
Chapter 4

Development of Morphological Component Anal-

ysis Features-based Sparse Representation Tech-

nique for MS Image SR

4.1 Introduction

Many remote sensing satellites, like, IKONOS, QuickBird, Landsat, etc., acquires

several low-resolution (LR) images of the same area on different wavelengths, form-

ing a LR multispectral (LR-MS) image, along with a high-resolution panchromatic

(HR-PAN) image [108]. Indian remote sensing satellites, ResourceSat-2 provides

(a) (b) (c)
Figure 4.1: Sample LR-MS images: (a) ResourceSat-2 LISS-III (b) ResourceSat-2
LISS-IV (c) QuickBird

only LR-MS images using LISS-III and LISS-IV sensors, which do not have an HR

PAN band, like in the QuickBird. Fig. 4.1 shows sample LR-MS images captured

by LISS-III, LISS-IV and QuickBird sensors. Underlying LR-MS band images are

very useful in many remote sensing image analysis procedures, but due to the low

spatial resolution, they have shortcomings in visualizing on latest high-definition

(HD) displays.

In order to reconstruct a MS image with high spatial and spectral resolution,

either both LR-MS and PAN images are fused (i.e in pansharpening) or sparse re-
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Figure 4.2: Example of MS image super-resolution

construction is done using the bands of the single LR-MS input image [96] only. Fig.

4.2 shows an example of SR of a LISS-III MS image taken by ISRO’s ResourceSat-

2 satellite, where each LR-MS band corresponds to a spatial resolution of about

23.5 m. The SR output is reconstructed for an upscale factor of 4, which provides

enhanced spatial resolution of about 5.8 m. In the pioneering sparse representation-

based SR work by Yang et al. [115] for natural images, they apply SR to the

luminance component (Y ) after the given RGB image is converted to the Y CbCr

format, while the two color channels are bicubic interpolated. Their method has pro-

visions for modifying the regularization problem by designing either new effective

a priori (regularization constraints) terms or developing better schemes for feature

extraction to enhance the accuracy of sparse representation.

In this chapter, we have investigated a new feature extraction strategy for en-

hancement of the performance of SISR. We explore the morphological component

analysis (MCA) for identifying texture and cartoon images and developed a multi-

core parallel algorithm for sparse representation-based MS image SR. To perform

dictionary learning from MS images, we have performed the principle component

analysis (PCA) for the selection of significant bands. The algorithm is implemented

using the multicore parallel processing strategy to reduce the computational time.

The details are explained in the following sections.
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4.2 MCA-based image decomposition

Real images have morphological diversities in terms of geometrical and texture fea-

tures. MCA decomposes the images into piecewise-smooth (cartoon) and texture

components for different applications, like image restoration, image inpainting, etc.

The high-frequency texture features are highly useful for an optimal sparse repre-

sentation compared to its low-frequency counterpart i.e. the smooth-structure layer

[116].

An
√

N × √
N image X is assumed to have a texture component Xt along

with a structure component Xs. Fig. 4.3 shows examples of smooth and texture

components present in a MS image. The overcomplete dictionaries: {Dt,Ds} ∈
RN×L establish sparse representations corresponding to Xt and Xs, separately [39]

i.e.,

Xt = Dtαt, (4.1)

Xs = Dsαs. (4.2)

We can write,

X = Xt + Xs. (4.3)

Therefore,

X = Dtαt + Dsαs, (4.4)

where αt and αs are sparse coefficient vectors for texture and structure components,

respectively. To initialize dictionaries for the training different transforms, like the

wavelet, the overcomplete DCT are used for the texture part, while the wavelet, the

curvelets, the contourlets, etc. are used for the overall structure part.

