
Chapter 3

Development of Pansharpening-based Fast MS Im-

age SR using Sparse Representations

3.1 Introduction

Traditionally, sparse representation finds an accurate reconstruction of an image

from a few transformed domain coefficients, which has many applications, like image

restoration, image enhancement, image segmentation, super-resolution, and so on

[1, 31, 115]. Dictionary learning-based single-image SR technique is reported to be

capable of removing limitations of traditional SR methods by employing a dictionary

learned from both LR and HR image patches [17]. It is able to estimate information

missed out in the traditional interpolation methods by examining the HR and LR

image patch pairs’ co-occurrences, while the dictionary is trained [30, 121]. Works

reported by Yang et al. [115] and Ramos et al. [2] demonstrate the superiority

of dictionary learning-based SR methods over traditional methods such as bicubic

interpolation or new edge directed interpolation (NEDI) [60]).

As discussed in Chapter 2, sparse representation-based algorithms are required

to solve several regularization problems, which are highly computationally intensive.

Large data size of satellite images further increases the computational complexity.

The remote sensing applications either require continuous monitoring of large num-

ber of such images or be able to refresh/reload the captured images frequently.

Therefore, acceleration of a sparse representation-based algorithm is cruicial for

practical systems.

In this chapter, we aim to develop a fast sparse representation-based SISR

method for remote sensing using multicore parallel processing approach. We have

proposed three SISR algorithms using the patch-based sparse representation and
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overcomplete dictionary learning techniques. These algorithms are designed based

on the types of datasets used and corresponding dictionaries that could be learned

from these datasets. First, a fast SR imaging technique is developed using multicore

processing from RGB images, where SR carried out on the luminance channel, Y

after transformation of the RGB to YCbCr format. Coupled LR-HR dictionaries

are trained from external HR image datasets using the joint sparse coding tech-

nique. Next, we have developed a new dictionary learning scheme by creating an

HR dataset from patches of multiple HR PAN images, and an LR dataset formed by

patches extracted from the corresponding LR MS images. Then, each band of the

test LR MS image is reconstructed individually, and subsequently, super-resolved

bands are merged to get the desired HR MS image. The overall algorithm is im-

plemented using multicore parallel processing for faster execution. Finally, we have

developed a MS image SR algorithm using the concept of pansharpening and sparse

representations. In pansharpening method, HR MS images are obtained via fusion

of PAN and MS images. False RGB image obtained from the MS image is converted

to the YCbCr format and then Y -channel is replaced by the HR PAN image to get

the HR MS image. We train a pair of adaptive overcomplete LR-HR dictionaries

from the HR PAN image and the test MS image; perform band-wise SR of the LR

MS image though sparse representation. This method overcomes the limitation of

spectral resolution of pansharpening methods and results in high spatial as well as

spectral resolution MS images.

3.2 Fast SISR using sparse representations and

multicore processing

3.2.1 Introduction

In this chapter, to reduce the computation time in practical remote sensing appli-

cations, like border monitoring, disaster management, etc., we propose a parallel
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sparse representation-based SR algorithm and implement the same using multicore

processing. SR algorithms are generally developed for single image i.e. either for

a grayscale (PAN) or the luminance component (Y -channel) of the YCbCr image

obtained from the RGB MS image. Now, we present a fast SR image reconstruction

method from RGB MS images via sparse representation.

3.2.2 Proposed method

3.2.2.1 Sparse representation-based SISR reconstruction

The general block diagram of the proposed SISR method is shown in Fig. 3.1. The

input image X ∈ R
√

N×√N is divided into several overlapping patches x of dimension
√

n×√n by traversing the image in a lexicographical manner. Let y ∈ Rn be a patch

vector extracted from the observed LR image Y and arranged into a column vector

of dimension n×1. In the basic sparse representation-based SISR approach reported

in [115], first sparse coefficients α ∈ RK are estimated for y using the LR dictionary

D` ∈ Rn×K , trained on the LR image patches obtained after applying downsampling

and blurring operators to the input X. These coefficients are then multiplied with an

HR dictionary Dh ∈ Rn̄×K , trained directly on HR patches extracted from X, while

it is constrained to have the same sparse representations for x and y to estimate the

unknown target HR patch x. Here, n̄ is equal to n multiplied by zoom factor.

Given the dictionary D`, we obtain α ∈ RK for each patch y by solving the

following minimization problem with a local image fidelity constraint [2]:

min
α
‖α‖1 such that ‖D`α− y‖2

2 ≤ ε, (3.1)

where y = Ep (Y) represents overlapping patches of Y extracted using the patch

extraction operator Ep. Eq. 3.1 can be reformulated into an unconstrained opti-
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mization problem using the Lagrangian form as follows:

α̂ = min
α
‖Dlα− y‖2

2 + λ ‖α‖1 , (3.2)

where λ is regularization parameter. Subsequently, HR patches x ∈ Rn̄ can be

obtained by multiplying α̂ obtained above with Dh, i.e.

x = Dhα̂. (3.3)

Figure 3.1: Overview of SISR based on sparse representation and dictionary learning

Suppose an HR image X0 is obtained by tiling the estimated HR patches x

in reference to their positions in the original image. Due to noise and other mea-

surement errors X0 may not exactly fit to the assumed image acquisition model

i.e. Y = SHX, where S and H are respectively the downsampling and blurring

operators of the imaging model. In order to overcome this, a global reconstruction

constraint on X0 may be imposed by solving the following least-squares minimization

problem:

X∗ = arg min
X
‖SHX−Y‖2

2 + c ‖X−X0‖2
2 . (3.4)

Eq. 3.4 is efficiently solved by applying the gradient descent method [115] by for-
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mulating a simpler iterative equation as follows:

Xi+1 = Xi + ν
[
HT ST (Y − SHXi) + c (X−X0)

]
, (3.5)

where c and ν are regularization parameter and steps size, respectively. The final

solution X∗ obtained after ith iteration gives the desired SR output image.

