while minimizing the error term E (xH)-,

E (xH) =
1

2
‖xL − A (xH)‖2

2 , (2.2)

where xL and xH represents the observed LR and the estimated HR images, respec-

tively. This method is simple, but fails to deal with noise associated with LR images

and its convergence is not guaranteed. Moreover, a prior constraint is not available

in the IBP.

A direct method proposed by Chirang et al. [25] produces HR image based

on warping and registration of already scaled-up LR images. It is faster than IBP.

Projection on Convex Sets (POCS) is another multiple image SR method by

Stark et al. [95] that incorporates prior knowledge of a closed convex set for each

LR image and iteratively estimates the HR image. This method suffers from slow

convergence and high computational costs. For multiple image SR, probabilistic-

based methods such as Maximum Likelihood (ML) and Maximum a Posteriori

(MAP) estimate the HR images by minimizing ML (or MAP) cost functions, while
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Figure 2.2: Overview of IBP super-resolution method

restricting the solution within specified sets. For insufficient number of inputs they

provide good results by involving prior knowledge [21, 77]. In real-world applica-

tions, where various objects within the same image can have varied and complex

motions; multiple image-based SR methods depend largely on the accuracy of mo-

tion estimation between LR images, which is highly unreliable.

2.2.2.2 Single-image SR methods

There are simple interpolation-based techniques, like, linear, bicubic, etc. for

single image SR (SISR). However, they have limitations in terms of blurring and

fail to enrich the high-frequency information in the HR image as no prior knowledge

about the target image is available during reconstruction [45]. Reconstruction-

based methods do not employ a training set and instead rely on statistical image

priors to increase reconstruction quality. Primal Sketches-based methods use primal

sketch as a priori information pertaining to the primitive parts (e.g. edges, corners,

ridges, etc.) of the LR image in a patch-wise manner to produce an HR image

[100]. Gradient profile priors, like general Gaussian distribution (GGD) [98, 99],

gradient profile sharpness [114], etc. are also used to utilize the shape of gradient

profiles in LR and HR images as reconstruction constraints.
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To solve the SR problem, learning-based methods have recently been intro-

duced, which use a trained dictionary to estimate the target HR image by learning

co-occurrence between LR and HR patches from an external LR-HR database. By

collecting the most likely high-frequency information from the training images, the

high-frequency information present on the LR image is enhanced based on local

features. Fig. 2.3 depicts a standard structure for learning-based SR methods..

Figure 2.3: A framework for the SR imaging methods based on learning

Some algorithms use projection based learning of the a priori term as done

by Capel et al. [15]. Miura et al. [68] presented a principal component analysis

(PCA)-guided learning-based SR method. Feature pyramids are learned from

training images e.g. Gaussian pyramids containing low-frequency information, and

Laplacian pyramids containing band-pass information of face images are applied

as prior information during the SR reconstruction [97]. In SR, various types of

neural networks are also used to learn an end-to-end mapping between LR and

HR images from large datasets in order to estimate the parameters of the target

HR image. Deep learning techniques, like convolutional neural networks (CNN)-

based algorithms are popular in this category [61]. According to recently developed

sparse representation theory (SRT) an image patch can be represented as a sparse

linear combination of elements from an overcomplete dictionary [37]. An LR patch

can be effectively represented using a pair of jointly-learned LR-HR dictionaries to

form a sparse representation problem; the solution of it is being used for the

generation of corresponding HR patch [115]. With recent developments in efficient

convex optimization methods and high-end computing facilities, research on sparse

representation-based SR methods are largely carried out for various applications.
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2.2.3 Pansharpening methods

The spatial information in the HR grayscale PAN image, and the spectral infor-

mation in the LR MS bands may be combined to produce high spatial/spectral

MS images. These techniques are known as pansharpening because they equalize

the resolution of MS and PAN images. In [4], a comprehensive review of works

on the fusion of MS and PAN bands is carried out. The intensity-hue-saturation

(IHS) [106], principal component analysis (PCA) [90], and Brovery transform-based

methods [128] are three prominent pansharpening methods. The MS image is first

transformed into RGB and then resized to the size of the PAN image. The resized

RGB image is then transformed into the YCbCr format and the Y -channel (lumi-

nance) is replaced by the PAN image. Lastly, inverse transformation is done to get

the RGB MS image back from the YCbCr image. One notable drawback of the

pansharpening techniques is that the resulting images seem to have severe spectral

irregularities. The reason for this is that the pixels in the luminance channel do not

have the same statistical distributions as those of the grayscale PAN image [91].