MCA seeks an optimal sparse representation of X over a coupled dictionary

containing both Dt and Ds as follows:

{
αopt

t ,αopt
s

}
= arg min

{αt,αs}
{‖αt‖1 + ‖αs‖1}

subject to ‖X−Dtαt −Dsαs‖2
2 6 ε

. (4.5)
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(a) (b) (c)
Figure 4.3: MCA decomposition results: (a) the example MS band image (b) the
structure part and (c) the texture part

A total variation (TV) regularization prior may also be added in Eq. 4.5 for

better recovery of piecewise smooth objects and enhanced edges. The equivalent

unconstraint version of Eq. 4.5 is written as follows:

{
αopt

t ,αopt
s

}
= arg min

{αt,αs}
{‖αt‖1 + ‖αs‖1}+

λ1 ‖X−Dtαt −Dsαs‖2
2 + γTV {Dsαs}

. (4.6)

Eq. 4.6 is an `1- minimization problem, which is solved iteratively via simul-

taneous sparse approximation and dictionary updates using the block-coordinate-

relaxation algorithm [11]. Here, ε is the error, which signifies the quality up to which

the decomposed layers are being approximated.

4.3 PCA-based band selection

A MS image consists of several bands, representing images of the same spatial region

acquired at different wavelengths. Therefore, such band images have spectral redun-

dancy among them, which can be explored to obtain a band reduced MS image or its

corresponding RGB image for dictionary learning. PCA is a linear transformation

technique that finds the projection of the image vectors corresponding to different

bands onto a subspace spanned by the principal eigenvectors arranged in the order

of decreasing eigenvalues such that the principal components contains almost the

99% of the information of the input MS image. The algorithmic steps for the PCA-
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based band reduction technique for efficient dictionary learning from MS image are

as follows:

B Convert the image into a set of vectors and subtract mean:

First, an image is assumed as a set of vectors of equal length, where each

vector represents a column in the image. An image Xm×n can be written as

x = [x1,x2,x3, ...,xn]T , where n is the number of columns and each vector

xk is of length m. The same idea is applicable for MS images, where number

of columns will be represented by the number of spectral bands and length

of each column vector xk will become mn (assuming that band images are of

size m × n). The set of PCA transformed vectors y can be obtained from x

as follows:

y = A (x−mx) , (4.7)

where mx is the vector consisting of mean values from all the input vectors in

x. Subtracting the mean is also known as centering and it reduces the chances

of influence by any other components on the principal components.

B Find transformation matrix A from the covariance matrix:

The matrix A in Eq. 4.7 is obtained from the covariance matrix Cx such that

rows of A is formed by the eigenvectors of Cx arranged from top to bottom

according to the descending order of eigenvalues. The formula for finding

covariance matrix is given as,

Cx = E
[
(x−mx) (x−mx)

T
]

=
1

K

K∑

k=1

xkx
T
k −mxm

T
x . (4.8)

Since each vector xk has size mn× 1, therefore size of Cx becomes mn×mn.

Here, elements on the main diagonal of Cx are the variances of x and all

other elements in Cx represents the covariance between vectors xi and xj.

Mathematically,

Cx (i, i) = E
[
(xi −mi)

2] (4.9)

Cx (i, j) = E [(xi −mi) (xj −mj)] (4.10)
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After obtaining the covariance matrix Cx, its eigenvalues and corresponding

eigenvectors are calculated to determine the matrix A.

B Transform the original dataset:

Since the rows of the transformation matrix A are orthonormal, inverse trans-

form can be performed to transform the original data using the PCA co-

efficient as follows:

x = ATy + mx (4.11)

Band 2 Band 3 Band 4 Band 5

PC 1 PC 2 PC 3 PC 4
Figure 4.4: Example of PCA-based significant band selection from LISS-III data

Fig. 4.4 presents a MS image from LISS-III dataset containing four spectral

bands. PCA is applied to find the significant bands and the transformed

images are shown in terms of the principal components: PC1, PC2, PC3

and PC4, where they have information of about 74.01%, 20.69%, 4.14% and

1.14%, respectively of the given MS image. It can be found that the first three

principal components are able to provide approximately 99% information of

the original image.
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4.4 Proposed method

The proposed sparse representation-based MS SR work consists of the following

three stages:

i. Dictionary learning

ii. Sparse reconstruction

iii. Multicore parallel implementation.