3.2.2.2 Global dictionary learning

Figure 3.2: Sparse coding-based joint dictionary learning.

Fig. 3.2 shows the schematic of sparse coding-based coupled LR-HR dictionary

training method. Suppose Xh =
{
xh

1 ,x
h
2 , ...,x

h
n

}
and X` =

{
x`

1,x
`
2, ...,x

`
n

}
are the

sets of related HR and LR image patches in the training dataset. The combined

sparse coding problem using both LR and HR patches is given by

min
{Dh,D`,α}

1
p

∥∥Xh −Dhα
∥∥2

2
+ 1

q

∥∥X` −D`α
∥∥2

2
+ λ

(
1
p

+ 1
q

)
‖α‖1 , (3.6)

where p and q are sizes of HR and LR image patch vectors, respectively. The

`1 -norm term ‖α‖1 enforces the sparsity for both the LR and HR dictionaries,
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allowing to share the same sparse codes between them. Assuming XC =




1√
p
Xh

1√
q
X`




and DC =




1√
p
Dh

1√
q
D`


 the HR-LR combined training patch set and HR-LR coupled

dictionary, respectively, Eq. 3.6 can be re-written as

{DC ,α} = min
{DC ,α}

‖XC −DCα‖2
2 + λ ‖α‖1 . (3.7)

Learning DC using Eq. 3.7 is similar to a single dictionary learning problem, which

alternatively minimizes DC and α using the feature-sign-search algorithm [56] as

done in [115].

3.2.3 Speed-up using multicore parallel processing

As shown in Fig. 3.1, the sparse representation-based SR algorithm has three major

tasks- patch extraction, sparse representation, and SR reconstruction, which are

implemented using a multicore-based parallel algorithm. Since, we train a global

dictionary from a large dataset, the learned dictionary is applicable to any given

test image from similar satellites. Therefore, the dictionary training is performed

offline, parallelization is done only to the SR image reconstruction part.
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Figure 3.3: The fork-join model of parallel computing

The image processing tasks that involve execution of the same basic operations

over a large number of pixels usually exhibits data level parallelism. We may divide

such a huge set of basic operations into many smaller subsets such that the oper-
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ations involved in a particular subset is not dependent on the result of any other

subset, implying that they can be processed simultaneously. Based on the fork-

join parallel model (shown in Fig. 3.3), a parallel sparse representation-based image

super-resolution (Parallel ScSR) algorithm is implemented as given in Algorithm 1.

Algorithm 1: : Parallel Single Image SR Algorithm

Input: LR observed image Y; dictionaries D` and Dh; c and maxItr1

1: use #pragma omp parallel for
2: for each 5× 5 patch yi in Y do
3: mi ← mean pixel value of yi;
4: yi ← yi −mi

5: end for
6: use #pragma omp parallel for
7: xx ← patch indexes in x-dimension of SR image
8: yy ← patch indexes in y-dimension of SR image
9: for (int xx = 0; xx < rows; xx++) do

10: for (int yy = 0; yy < cols; yy++) do
11: α̂ = min

α̂
‖D`α− y‖2

2 + λ ‖α‖1

12: end for
13: end for
14: for each HR patch do
15: xi ← Dhα̂; xi ← xi + mi

16: end for
17: use #pragma omp parallel for
18: for (int i = 0; i < (maxIter); i++) do
19: X∗ = arg min

X
‖SHX−Y‖2

2 + c ‖X−X0‖2
2

20: end for

Output: super-resolution image X∗

The sparse representation-based SR algorithm is modified to incorporate loop

level parallelism directives of OpenMP Multi-processing (OpenMP) into it which is

written as follows: #pragma omp <directive> [clauses]. Among different directives, the

‘parallel for’ directive provides loop level parallelism in a signal or image processing

algorithm in a easy manner. For example, let us consider a code that finds negative

of an image by subtracting each pixel value from maximum gray level intensity i.e.

255. Using OpenMP we can parallelize this code simply as shown below:

46



Chapter 3. Development of Pansharpening-based Fast MS Image SR
using Sparse Representations

Sequential loop Parellelized loop using OpenMP

for(int x = 0; x<input.rows; x++){
for(int y = 0; y<input.cols; y++){
output.at(x,y) = 255 - input.at(x,y);
}
}

# pragma omp parallel for
for(int x = 0; x<input.rows; x++){

for(int y = 0; y<input.cols; y++){
output.at(x,y) = 255 - input.at(x,y);

}
}

The number of threads or cores among which the task is to be divided can be set

during runtime by using omp−set−num−threads (integer). In a loop level parallelism,

if we have total 200 iterations, we may assign five threads/cores to compute 40

iterations in each. The five threads will run simultaneously and the master thread

resumes execution after all forked threads finish individual tasks.