In this thesis, we will use the SISR technique to reconstruct HR-MS images

with enhance spatial information. The pansharpening and SR techniques can be

distinguished because the former attempts to produce a MS image with the spatial

resolution of a PAN image, whereas the latter attempts to simultaneously enhance

the spatial and spectral resolution of a given LR MS image.

2.3 Sparse representation-based SR methods

Sparse representation, often known as sparse coding, is a powerful image modeling

technique for solving the inverse problem of image restoration [63, 64]. A basic

sparsity-based SISR model consists of the dictionary training and image reconstruc-

tion phases [2]. The given training data, i.e. a group of LR and HR patch pairs,

is used to jointly learn a pair of LR and HR dictionaries. In the reconstruction

step, the trained dictionaries are used to encode each overlapping patch of theLR
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inputimage, and a sparse coefficient vector is obtained by solving a convex optimiza-

tion problem. By multiplying these coefficient vectors with the HR dictionary, the

relevant HR patches are generated. The final HR image is produced by registering

and aggregating all the HR patches into a grid of target size. Many SR methods

that use the sparsity prior have been proposed as a result of recent breakthroughs

in sparse coding and dictionary learning techniques. In the subsections that follow,

some sparse representation-based methods are briefly addressed.

2.3.1 Patch sparse representation-based dictionary learning

and SR image reconstruction

Yang et al. [115] first proposed the sparse representation-based SR method called

the sparse coding super-resolution (ScSR) that proves the application of sparse rep-

resentations for the reconstruction of HR natural images. It is essentially based

on learning a coupled overcomplete dictionary trained over a large dataset of LR

and HR image patch pairs for the sparse representation of the test LR patches.

The sparse coding problem is solved using the ‘feature-sign search’ [56] -based `1-

norm minimization technique. While, in the reconstruction, the sparse coefficients

are multiplied by the trained HR dictionary to reconstruct the corresponding HR

patches. The use of high-pass filter-based gradient feature extraction improves the

reconstructed image details, while a back-projection step increases the consistency

among the HR patches by reducing the aliasing effect. Although ScSR has achieved

reasonable success in improving the images both visually and quantitatively, yet

they lack in minimizing the serrated edges and ringing artifacts. Moreover, the use

of global dictionaries to represent any input image may not be effective as they are

not adaptive and chances of misinterpretation is also high.

Authors in different works provided approaches to improve the results of ScSR

either by learning an effective dictionary on high-frequency feature vectors or adding

new regularization constraints with novel a priori information in the reconstruction

problem. Dong et al. [35] propose an image deblurring and super-resolution tech-
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nique using the sparse representation model. First, k-means clustering is done to

classify the training image patches into several classes and then learns different

compact overcomplete dictionaries from them. During reconstruction of a patch,

it adaptively selects the most relevant dictionary to characterize the local spar-

sity. Experiments are conducted on natural images to get reasonable improvements.

However, the algorithmic complexity of the method is high due to the presence of

three penalty terms, which is not preferred for fast SR. A similar approach for multi-

dictionary learning-based compressive sensing (CS) SR of synthetic aperture radar

(SAR) images is proposed by He et al. [52]. CS-based SR methods are also explored

along with self-similarity regularization for improved performances [30, 75].