4.4.1 Dictionary learning using PCA and MCA

A schematic of the proposed MS image-based dictionary learning is presented in

Fig. 4.5. An image database, consisting of cropped MS images of sizes 512 × 512

and 1024× 1024, is formed by selecting RoIs having useful land cover features from

orthorectified GeoTIFF images. We apply 2D PCA on each MS image and bands

corresponding to the three highest principal components (PCs) are selected and

converted to an RGB image. It is ensured that the three selected PCs constitute at

least 99% information of the actual MS image.

Now, to prepare two sets of training patch datasets for dictionary training:

Xh and X`, first, the Y -channel of the YCbCr image obtained from the RGB is

downsampled and blurred to produce an LR image. The downsampling factor d is

equal to the desired upscale ratio for the final SR output of the scheme. Now, the HR

patch vectors xh of size n2× 1 are extracted from the MS band at its original scale.

On the other hand, LR patch vectors x` are generated as follows: first, the LR image

is upscaled by 2 to obtain an interpolated HR image using bicubic interpolation. In

order to extract high frequency features from the bicubic interpolated image, first,

MCA is carried out, which decomposes it into its structure and texture components.

Then, on the texture component, we apply first- and second-order gradient filters in

horizontal and vertical directions. This results in the four gradient maps from where
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four LR feature patches are extracted. Finally, they are concatenated to obtain the

LR feature vector for training. Thus, the size of a LR feature patch x` becomes

((2n/d×2n/d)×4)×1. We follow the same feature extraction strategy for different

zoom in factors.

Figure 4.5: Proposed MS image dictionary learning scheme using PCA and MCA

In [115], authors learnt HR and LR dictionaries, namely, Dh and D` from

datasets Xh and X`, respectively. In the sparse representation framework, it is

assumed that both Xh and X` share a common sparse representation vector α with

their individual dictionaries as shown in Eq. 4.12.

{Dh,D`,α} = arg min
{Dh,D`,α}

1

p

∥∥Xh −Dhα
∥∥2

2
+

1

q

∥∥X` −D`α
∥∥2

2
+

λ2

(
1

p
+

1

q

)
‖α‖1 ,

(4.12)

where p and q represent the size of HR and LR patch vectors, respectively and λ2 is

the regularization parameter. The above equation may be simplified by rearranging

Dh and D` into a joint dictionary, DC . Similarly, Xh and X` may also be combined.

Thus, Eq. 4.12 may be rewritten as follows:

{DC ,α} = arg min
{DC, α}

‖XC −DCα‖2
2 + λ2 ‖α‖1 , (4.13)
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where XC =




1√
p
Xh

1√
q
X`


 and DC =




1√
p
Dh

1√
q
D`


. Eq. 4.13 is solved based on K-SVD

dictionary learning method [38], which in essence solves the following two steps,

alternately over individual patch vectors.

Figure 4.6: Schematic of sparse coding and dictionary update steps

B Patch-based sparse coding step:

First, an overcomplete dictionary DC of given size is randomly initialized and

then using this dictionary, it finds the sparse representation vector αi for each

patch vector xi from the combined dataset XC .

B Dictionary update step:

Given the sparse representations calculated above, next task is to update the

dictionary. Here, each column di of the dictionary DC is updated for the

above obtained sparse vector αi by minimizing the error term ‖xi − diαi‖
iteratively.

A schematic representation of coupled dictionary learning is shown in Fig. 4.6.