3.2.4 Experiments and results

3.2.4.1 Simulation setup

A. Computing environment

We use C++ programming on PARAMTEZ, a high-performance computing (HPC)

server from CDAC, India having the following specifications: 12 TF HPC system

with 01 Master, 06 Nodes, 24 Cores, 64 GB RAM, and 50 TB Storage. Open source

computer vision (OpenCV) library package- OpenCV2.4.9 and g++ (GCC) 4.8.5

compiler are used for the implementation of the proposed parallel SR algorithm in

the server. For parallelization during compilation, OpenMP is integrated into the

OpenCV environment. OpenMP includes a set of environment variables and run-

time instructions that directs the compiler about how a program to be parallelized.

The advantages of using OpenMP are due to its platform or operating system inde-

pendence and easier in programming.

B. Database preparation

The database is divided into two parts: training and testing datasets. Training

dataset consists of about 120 different RGB satellite images with spatial resolutions

varying from 550×550 to 1200×1200 and collected from ISRO’s public domain repos-
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itory1. These images captured by the Cartosat-2 series satellite generally provide

scene specific SPOT (Satellite for Observation of Earth) imagery useful for various

cartographic applications. We obtain corresponding LR versions by applying the

blurring and downsampling operations on them. Finally, patches are extracted from

both the LR and HR images. For testing, few images which are not considered in

the training are taken and then LR images of sizes 128×128, 256×256 and 512×512

are obtained from them.

C. Dictionary training

In this work, a pair of dictionaries Dh and D` are learned by the joint dictionary

training model defined in Eq. 3.7. The dictionaries consist of 1024 atoms in each and

are learned using 1,00,000 LR-HR image patch pairs from the training dataset. The

regularization parameter λ is taken as 0.15. Here, we have trained the dictionaries

offline using the sequential programming, and on an average, it takes approximately

4 hours for convergence of the dictionary learning process in about 30 iterations.

Figure 3.4: An example of the HR dictionary obtained by the joint dictionary
training.

Fig. 3.4 presents an example of patch-based HR dictionary trained using 1,00,000

LR-HR patch pairs sampled from the luminance component (Y -channel) of the

YCbCr image obtained from the RGB images for training. The size of each atom

of the trained dictionary is taken as 25×1 and represented as a 5×5 patch in the

figure.

1Images from Cartosat-2 Series Satellite, http://www.isro.gov.in/
pslv-c38-cartosat-2-series-satellite/images-cartosat-2-series-satellite
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3.2.4.2 Performance evaluations

A. Visual study

Super-resolution outputs for three different inputs Test1, Test2 and Test3 having

resolutions of 128×128, 256×256 and 512×512 are shown in Fig. 3.5 for 2× zoom-

ing. A small portion of the zoomed image is also shown superimposed on the output

image in the left hand side to highlight the visual quality of reconstruction.

Figure 3.5: Results for a zooming factor of 2. First row left to right: Test1 and
results of bicubic and the proposed method, respectively. Second row left to right:
Test2 and results of bicubic and the proposed method. Third row left to right: Test3
and results of bicubic and the proposed method, respectively

B. Quantitative evaluation

Five quantitative metrics such as Peak signal-to-noise ratio (PSNR),mean structural

similarity index measurements (MSSIM), spatial correlation coefficient (sCC), qual-

ity index (Q-index), and non-reference image quality evaluator (NIQE) are shown
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for the reconstructed images in Table 3.1 with zooming 2 and 4. It can be seen that

the proposed method is able to give better results in terms of PSNR and MSSIM for

all the test images compared to bicubic interpolation. Also, the other parameters

such as Q-index, NIQE are significantly improved over the bicubic method. How-

ever, the Yang’s method [115] when implemented using MATLAB, yields similar

results with the proposed method, but at the cost of high computational time.

Table 3.1: Quantitative evaluation for the three test images with different zoom
factors.

Parameters
Test1 Test2 Test3

Zoom = 2 Zoom = 4 Zoom = 2 Zoom = 4 Zoom = 2 Zoom = 4
Bicubic Proposed Bicubic Proposed Bicubic Proposed Bicubic Proposed Bicubic Proposed Bicubic Proposed

PSNR (dB) 29.30 30.16 26.57 26.83 29.31 30.33 27.03 27.36 30.40 31.76 28.69 29.21
MSSIM 0.756 0.805 0.740 0.778 0.959 0.968 0.945 0.953 0.969 0.979 0.946 0.955
sCC 0.9296 0.9411 0.8820 0.8888 0.9492 0.9590 0.9206 0.9264 0.9828 0.9866 0.9453 0.9524
Q-index 0.6817 0.7440 0.3980 0.4608 0.5956 0.6448 0.3225 0.3656 0.8078 0.8447 0.5179 0.5904
NIQE 14.73 10.51 29.71 22.14 12.44 8.955 22.97 19.82 11.83 8.796 26.01 20.90

C. Time complexity and speed-up

The execution time is computed for SR reconstruction of the given test images in

both sequential and parallel approaches. A measurement of speed-up i.e. the ratio

of time taken in serial to the time taken in parallel executions, is obtained to find

out the affect of varying the number of cores for parallel implementation. Fig. 3.6
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Figure 3.6: Plot of computation time versus number of cores used in PARAMTEZ

shows that the Yang’s method requires 98.41 secs in MATLAB for reconstructing

a 256×256 image from a 128×128 image, whereas, in PARAMTEZ, using the se-

quential approach, we implement the same in 91 secs. On the contrary, with the

application of parallel processing the time is reduced up to 8.4 secs., while using