Zhu and Bamler [133] propose a sparse representation-based MS image fusion

method named as ‘SparseFI’ applying the HR PAN image information. Here, cou-

pled dictionaries are directly generated from the PAN image and use to restore the

HR MS bands. It is to be noted that the available MS images are not used for

dictionary learning here, which causes spectral loss in the reconstructed images. To

overcome this, Li et al. [59] propose a remote sensing image SR through coupled

dictionaries learned using the PAN and LR MS images adaptively. Then constructs

the dictionary for an unknown HR MS image by using these dictionaries. In another

work, Guo et al. [49] propose an iterative method to first combine the PAN and the

LR MS image to get an HR MS image and then learn a HR dictionary to be used

in the next iteration. This method reduces SparseFI’s limitations by training dic-

tionary from intermediate MS image instead of PAN image. The proposed method

overcomes the spectral distortion of fusion methods by incorporating the MS image

into the dictionary training stage.

There are also sparse representation-based SR works that have exploited new

feature extraction schemes for improved results. Chavez-Roman and Ponomaryov

[20] have done wavelet domain interpolation with edge extraction for the estimation

of high-frequency sub-bands. Similarly, Yang et al. [118] propose remote sensing

image SR methods based on learning of primitive- and residual-sparse dictionaries

to recover primary and residual high-frequency information. Multiple features e.g.
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gradients, histogram of oriented gradients (HoG), Gabor features, etc., are extracted

to describe the image structures.

ScSR and SR methods based on ScSR, process individual patches ignoring the

consistency of pixels in overlapped patches, which is a strong constraint for im-

age SR. Alvarez-Ramos et al. [2] propose a satellite image SR method based on

sparse representation of overlapping patches, where PCA is applied to reduce the

dimension of feature patches and K-SVD-based dictionaries are trained. Gu et al.

[48] develop the convolutional sparse coding based image super-resolution method

named as ‘CSC-SR’, which works on the whole image, does not need to divide the

image into overlapping patches. This method can exploit the global correlation for

the robust reconstruction of local structures.

Moustafa et al. [70] propose a hyperspectral image SR method using the com-

pressive sampling matching pursuit (CoSaMP) algorithm. PCA-based significant

bands are selected for dictionary training and sparse representation, less significant

bands are upscaled through interpolation. They have shown real-time speedup us-

ing CUDA programming model and the cuBLAS library. In another work [71], they

have shown MS image SR via self example learning and sparse representation. Here,

they demonstrate an adaptive dictionary learning from the LR image and obtained

speedup of 10-20× for image sizes up to 512×512, and 20-40× up to 2048×2048

images by MEX-CUDA based implementation.

In several works [3, 82], wavelet preprocessing is utilized to create four sub-bands

from an input image, namely low frequency approximation, horizontal, vertical, and

diagonal detail bands, and focuses on the training of features obtained from these

four subbands. Rapid and accurate image super-resolution (RAISR ) is based on

image sharpening and enhancement by amplifying the underlying details using a set

of filters that may be learned [85].

The non-local similarity property of image patches is effectively utilized as prior

information for improved SR reconstruction by the sparse representation methods

[18]. Chang et al. [17] combine the complementary collaborative sparse representation-
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based regularization (CRR), and the non-local low-rank regularization (NLR) such

that both external and internal HR information are well preserved. The method

is named as the ‘collaborative representation and non-local self-similarity (CRNS)’

and results are demonstrated for medical image SR. Chen et al. [23] introduce an

optimization method for non-convex and non-separable regularization problems for

simultaneous sparse and low-rank matrix reconstruction. Experiments are shown

with synthetic as well as real hyperspectral images. Similarly, Rencker et al. [83]

propose dictionary learning and compressive sensing recovery for non-linear measure-

ments e.g. clipped or quantized measurements using the non-convex optimization

based approach. Shao et al. [92] propose a coupled sparse auto-encoder (CSAE) as

an alternative to the joint dictionary training methods, where the HR coefficients

predicted by their method exhibit larger correlation with the true values.