K-SVD method has advantages since it is faster and can be trained for large number

of sample patches. In line with the training applied to MS images, a coupled K-SVD

dictionary training for PAN image database may also be carried out. We may apply

the proposed dictionary learning method starting from the patch extraction stage as

shown in the Fig. 4.5 for the PAN image. However, in this case, PCA-based band

reduction and YCbCr transformations from MS images are not required.
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4.4.2 SR reconstruction based on MCA and sparse repre-

sentation

Given the trained coupled dictionary, the proposed method solves two regularization

problems; one is seeking a patch-wise sparse solution and the other having the image

formation model as a global prior. Fig. 4.7 pictorially depicts the proposed MS

image SR reconstruction method.

Figure 4.7: Proposed MS SR method

Here, MCA is performed on each LR-MS band separately to extract texture and

cartoon components from the bands. The texture image ‘Yt’ has diversified high-

frequency features and thus favors for a better sparse representation. On the other

hand, the structure or cartoon image ‘Ys’ contains the low-frequency structural in-

formation, which is upscaled to a size equal to the size of the proposed super-resolved

output by using bicubic interpolation, which is relatively simpler and reduces the

overall computational cost of the method.

After MCA decomposition, ‘Yt’ is first upscaled by 2 by bicubic interpolation.

Upsampling before feature extraction works better as establishing a correspondence

between HR and upsampled LR image patches is relatively easier [115]. Now, up-

sampled LR image is passed through 1D feature extraction filters of first- and second-

orders, respectively as follows:

f = [1, 0, −1] (4.14)
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s = [1, 0, −2 , 0, 1] (4.15)

Linear convolution on the Yt with the four filters f , fT , s and sT produces four

filtered outputs; each of size equal to the size of Yt. Next, feature patches with

single pixel overlapping are extracted from each of the above outputs. Four feature

patches, corresponding to each pixel location of the filtered images, are concatenated

to get a single feature vector, yt
`. Therefore, the size of each feature vector will be

four times than that of the upsampled LR patch vector. Finally, the feature vectors

containing high frequency information will be used for sparse representation.

A sparse representation problem is then formulated to represent yt
` with the

pre-trained overcomplete dictionary which may be written as follows:

min ‖α‖1 subject to
∥∥D`α− y`

t

∥∥2

2
6 ε1

‖EpDhα−w‖2
2 6 ε2

. (4.16)

Eq. 4.16 can also be rewritten as an unconstrained minimization problem as

follows:

α̂ = min
α

∥∥∥D̃α− ỹ
∥∥∥

2

2
+ λ2 ‖α‖1 , (4.17)

where D̃ =


 D`

EpDh


, ỹ =


y`

t

w


, and λ2 is the regularization parameter. The

operator Ep in the above equation extracts the region of pixel overlap between the

target patch and previously reconstructed adjacent HR patches; w represents the

values of already reconstructed HR image patches on the region of overlap. The

solution to Eq. 4.17, α̂ will be used to generate the corresponding HR patch vector

xt
h by multiplying α̂ with the HR dictionary Dh as follows:

xh
t = Dhα̂. (4.18)

Next, reconstructed HR patches xh
t are positioned onto the target HR image

grid to produce an intermediate reconstructed image X0. Since, X0 may not satisfy
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exactly the image acquisition model due to noise or any other reconstruction error,

the target HR image for the texture part Xsp
t is obtained by applying the global

image constraint based regularization as follows:

Xsp
t = arg min

Xsp
t

‖SHXsp
t −Xt‖2

2 + c ‖Xsp
t −X0‖2

2 , (4.19)

where c is regularization parameter. As shown in Fig. 4.7 to get the target super-

resolved image for a MS band Xsr, the solution of Eq. 4.19 i.e. Xsp
t is combined

with the bicubic interpolated output of the structural component, denoted by Xs
bi.

Finally, the individual super-resolved bands obtained as above are merged to form

the target HR-MS image.

4.5 Parallel implementation

Modern high-performance computing (HPC) system features shared memory based

multicore processors which make them suitable to execute single instruction, mul-

tiple data (SIMD) operations efficiently. OpenMP parallel programming interface

associated with C, C++ or FORTAN language can be used for converting a sequential

code to a parallel one.