24 cores simultaneously. Thus, the overall speed-up achieved using the proposed

method is = 91/8.4 = 10.83.
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3.3 Parallel MS image SR based on sparse repre-

sentations

3.3.1 Introduction

The data format and properties of multispectral (MS) satellite images are different

from those of natural RGB images; extending a SISR method for MS images requires

proper analysis of the MS image data and their processing. First, each band in the

MS dataset have some geo-specific significance and they are not available in the

RGB format. Secondly, some RGB images have varying amounts of luminance and

chrominance distributions, which results in some chrominance channels that may

contain some useful information for SR [69]. So, SR of the luminance channel alone

may not give the best result. Lastly, if we generate an RGB image (false colour) by

selecting only three bands it leads to spectral loss. Therefore, as shown in Section

3.2, we can not perform YCbCr colour transformation on MS images.

Here, we have proposed a fast MS image super-resolution (MSISR) work based

on sparse representations and experiments are conducted using the QuickBird MS

satellite image datasets available in the public domain at Global Land Cover Facility

(GLCF)2. As shown in Fig. 3.7, the dataset consists of HR panchromatic (PAN)

and four LR MS bands. Spatial resolution of MS bands are ≈2.8 m and that of PAN

image is 0.72 m. The details of dictionary training and super-resolution image recon-

struction process of the proposed method are discussed below. All implementations

are carried out using OpenCV and C++ programming.

3.3.2 MS image sparse overcomplete dictionary learning

A schematic of the proposed dictionary learning procedure is detailed in Fig. 3.8. In

this work, we learned a coupled sparse overcomplete dictionary by using the coupled

2GLCF: Global Land Cover Facility, available at http://glcf.umd.edu/data/quickbird/,
accessed on November 20, 2018
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Figure 3.7: Example of a QuickBird MS image dataset: (a) PAN image of 0.7 m
resolution (b) MS image of 2.8 m resolution (c) MS bands- blue, green, red and near
infrared (NIR).

K-SVD dictionary training approach [1] on the MS training dataset.

Figure 3.8: Proposed dictionary training scheme for MSISR method.

An HR dataset Xh consisting of 5×5 patches extracted from all the PAN images

in the database is created. For LR dataset X`, first, we generate a false RGB image

from each MS image in the database and then trnasform them into YCbCr. Next, the

luminance band image Y is applied to four 1-D high-pass filters as done in [115] for

feature extraction. Finally, similar to HR dataset, patches of size 5×5 are extracted

from the four feature images and concatenated to obtain a feature patch vector of

length 100×1 against the 25×1 patch vector of the PAN image. In this way, by

concatenating all the feature patch vectors into a matrix, we obtain the LR feature
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patch set X`. A combined dataset XC is created by stacking the above generated HR

and LR patch sets Xh and X`. We apply the K-SVD algorithm [1] to train a coupled

dictionary DC using the above dataset enforcing the single sparse coefficients matrix

α for both the HR-PAN and LR-MS patch sets. Before the training, the LR and

HR dictionaries D` and Dh are initialized using the sample patches directly. We

avoid the random or DCT transform-based initializations here for simplicity. As

illustrated in Algorithm 2, in K-SVD, the dictionary learning is done iteratively

until convergence, where it solves a sparse regularization problem by applying the

orthogonal matching pursuit (OMP) followed by update of the dictionary atoms one

by one. To train DC = [D`;Dh] from 50,000 patches, on an average, five K-SVD

iterations are required to achieve convergence. In our simulations, we learn coupled

dictionaries of size 256, 512 and 1024, respectively. A view of the obtained dictionary

by the proposed learning technique is shown in Fig. 3.9.

The coupled dictionary learning problem is given as follows:

{DC ,α} = min
{DC ,α}

‖XC −DCα‖2
2 + λ ‖α‖1 , (3.8)

where XC =




1√
p
Xh

1√
q
X`


 is the combined dataset of MS and PAN image patches,

DC =




1√
p
Dh

1√
q
D`


 is the trained coupled dictionary, ‘λ’ is the regularization param-

eter and α is the sparse vector common to both Dh and D`. Here, the size of HR

patch- and LR feature-patch vectors are denoted by ‘p’ and ‘q’ respectively. If we

select 1024 atoms, the size of LR and HR dictionaries D` and Dh will be 100×1024

and 25×1024, respectively. For simulation, the value of regularization parameter λ

is set to 0.1 and the error goal for the OMP is set to 0.001.
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Algorithm 2: : K-SVD algorithm for Dictionary Learning

Input: Data XC = {xi}N ∈(p+q)×N and Dictionary DC ∈ R(p+q)×K1

1: Initialize D
(0)
C using patches and `2-normalized the columns;

Set J = 1.

2: while not converge do

3: The sparse coding step

4: for i = 1 to N do

5: Solve min
αi

‖xi −DCαi‖22 + λ ‖αi‖1 using OMP;

6: end for

7: The dictionary update step

8: for k = 1 to K do

9: I ← {
j|αkj 6= 0

}
;

10: ER
k ← XC −∑

j 6=k djαj
I ;

11: Apply SVD decomposition ER
k = UΛVT ;

12: dk ← U:,1;

13: αk
R ← V:,1Λ (1, 1);

14: end for

15: Set J = J + 1

16: end while

(a) (b)
Figure 3.9: Patches of trained overcomplete dictionaries by the proposed technique:
(a) HR dictionary (b) LR dictionary

3.3.3 Super-resolution image reconstruction

Here, we propose MSISR based on patch-wise sparse representation of each band.