2.3.2 Group sparse representation-based SR image recon-

struction

Traditional patch-based SR imaging faces major difficulties as it must solve compu-

tationally expensive large-scale optimization problems for dictionary training and

sparse reconstruction. Also, overlapping patches are processed independently in

both stages. As a result, the spatial correlation among patches is overlooked, result-

ing in an imperfect approximation or an unstable sparse representation. However,

it is observed that similar patches are usually present at multiple spatial locations

within the image irrespective of any scale [45]. Although different SR works com-

bining the non-local self-similarity (NLSS) and patch sparsity [17, 75] properties

are available, only a few works are reported till date exploiting the group-sparse

representation (GSR) for remote sensing image SR.

To address the above issues, Zhang et al. [126] propose a GSR-based image

restoration method that can enforce both inherent local sparsity and non-local self-

similarity at the same time. In addition, instead of learning coupled overcomplete

dictionaries, low-complexity self-adaptive group dictionaries are learned for each
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group. Examples of GSR in image restoration, denoising, despeckling, and com-

pressive sensing recovery can be found in the literature [58, 62, 127]. It is observed

that although GSR provides a traceable solution in the same scale, but for SR, the

reconstructed images with higher upscaling are effected by oversmoothing.

Xu and Gao [113] propose a SR method by directly adopting the GSR tech-

nique to upscale an image by 2. Normally, non-local similar patches are selected

based on the Euclidean distance among the patches. Here, the authors considered

the Gaussian kernel distance instead of Euclidean distance to better represent the

geometrical structures of the image. Liu et al. [62] utilize the concept of GSR to

explore the underlying patterns of SAR images.

Recently, joint patch-group sparse representation (JPG-SR) techniques combin-

ing the patch sparse representation (PSR) and group sparse representation (GSR)

are greatly explored for improved SR performances in natural image restoration

problems, like, inpainting, deblocking, etc. [124]. Owing to the fact that PSR gen-

erates undesirable visual artifacts, while GSR model tends to show oversmoothing

effects, the JSR tries to integrate the local sparsity and non-local self-similarity of

images [123]. The JPG-SR model performs an alternating direction method of mul-

tipliers (ADMM)-based optimization of the joint regularizations involving PSR and

GSR constraints. Mikaeli et al. [66] propose a single-image SR for natural images

via patch- and group-based local smoothness modeling (SR-PGLSM). They adopt

the isotropic total-variation technique for modeling of patch-based local smoothness.

A complementary regularization term based on non-local means is considered to de-

velop (SR-PGLSM-NLM) algorithm and finally solves it using the split Bergman

iterative technique [46]. In another work, Gao et al. [44] develop the joint sparse

and low-rank learning (J-SLoL) for enhancing the spectral information of MS im-

ages using partially overlapped hyperspectral images. They also apply the ADMM

method for optimization of the proposed J-SLoL algorithm. They have evaluated

their algorithm based on sparse reconstruction, classification, and unmixing of the

generated images.
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2.4 Parallel computing for image super-resolution

Super-resolution involves processing big data, requiring significant computational

and memory resources for obtaining the target image. A 1280×720 (HD quality)

colour image contains 9,21,600 numbers of pixels in each band and occupies 27,

64,800×8 ≈ 22 MB of total memory space. Similarly, data volume is potentially

large for the satellite images as well, and some SR techniques e.g. multiple image

registration-based SR will usually increase the required computations. Moreover,

most of the dictionary learning-based SR methods require a large dataset of train-

ing images to train the LR and HR dictionaries, and it solves several regularization

problems, which are computationally intensive, to tackle the ill-posed inverse prob-

lem of SR image reconstruction.

One of the most recent innovations in computational machines is the develop-

ment of multicore processors, which consists of two or more independent cores in

a single package. Many processors nowadays incorporate multicore architectures to

meet the rising demand for greater performance. Most CPU manufacturers currently

prioritize improving on-chip multi-threading functionality by increasing the number

of cores over raising the processor actual clock speed. By exploiting these hardware

advances, we may benefit dramatically by modifying an existing single-threaded

code into a multi-threaded one to run on multiple cores. Since image processing

algorithms shows both data and instruction level parallelisms (i.e. DLP and ILP),

we may modify an existing sequential code into a nested-loop-based parallel code,

which can be implemented in a many core or multi-core processor [26]. The speed-

up of a particular implementation is determined as the ratio of sequential execution

time to parallel execution time of the same algorithm.