4.6 Results and discussion

4.6.1 Performance evaluation and comparisons

4.6.1.1 Database preparation

We have carried out our simulations using one PAN and a few LR-MS image datasets

as shown in Table 4.1. PAN images are acquired by the CartoSat-2 series satel-

lites (sensor: single panchromatic camera) of Indian Space Research Organization

82



Chapter 4. Development of Morphological Component Analysis
Features-based Sparse Representation Technique for MS Image SR

(ISRO), while the two MS datasets are acquired from ResourceSat-2 satellite (sen-

sors: LISS-III and LISS-IV) of ISRO. These datasets are procured from ISRO’s

NRSC data centre (NDC)1. Earth observation satellites, namely, ResourceSat-2 pro-

vides low and medium resolution MS images, and CartoSat-2 provides sub-meter

resolution PAN images. Another MS dataset (2.8 m resolution) is obtained from

the Global Land Cover Facility (GLCF)2, which are captured by the QuickBird

satellite for public access. Some other freely available MS images are also collected

from ISRO’s Bhuvan portal3. Mostly, these images are of land cover and earth ob-

servation types, selected from different geographical locations within India. More

details about the selection of training and test images are described in the later part

of this section.

Table 4.1: Details of collected PAN and MS image datasets

Data Set Satellites Band Information Source

Panchromatic -I
Resolution:
0.65 m

CartoSat-2 1 band: monochrome NRSC

Multispectral -I
Resolution:
23.5 m

ResourceSat-2
LISS-III

B2 (VIS): 0.52 -0.59 nm
B3 (VIS): 0.62 -0.68 nm
B4 (NIR): 0.77 -0.86 nm
B5 (SWIR): 1.55 -1.75 nm

NRSC &
Bhuvan

Multispectral -II
Resolution:
5.8 m

ResourceSat-2
LISS-IV

B2 (G): 0.52 -0.59 nm
B3 (R): 0.62 -0.68 nm
B4 (NIR): 0.76 -0.86 nm

NRSC

Multispectral -III
Resolution:
2.8 m

QuickBird-2

B1 (B): 0.45 -0.53 nm
B2 (G): 0.52 -0.60 nm
B3 (R): 0.63 -0.69 nm
B4 (NIR): 0.76 -0.90 nm

GLCF

4.6.1.2 Simulation environment

Simulations of the proposed work is carried out on a remote server with following

specifications- Model: Dell PowerEdge R730 server; Processors: 2 x Intel Xeon

1NRSC Data Center. Available at http://uops.nrsc.gov.in:33333/ImgeosUops/
FinalImgeosUops/FinalImgeosUops.html# (last seen on 20 April 2019)

2GLCF portal for satellite data. Available at http://glcf.umiacs.umd.edu(last seen on 20
March 2019)

3Bhuvan Open Data Archive. Available at https://bhuvan-app3.nrsc.gov.in/data/
download/index.php (accessed on 20 April 2019)
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Figure 4.8: Example of training MS datasets: first row: QuickBird; second row:
LISS-IV and third row: LISS-III

as.2620v4 running at 2.1 GHz, 20M cache, HT, 8C116T (8SW); RAM: 128 GB,

2400 MHz DDR4; HDD: 2 x 1.2 TB; Cores: 16 (32 virtually). The server is running

on Ubuntu 16.04.3 LTS, 64 bit Linux operating system installed with open source

computer vision (OpenCV) library packages (version 3.2.0) and OpenMP parallel

programming tool for multicore programming.

For validation of the results several quantitative metrics are used for reference-

based evaluation e.g. PSNR, MSSIM, sCC, UIQI, ERGAS, SAM, etc., along with a

non-reference based parameter known as the NIQE. Also, spectral quality of super-

resolved images are evaluated based on the spectral signature and end-member iden-

tification via spectral unmixing. In this work, we perform band wise reconstruction

for all the test MS images and the visual results are shown using false RGB images

of the results.