As depicted in Fig. 3.8, we split the bands of a given QuickBird LR multispectral

image into four bands- red, green, blue and near infrared (NIR). HR version of each

band image is separately reconstructed using sparse representation and then applied

to a global multispectral image reconstruction constraint-based regularization to

obtain the final super-resolved MS image. An overview of the proposed MS image
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reconstruction using sparse representations over the trained coupled overcomplete

dictionary is shown in Fig. 3.10.

Figure 3.10: Overview of the proposed MS image super-resolution reconstruction
algorithm

As done in [72], for sparse representation problem, we consider dividing an LR

band Y ∈ R
√

N×√N into overlapping patches of dimension
√

n×√n. Next, we use

the LR D` ∈ Rn×K and HR Dh ∈ Rn̄×K dictionaries, which are already trained

using available training images. Here, n̄ is equal to n multiplied by zoom factor.

The reconstruction problem is implemented in two steps. In the first step, sparse

representation co-efficient for each LR feature patch is obtained by sparse coding as

follows:

min
α

‖α‖1 such that ‖D`α− y‖2
2 6 ε1 and

‖EPDhα−w‖2
2 6 ε2,

(3.9)

where EP is a patch extraction operator that finds regions of overlap between the

previously reconstructed HR patches and the patch under consideration, while ε rep-

resents error tolerance. Eq. 3.9 can be reformulated into an unconstrained problem
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using the Lagrangian form as follows:

α̂ = min
α

∥∥∥D̃α− ỹ
∥∥∥

2

2
+ λ ‖α‖1 (3.10)

where D̃ =


D`

EPDh


 and ỹ =


y

w


 and ‘λ’ is regularization parameter of the

optimization problem. Next, the desired HR patches x ∈ Rn̄ can be obtained by

multiplying α̂ obtained above with Dh, i.e.

x = Dhα̂. (3.11)

All the HR patches ‘xi’ obtained from Eq. 3.11 are positioned into an HR grid

which results in an upscaled version ‘X0’ for each input band ‘Y’. However, the

image generated in this manner may not have the same point spread function (PSF)

as the original HR image. Besides, the generated image also has limitations in terms

of inconsistency in patch positioning.

In the second step, we incorporate the image acquisition model equation i.e.

Y = SHX as an additional constraint into the solution space of X0. This helps

in producing an image which is closer to X following the imaging model of actual

HR image. The final SR image is obtained by solving the following minimization

problem.

X∗ = arg min
X

‖SHX−Y‖2
2 + λ ‖X−X0‖2

2 (3.12)

Eq. 3.12 is efficiently solved by applying the gradient descent method and the final

solution X∗ is estimated iteratively.
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3.3.4 Multicore parallel implementation

Single instruction multiple data (SIMD) operations are divided among different pro-

cessors to process rapidly. The proposed MSISR algorithm has three major com-

putationally heavy sections- patch feature extraction, sparse optimization for LR

feature patches and back-projection using the global imaging constraint during SR

image reconstruction. We have designed a parallel version of the proposed algorithm

to speed-up its execution on a multicore computing system.

3.3.5 Experiments and results

3.3.5.1 Visual study

The proposed MS image SR based on sparse representation is tested on two low-

resolution MS images: a 256×256 land cover image of the areas of Indonesia and

Ujong, and a 128×128 image of the areas of Sundarban, India. Output images for

all the methods are displayed in Fig. 3.11 below. Few regions of the results are also

marked with arrows, where noticeable visual enhancements are observed.

(a) Test1 (b) Test2

Figure 3.11: SR results of ‘Test1’ and ‘Test2’ images corresponding to upscale ratio
2. First row left to right: ground-truth and LR MS image downsampled by 2. Second
row left to right: results of bicubic and the proposed methods.
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3.3.5.2 Objective Evaluations

Besides peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM)

index, we evaluate three other objective parameters for quantitative evaluation of

the output images. They are, namely, universal image quality index (Q-index), spec-

tral angle mapper (SAM), and erreur relative globale adimensionnelle de synthese

(ERGAS).

Table 3.2: Comparison of quantitative parameters for Test1 and Test2 MS Images

Parameters
Test1

Input: 256×256, Output: 512×512
Test2

Input: 128×128, Output: 256×256
Bicubic SparseFI [133] MSISR Bicubic SparseFI [133] MSISR

PSNR 29.40 30.39 30.42 28.44 29.32 29.38
MSSIM 0.961 0.993 0.994 0.810 0.848 0.859
Q-index 0.823 0.845 0.885 0.960 0.988 0.992
SAM 1.330 1.250 1.254 0.779 0.767 0.767
ERGAS 1.543 1.400 1.390 1.230 1.124 1.110

Results for Test1 and Test2 MS images are shown in Table 3.2. We observe that

for MS images, the proposed method outperforms bicubic interpolation and gives

comparable results with SparsFI.

3.3.5.3 Time complexity and speed-up

In the proposed method, the major time consuming operations in the algorithm are

as mentioned in Table 3.3. Here, most of the time is consumed in feature extraction,

sparse coding using `1-minimization, and generation of high-resolution patches.

Table 3.3: Sequential execution time (in secs.)