2.4.1 OpenMP-based parallel implementation

Open multi-processing (OpenMP) is an application program interface (API), which

can be utilized to perform parallel processing through shared memory-based multi-
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threading operations. OpenMP supports many functionalities required for parallel

programming. It is a set of pre-processor directives, runtime library routines, and

environment variables that the programmer can use to tell the compiler how to ap-

ply multi-threading on a block of code. Since it is platform-independent, properly

written OpenMP code for one platform can be readily recompiled and executed

on another. Moreover, OpenCV software supports large numbers of in-built func-

tionalities for image processing operations and more importantly it includes the

OpenMP-based parallel framework.

Figure 2.4: FORK-JOIN model for parallelization

The OpenMP specifications are used to instruct the parallel sections of the

code to be executed concurrently on different cores of the same processor using the

shared memory multi-threading concept. It works according to the FORK and JOIN

model, where a sequential program starts in a master thread and then it is divided

into some worker threads in the loop sections (FORK), which are finally combined

after completion of the loop (JOIN) to get the output. The master thread continues

until the whole execution of the code is completed.

Different threads have a common access to the global variables, while the local

variables can only be handled by the host thread. In OpenMP, transfer of data

is always transparent to the programmer. The runtime environment specifications

of OpenMP provides the required number of threads on which the loop should be

executed concurrently. Since the master node continues till the end so we should

assign some task in the main program for master node also, besides assigning to the

different threads.
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Examples of works applying multicore computing with OpenMP into image

processing is found in the work presented by Greg et al. [93], where they show

speedup of about 3 to 4 times for different image processing algorithms.

2.4.2 GPGPU-based parallel implementation

With the recent advances of many-core general-purpose graphics processing units

(GPGPUs) by NVIDIA Graphics and compute unified device architecture (CUDA)

programming interface, there is a high demand for performing machine learning-

based remote sensing image analysis [12, 70, 80]. Tan et al. [101] apply LASSO for

sparse approximation and perform CUDA-based parallel implementation to achieve

30-35 speed-up. A similar work is also presented by Attarde et al. [5] for natural

image SR. Moustafa et al. [71] demonstrate a GPGPU implementation of learning-

based multispectral image SR algorithm with 20 to 40× speed up for different image

sizes. It is observed that most of these works focus on the acceleration of the SR

reconstruction, while utilizing a sequentially implemented pre-trained dictionary.

Additionally, the available parallel works are mostly based on the PSR approach

due to which their reconstructed outputs are not as competitive as other state-of-

the-art methods.

2.5 Remote sensing datasets

Most SISR algorithms are based on upscaling of grayscale images. For RGB remote

sensing images, typically, most SR works use colour transformation from RGB to

YCbCr space to apply SISR on the Y-channel [24]. Ruben et al. demonstrates

single-frame SR using RGB remote sensing images [41]. Another category of MS

image fusion works uses the HR PAN and false color LR MS image data to generate

a HR MS false RGB image as discussed in [105], However, the raw MS images are

provided in the form of multiple band images (3-10) of varying wavelengths. There

are different remote sensing satellites, which provide land-cover MS images of differ-
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ent spatial resolution. For example, the University of Marylands Global Land Cover

Facility (GLCF)1 offers thousands of Landsat scenes and derived data products. The

United States Geological Survey (USGS)2 contains very well-maintained collection

of Landsat and Sentinel-2 data. In this thesis, we mostly utilize MS images collected

from National Remote Sensing Centre (NRSC)3, Hyderabad and publicly available

datasets from GLCF and the Bhuvan portal4 (maintained by ISRO). Initially, few

experiments are carried out using some freely available sample images collected by

ISRO’s Cartosat-2 series satellite5. The NRSC dataset consists of images captured

by two Linear Imaging Self-Scanning (LISS) sensors, LISS-III and LISS-IV of ISRO’s

ResourceSat-2 satellite. We have collected and used publicly available Quickbird MS

images from the GLCF portal for some experiments. Additionally, we have used few

benchmark remote sensing datasets, like PatternNet6, aerial image dataset (AID)7,

UC Merced (UCMD)8 land use dataset, and the CAVE MS image dataset9.