4.6.1.3 Comparison of SR results with different methods

In this section, we present results of MS image SR on different datasets as mentioned

earlier for various upscales.

A) SR of QuickBird MS images
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Figure 4.9: Test images acquired by QuickBird, LISS-IV and LISS-III sensors: first
row: LR-MS input; second row: ground-truth

QuickBird sensor captures MS images which are very useful for land cover assess-

ment. The dataset of this experiment is Multispectral3 referred in Table 4.1. It

consists of three visible bands, namely, blue, green, and red along with one NIR

band of 2.8 m resolution. Training dataset includes 25 different MS images over the

areas, like, the Chilika Lake, the Sundarbans, Ujong Kulon, Yala, etc. Few sample

images of this dataset are displayed in Fig. 4.8. We extract LR and HR-patches of

size 2×2 and 8×8, respectively from the dataset and trained HR and LR dictionaries

of size 64×256 as detailed in subsection 4.4.1.

For reconstruction, the test image (ground-truth) is a 256×256 MS band image

of resolution 2.8 m (capturing a scene over the India-Sundarban area passed on 2

November, 2002 by the satellite). Since, we do not have a HR-MS image, we consider

the given MS image as the ground-truth. The LR-MS test image is obtained by

applying the Gaussian low-pass filter (LPF) of size 5 and standard deviation σ = 0.5

on it followed by downsampling by a factor 4 as shown in Fig. 4.9. Thus, the size

Table 4.2: Quantitative measures for super-resolution reconstruction of the Quick-
Bird test image (i.e. Multispectral-III) corresponding to upscale ratio 4.

Image Methd PSNR MSSIM ERGAS SAM UIQI sCC NIQE

Test3

Bicubic 25.32 0.8015 7.663 4.438 0.7766 0.9690 17.92
SparseFI 26.46 0.8402 6.714 4.296 0.8274 0.9761 13.10
Yang et al. 26.47 0.8499 6.762 4.280 0.8305 0.9767 14.04
Moustafa et al. 26.52 0.8496 6.694 4.284 0.8298 0.9764 13.56
Chen et al. 26.39 0.8290 7.149 4.328 0.8080 0.9740 13.70
Lucas et al. 26.18 0.8070 7.477 4.423 0.7830 0.9700 13.41
Proposed 26.60 0.8505 6.611 4.275 0.8312 0.9772 12.96

85



4.6. Results and discussion

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.10: Visual outputs of different methods for 4× upscaling of the QuickBird
test image. Row-wise: (a–e) SR images and (f–j) corresponding error images with
ground-truth; left to right: Bicubic, SparseFI, Yang et al., Moustafa et al., and the
proposed method.

of LR MS test image is 64×64 with a resolution of 11.2 m.

SR results are compared with different methods. A visual representation of SR

outputs are shown in Fig. 4.10. Results show that the proposed method produces

the least visible error compared to others. In order to validate this claim, we also

carry out quantitative evaluation in terms of PSNR, MSSIM, ERGAS, SAM, UIQI,

sCC and NIQE and results are presented in Table 4.2. It is observed that for upscale

ratio 4, the proposed algorithm shows on an average improvements in PSNR by 1.28

dB over bicubic and 0.2-0.4 dB over other MS SR methods. While Moustafa et al.

gives comparable results to that of the proposed method.