Function Total time
Feature extraction 46
`1-minimization 97

HR patch generation + others 5

Time required to execute the algorithm is computed both for sequential as well as

multicore parallel implementations. It is observed that the sequential program takes
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Figure 3.12: Plot of computation time vs. number of cores.

around 148 secs. of time for an 128×128 image to upscale by 2. However, as shown

in Fig. 3.12, this time is reduced to approximately 12 secs using OpenMP. Thus,

overall speed-up that is achieved using the proposed method is s = 148/12 = 12.33.

3.3.5.4 Effects of dictionary size

We have tested the proposed method using three dictionary sizes - 256, 512 and 1024.

Using 50,000 training patches, and 40 iterations of the K-SVD dictionary training

requires 2 hr 16 mins., 3 hr 05 mins., and 5 hr 50 mins., respectively. Fig. 3.13

Figure 3.13: Samples of trained dictionaries of sizes 256, 512 and 1024 and corre-
sponding reconstructed images.

shows the trained dictionaries of various size and corresponding SR results for an

59



3.3. Parallel MS image SR based on sparse representations

Figure 3.14: Effect of dictionary size on reconstruction time and quality (in terms
of PSNR).

example test image. It is found that with increasing dictionary size, the computation

time required for SR image reconstruction also increases linearly. However, there

is a light increase in the quality of reconstructed images for higher dictionary sizes

beyond 512. Fig. 3.14 demonstrates the impact of dictionary size on reconstruction

time and output PSNR for upscaling of a 256×256 image by 2.

3.3.5.5 Selection of sparse coding technique

In this work, to obtain faster results based on sparse representation method, we have

considered four state-of-the-art `1-minimization tools for the sparse representation

of sample image patches using the same overcomplete dictionary. They are, namely,

the iterative shrinkage and thresholding algorithm (ISTA) [29], the fast ISTA i.e.

FISTA [8], the orthogonal matching pursuit (OMP) [13], and the feature-sign search

algorithm [56]. We compute reconstruction time taken by each method for a fixed

dictionary of size 256 and λ=0.15, and shown in Table 3.4 for an 128×128 size image

upscaled by 2.

Table 3.4: Time complexity of different sparse coding techniques

Tools ISTA FISTA OMP Feature-sign
Time (in secs.) 659.15 620.05 81.02 49.71
PSNR (in dB) 29.92 30.00 29.92 30.07
MSSIM 0.797 0.800 0.797 0.802
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It has been observed that for patch-wise sparse regularization problems, the `1-

feature-sign-search-based method produces the quickest results, while yielding the

highest PSNR value at the same time.
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3.4 Pansharpening-based spatial/spectral SR of

MS images

Among the remote sensing satellites, several satellites, such as Landsat, QuickBird,

SPOT, and others have both the LR MS sensors as well as band images as well

as a corresponding HR PAN sensor on board. For example, as given in Table 3.5,

QuickBird MS image dataset consist of a PAN image (band) acquired by the HR

PAN sensor (with 0.65 m resolution) and four LR MS bands acquired by the MS

sensor (with 2.62 m resolution). Similarly, the MS image dataset of the Landsat-

7 satellite is comprised of PAN and MS images with resolutions of 15 m and 30

m, respectively. The LR spectral bands are combined to provide an MS satellite

image, whereas the PAN image is a single band grayscale image. Fig. 3.15 shows a

comparison of MS and PAN images of the same location, demonstrating the visual

differences between the two.

Table 3.5: Details of QuickBird multi-spectral image dataset
Satellite Band Information/ Wavelengths Swath Resolution

QuickBird

PAN: 0.45-0.90 µm

Blue: 0.45-0.52 µm
Green: 0.52-0.60 µm
Red: 0.63-0.69 µm
NIR: 0.76-0.90 µm

16.8 Km
PAN: 0.65 m
MS: 2.62 m

(a) (b) (c)
Figure 3.15: Example of QuickBird dataset of the a specific area: HR PAN image
(left), LR MS image (centre), and Pan-sharpened image (right).

HR MS images can be produced by fusion of the HR PAN and the LR MS

images. These methods are known as pansharpening as the resolution of MS images

are made equal to that of the PAN images. A large number of works on the fusion
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of MS and PAN images are explained in [4]. Some of the existing pansharpening

methods, which are very popular are based on - intensity-hue-saturation (IHS)[106],

principal component analysis (PCA) [90] and Brovery transform [129] methods. A

brief overview of these methods are given in Table 3.6.

Table 3.6: Comparison of different pan-sharpening and SISR works
Methods Salient Features Remarks

IHS [106]
A new look at IHS-like image
fusion methods

– Its a PAN injection method
– RGB to IHS transform

PCA [90]
An efficient pan-sharpening method via a
combined adaptive PCA approach and
contourlets

– Adaptive PCA-contourlet approach
– Reduces spectral distortion

Brovery [129]
Problems in the fusion of commercial high-
resolution satellite as well as Landsat-7 images
and initial solutions

– Multiplies each MS band with PAN
– Divides by sum of all MS bands

SparseFI [133]
A sparse image fusion algorithm with
application to pansharpening

– Sparse Fusion based on compressive sensing
– Less spectral distortions and better spatial
resolution

ScSR [115] Image super-resolution via sparse representation
– Global dictionary training
– High accuracy natural image SISR

These are substitution-based methods, where the MS image is first transformed

into a color image and then an resized or interpolated MS image is obtained to get a

spatial resolution in the order of the PAN image. Next, the pixels of the luminance

channel of the color transformed MS image is replaced with those of the PAN image

and the final HR image is obtained through an inverse color transformation. One

major limitation in this approach is due to the difference in statistical distribution of

the pixels of the luminance channel and the PAN image; the output images produced

by such methods suffer from significant spectral distortions [91].