2.6 Summary and research issues

We know that the key to single image SR (SISR) is to choose the right prior infor-

mation and then how we utilize it to compensate for the missing spatial information

due to the imaging process. For remote sensing images, multiple-image SR methods

are generally not preferred because of their limitations for acquisition of multiple

images of the same scene using satellite. Learning-based SISR methods, mainly the

sparse representation approach, are widely used for better results. However, there

are enough scopes for improvement in these methods by duely addressing the is-

sues encountered either in dictionary learning or sparse representation, or database

preparation. From the above literature study, we may summarize the following

1http://glcf.umiacs.umd.edu
2https://earthexplorer.usgs.gov
3https://uops.nrsc.gov.in/
4http://bhuvan.nrsc.gov.in/data/download/index.php
5http://www.isro.gov.in/pslv-c38- cartosat-2-series-satellite/images-cartosat-2-series-satellite
6https://sites.google.com/view/zhouwx/dataset
7https://captain-whu.github.io/AID/
8http://weegee.vision.ucmerced.edu/datasets/landuse.html
9https://www.cs.columbia.edu/CAVE/databases/multispectral/
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research issues on remote sensing image SR:

2.6.1 In dictionary learning

i. Dictionary training plays the crucial role for sparse representation-based image

SR. Dictionary trained over the high-frequency features of training images can

improve the accuracy of reconstruction.

ii. Existing methods mostly learn the dictionary offline due to which it is observed

that the reconstruction results are good only for few specific images (similar to

the training images). But, we know that for SR using sparse representations,

results will be better if the learned bases or dictionary atoms are more relevant

to the test data [134]. Therefore, instead of learning a pair of overcomplete

dictionaries from external training datasets, we may train an adaptively learned

overcomplete dictionary from the test image itself.

iii. Size of the dictionary determines the speed of the SR algorithm and quality of

the reconstructed images. There should be a tradeoff among these attributes,

when learning an effective dictionary. Other aspects, like- dictionary initial-

ization, feature extraction, optimization approaches for sparse representation,

assumptions on the image degradation model, like amount of blurring and noise,

etc., are also important for obtaining a robust and effective dictionary.

2.6.2 In SR reconstruction

i. If HR image database is available for dictionary learning, good quality SR re-

construction is possible through extraction of high-frequency features from the

underlying image patches as it will represent the image textures rather than the

absolute intensities.

ii. Panchromatic images can be utilized as prior information in the SR reconstruc-

tion of MS images as both the PAN and HR version of the observed LR MS

image represents the same spatial information.
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iii. Extra information from identical structures known to occur in remote sensing

images can be incorporated into the dictionary learning, which is utilized to

reconstruct the target HR image.

iv. Within a unified framework, the group-based sparse representation can enforce

both intrinsic local sparsity and non-local self-similarity of images. However,

selection of groups which can capture the non-linear nonlocal structure infor-

mation properly is a matter of concern.

v. It is found that assuming the patch and group of patches for local and non-

local prior modeling, joint sparse representation formulation can improve the

SR reconstruction results. But, a proper design of the joint SR algorithm and

efficient solving method is required for functioning of such methods.

vi. In SR methods, regularization processes, involved for solving the sparse approx-

imation problems, make them slow. Also, the dictionary training is a very time

consuming process.

vii. Satellite image data are naturally of large sizes and real-time SR reconstruction

for remote sensing applications is quite challenging.

viii. Parallel processing hardware-based techniques for SISR give good accelerations

required for near real-time implementations in remote sensing applications.
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