We have also carried out experiments for other zooming factors. For 2× upscal-

ing, PSNR achieved for the proposed method, bicubic and Moustafa et al. are 28.86

dB, 26.43 dB, and 28.35 dB, respectively. Again, for 3× upscaling, these values are

27.48 dB, 25.89 dB, and 27.21 dB for the proposed, bicubic and Moustafa et al.,

respectively. So, compared to the bicubic method, our method shows improvements

of 2.43 dB and 1.59 dB for 2× and 3× upscales, respectively. Similarly, compared

to Moustafa et al., improvements of 0.51 dB and 0.27 dB are observed in case of the

proposed method for 2× and 3× upscaling, respectively. Superior performances are
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also achieved for other parameters as well for the proposed method. Closer results

in case of Moustafa et al. may be because it is a self-learning method; the dictionary

is learned from the given LR image itself. On the other hand, the proposed method

utilizes a learned dictionary from noise-free MS images from the same satellite.

B) SR of LISS-IV MS images

The dataset of this experiment is Multispectral2 as referred in Table 4.1. LISS-

IV MS data consist of two visible bands (B2, B4) and one NIR band (B3) with a

resolution of 5.8 m. The swath coverage is 70 km and bands are quantized using 10

bits.

(a) (b)
Figure 4.11: Trained dictionary pair using the proposed method for LISS-IV data:
Dh (left) and D` (right)

The training dataset consists of 30 images of different sizes: 256×256, 512×512

and 1024×1024. A set of representative images from the training dataset are dis-

played in Fig. 4.8. For selection of training images, RoIs are to be selected such that

they contain homogeneous regions in each band. This ensures high feature contents

in each of the training image and thereby supports better dictionary learning. For

this experiment, 50,000 sample patches are selected from the training dataset to

learn HR and LR dictionaries. Fig. 4.11 shows a visual representation of trained

HR and LR dictionaries from the above dataset. We consider extracting patches

of size 5×5 from both HR and upscaled LR MS images during dictionary training

detailed in subsection 4.4.1 that produces LR and HR dictionaries of size 25×256

and 100×256, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 4.12: Visual outputs of different methods for 2× upscaling of LISS-IV test
image. Row-wise SR images (a–e) and their corresponding error images (f–j) with
ground-truth; left to right: Bicubic, SparseFI, Yang et al., Moustafa et al., and the
proposed method

For reconstruction, we create test LR MS images by performing blurring and

downsampling operations on each band of the input LISS-IV MS image. After SR

reconstruction of test LR MS images, results are compared with the ground-truth.

In this experiment, as shown in Fig. 4.9, a 512×512 size ground-truth band image

is obtained from the LISS-IV with 5.8 m resolution passing over a region of India

on 18 March, 2017. We apply LPF of size 5 with a standard deviation σ = 0.5 on

the ground-truth and downsampled it by 2. So, the size of the LR MS test image

for our experiment is 256×256 having resolution of 11.6 m.

Table 4.3: Quantitative measures for super-resolution reconstruction of the LISS-IV
test image (i.e. Multispectral-II) corresponding to upscale ratio 2.

Image Methd PSNR MSSIM ERGAS SAM UIQI sCC NIQE

Test1

Bicubic 30.11 0.9694 5.492 3.316 0.8454 0.9818 15.79
SparseFI 32.54 0.9968 4.205 2.726 0.9135 0.9892 14.11
Yang et al. 31.37 0.9835 4.748 3.310 0.8783 0.9862 14.80
Moustafa et al. 32.48 0.9937 4.233 2.769 0.9073 0.9892 14.25
Chen et al. 32.35 0.9910 4.649 2.925 0.8900 0.9870 12.90
Lucas et al. 32.45 0.9920 4.827 3.027 0.8870 0.9860 12.44
Proposed 32.76 0.9974 4.106 2.663 0.9181 0.9897 12.91

SR reconstruction is carried out for different upscale ratios. A comparison of

output images by different methods for upscale ratio 2 is shown in Fig. 4.12. Er-

ror images corresponding to each method are also shown. It is observed that the

proposed method gives the least visible error compared to others.
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Results of different objective parameters for LISS-IV test image are presented

in Table 4.3. It is clearly observed that the performance of the proposed method

is superior than other methods. On an average the increase in PSNR value of

the proposed method for 2× zooming is about 2.7 dB over the bicubic, while it is

approximately 0.3-0.4 dB better than Moustafa et al. and Lucas et al.. Similarly,

improvement of values are also noticed for MSSIM and UIQI. Here, the NIQE value

is also significantly reduced, which indicates a better reconstructed image. We have

also conducted SR of the same image for 3× and 4× upscaling, where the proposed

method is able to show better performances compared to others.