Table 3.7: SISR over the Pansharpening methods
SISR Pansharpening

Uses the LR input only Uses the LR MS and HR PAN images
Reconstructs high spatial/spectral
output

Output has spectral distortions

Applicable to any MS dataset
Not applicable to MS images without
PAN band

Example: Resourcesat-2, LISS-III,
and LISS-IV, QuickBird, etc.

Example: Landsat, ETM, ETM+,
QuickBird, SPOT, etc.

The SISR method, on the other hand, generates an HR version of a single band,

and for the MS images, each reconstructed band is concatenated to produce the

final image. The prime objective in this work is to produce an HR MS image

from the given LR MS image using the SR methods. Although the approaches of

pansharpening and SISR are similar, they differ in that pansharpening only improves

the spatial information of MS images, whereas SR attempts to estimate the spatial
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and spectral information of the target HR image from the LR image itself. Table

3.7 gives a comparison of the pansharpening- and SR-based reconstruction methods

of MS images. Most of the sparse representation-based SR works in the literature

focus-on learning a pair of dictionaries (LR and HR) from a given dataset of HR RGB

images and reconstructing the luminance channel of the LR input using a patch-

wise sparse representation technique. However, in the case of SR of MS images,

a standard HR MS image dataset is usually not available to learn the dictionary

pairs, and reconstruction from a transformed RGB image in pansharpening results

in spectral distortions.

To address the dictionary learning issue, we first focus on using input HR PAN

images to train the LR/HR dictionary pair because they contain high spatial de-

tails, which are desired in the target HR image. Zhu et al. [133] present a similar

pansharpening work in which they utilize PAN image patches as dictionary atoms.

We concentrate on training of coupled sparse overcomplete dictionaries based on the

extraction of features, such as edges, from PAN image patches, so that these features

can be used for improved representation of LR patches during reconstruction. Sec-

ond, rather than reconstructing an RGB MS image, we reconstruct each MS band

separately and combine them to obtain the resulting HR MS image, allowing each

band to retain its original spectral properties.

3.4.1 Proposed method

The proposed SR algorithm considers the input PAN image XP for learning a pair

of overcomplete dictionaries D` and Dh. Then, patch-based sparse representations

of the input LR MS image Y is carried out to generate the desired output HR MS

image X. The work flow of the proposed SR algorithm is depicted in Fig. 3.16. It

comprises of two main steps: dictionary training and SR reconstruction.
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Figure 3.16: Proposed MS image SR algorithm.

3.4.1.1 Dictionary training

Before extraction of LR patches from the given PAN image XP , it is blurred and

downsampled according to the image degradation model so that the actual PSF

of the input MS image fits into it approximately. The blurred and downsampled

PAN image is then passed through four 1D-filters of orders 1 and 2, to extract both

horizontal and vertical gradient features from it.

f1 = [−1, 0, 1], f2 = [1, 0,−2, 0, 1], f3 = fT
1 , f4 = fT

3 , (3.13)

The four feature vectors obtained from each patch after filtering are concatenated

into a single vector that represents an LR feature patch. Again, HR patches are

also extracted directly from the given PAN image. Two metrices Xh
P and X`

P are

created which contain all the HR and LR feature vectors stacked into the columns

of the metrices. A sparse representation problem is then formulated to train the

LR-HR dictionary pair as a coupled dictionary DC from the combined inputs of Xh
P

and X`
P .
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{DC ,α} = min
{DC ,α}

‖XC −DCα‖2
2 + λ ‖α‖1 , (3.14)

where DC =




1√
p
Dh

1√
q
D`


 and XC =




1√
p
Xh

P

1√
q
X`

P


; here p and q represent the sizes

of the HR and LR feature patches in vector form. The least-square minimization

based problem in Eq. 3.14 is solved by utilizing the optimized K-SVD training

algorithm [87] to obtain the coupled trained overcomplete dictionary DC .

3.4.1.2 Super-resolution reconstruction

The LR MS image is processed band-wise for SR reconstruction. A selected band

image is first applied to the feature extraction stage to get the feature patch vectors

as done in dictionary training. Next, for each feature patch vector y in LR MS

image, a sparse representation problem is formulated using the trained dictionaries

D` and Dh as D̃ and it is given as:

α̂ = min
α

∥∥∥D̃α− ỹ
∥∥∥

2

2
+ λ ‖α‖1 , (3.15)

where D̃ =


D`

EpDh


 and ỹ =


y

w


; Ep extracts the overlapping region between

the current patch under reconstruction and the previously reconstructed HR patch;

w represents the pixels of overlapped region, and ‘λ’ is a regularization parameter

of the optimization problem. We estimate the sparse coefficient vector α̂ by solving

the Eq. 3.15 using the feature-sign search based convex optimization algorithm [56].

Since, the patches of both LR and HR images share a common sparse represen-

tation with their individual dictionaries, HR image patches can be reconstructed as

follows:

x = Dhα̂ (3.16)

Tiling all the reconstructed patches in its corresponding band yields an intermediate

HR image X0. Finally, back-projection is applied to satisfy the global imaging model
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constraint i.e Y = SHX on X0 to obtain the final HR image X∗ . Mathematically,

X′∗ = arg min
X
‖SHX−Y‖2

2 + c ‖X−X0‖2
2 (3.17)

Eq. 3.17 is efficiently solved using the gradient descent method.

3.4.2 Experiments and Results

Experiments are carried out using the proposed method on two test MS images and

results are shown with four existing MS image SR methods based on pansharpen-

ing, namely, the IHS [106], the PCA [90], the Brovery [129], and the SparseFI [133].

Datasets containing PAN and MS images of size 2048×2048 and 512×512, respec-

tively are acquired from the QuickBird sensor over the regions- the Sundarbans,

India captured on 02 November, 2002 and collected from GLCF3.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3.17: Sample images from QuickBird and reconstructed outputs using dif-
ferent methods. First row (from left): Ground-truth MS, Downsampled MS, Down-
sampled PAN, and IHS. Second row (from left): PCA, Brovery, SparseFI and the
Proposed.

In this experiment, the input PAN and MS images are downsampled by a factor 4.

Thus, for both the datasets, the dimensions of the test LR MS image and trainable

3Global Land Cover Facility, (Accessed on 20 March, 2019). ftp://ftp.glcf.umd.edu/glcf/Quick
Bird/
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Table 3.8: Performance evaluation for QuickBird first dataset.

Parameter IHS [11] PCA [9] Brovery [13] SparseFI [14] Proposed
RMSE 36.10 33.37 33.97 24.23 23.62

CC 0.589 0.738 0.715 0.769 0.813
SD 38.88 29.25 17.66 15.55 13.18

SAM 9.04 8.29 10.63 7.20 7.02
UIQI 0.742 0.842 0.878 0.805 0.860

ERGAS 22.15 12.82 18.24 8.24 8.11

PAN image are resized to 128×128 and 512×512, respectively. During the training

phase, a coupled overcomplete dictionary consisting of 1024 atoms is learned using

10000 sample patches taken from the PAN image. Here, we consider extracting

patches of size 7×7 as reported by Zhu et al. [133] and shown better results. In this

work, each LR MS band image is upscaled individually.

For quality assessment of the resulted images of different methods, the quan-

titative metrics computed are as follows: root mean-square error (RMSE), spatial

correlation coefficient (sCC), spectral distortion (SD), universal image quality index

(UIQI), spectral angle mapper (SAM), and erreur relative globale adimensionnelle

de synthese (ERGAS). The output images by different methods for the two test

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3.18: QuickBird images and results using different methods. First row (from
left): Ground-truth MS, Downsampled MS, Downsampled PAN, and IHS. Second row
(from left): PCA, Brovery, SparseFI and the Proposed.

datasets are visually presented in Figs. 3.17–3.18. The visual outputs for two dif-

ferent datasets are quantitatively validated using the above mentioned parameters

in Tables 3.8-3.9. Results show that the proposed method provides better spatial
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information, while causing less spectral distortion than others.

Table 3.9: Performance evaluation for QuickBird second dataset.

Parameter IHS [11] PCA [9] Brovery [13] SparseFI [14] Proposed
RMSE 24.51 18.90 20.86 14.10 13.25

CC 0.714 0.807 0.817 0.828 0.839
SD 31.70 27.93 14.52 12.31 10.92

SAM 8.76 7.97 9.39 7.45 0.703
UIQI 0.773 0.813 0.818 0.845 0.894

ERGAS 25.14 13.57 20.14 9.06 8.76

3.5 Conclusion

In this chapter, we have discussed three different algorithms of fast MS image SR

using sparse representations. The first algorithm presents an accelerated multicore

parallel processing-based SISR algorithm for RGB satellite images. Experiments are

carried out using ISRO’s Cartosat-2 series satellite images. Results show reasonable

PSNR and MSSIM improvements besides better visual quality.

The second algorithm presents a sparse overcomplete dictionary-based parallel

MS image super-resolution method. Here, we have utilized a database consisting of

MS and PAN images from QuickBird sensor as LR and HR training datasets and

performed band-wise SR of the given LR MS image. Remote sensing image specific

objective evaluation parameters, like SAM, ERGAS and Q-index, etc., are measured

from reconstructed images to evaluate and compare the visual quality. However, it is

observed that the execution time for the 4-band QuickBird image reconstruction is

very high compared to other color/gray image SR. Furthermore, dictionary training

is a time consuming affair. We demonstrate that parallel processing-based imple-

mentation technique greatly reduces the reconstruction time and able to achieve

speed-up of around 10 to 12 times.

In the third algorithm, a pansharpening-based MS image SR algorithm is pre-

sented. Here, we have trained a pair of LR/HR dictionaries from a single PAN

image, then the LR MS image is processed using sparse representation with these

dictionaries to get the target HR MS image. Results are compared with other sparse
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representation-based SISR and pansharpening methods. It is found that the pro-

posed method is able to generate MS images having better spatial as well as spectral

resolutions than the other comparing methods.

As a future work, we can consider more effective feature extraction strategies

useful for MS remote sensing imagery. This can help to improve the sparse rep-

resentation as well as the quality of trained dictionaries. Additionally, improved

regularization problems incorporating new a priori information can be considered

to reconstruct the spatial and spectral information. Moreover, in this work, we have

shown speed-up of the SR image reconstruction only to obtain near real-time out-

puts. However, in practical case, we may need to train a dictionary for a given set

of unknown images to perform SR of new images. Therefore, it is also important to

develop a parallel version of the sparse representation-based coupled over complete

dictionary, which may be used in real-time applications.
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