C) SR of LISS-III MS images

The dataset of this experiment is Multispectral1 as referred in Table 4.1. LISS-III

images are of medium resolution (i.e. 23.5 m) and consist of four spectral bands:

three visible (B2, B3, B4) and one NIR (B5). The swath coverage is 140 km and

different bands are quantized using 10 bits. We form a training dataset consisting of

25 MS images, which are selected in a manner similar to that explained for LISS-IV.

A set of representative images for the training dataset are shown in Fig. 4.8. These

images are considered as HR data from which LR images are generated for learning

HR and LR dictionaries for our experiments.

We have considered extracting HR-patches of size 9×9 with 3 pixels overlapping

and LR-patches of size 3×3 with 1 pixel overlapping to get HR and LR dictionaries

of sizes 81×256 and 144×256, respectively.

Table 4.4: Quantitative measures for super-resolution reconstruction of the LISS-III
test image (i.e. Multispectral-I) corresponding to upscale ratio 3.

Image Methd PSNR MSSIM ERGAS SAM UIQI sCC NIQE

Test2

Bicubic 25.95 0.8108 7.724 4.023 0.7915 0.9454 18.06
SparseFI 26.54 0.8414 7.082 3.917 0.8273 0.9545 15.23
Yang et al. 26.88 0.8607 6.787 3.859 0.8402 0.9570 14.96
Moustafa et al. 27.10 0.8636 6.764 3.614 0.8491 0.9586 14.17
Chen et al. 27.07 0.8510 7.014 3.683 0.8360 0.9550 13.89
Lucas et al. 26.96 0.8500 7.091 3.757 0.8350 0.9540 12.01
Proposed 27.24 0.8719 6.663 3.567 0.8601 0.9590 12.41

For reconstruction, a MS image band of size 510×510 with 23.5 m is obtained

from a LISS-III image that contains scene over the location of Giri Forest, India and
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 4.13: Visual outputs of different methods for 3× upscaling of the LISS-III
test image. Row-wise: SR images (a–e) and their corresponding error images (f–j)
with ground-truth; left to right: Bicubic, SparseFI, Yang et al., Moustafa et al., and
the proposed method

having date of pass on 8 January, 2017. This image is considered as the ground-

truth. The corresponding LR image for testing is obtained by applying LPF of size

5 and standard deviation σ = 0.5 followed by downsampling by a factor of 3. So,

the size of the LR test image is 170×170 and resolution 70.5 m. These images are

shown in Fig. 4.9.

Here, SR is performed for upscale ratio 3. Results are evaluated and compared

with other MS image SR algorithms both visually and quantitatively and shown in

Fig. 4.13 and Table 4.4, respectively. It is observed that the proposed method

performs comparatively better than others even for a 3× upscaling of the test LR

image. From visual inspection, it is clear that the proposed method produces less

visible errors than others.

On an average the increase in PSNR value of the proposed method for 3×
upscaling is about 1.29 dB over the bicubic output, while it is approximately 0.15 -0.3

dB more than Moustafa et al., Chen et al. and Lucas et al.. Similarly, improvement

of values are also noticed for MSSIM, UIQI and NIQE. We have also conducted SR

of the same image for 2× and 4× zooming where the proposed method is able to

show better performance compared to others.
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Since all the above SR reconstructions are done band wise, for final visualiza-

tion of the super-resolved MS image, a false color RGB image is shown using a

combination of three band images for each dataset.

D) SR of panchromatic images

The data set of this experiment is Panchromatic1 as referred in Table 4.1. A

monochrome CartoSat-2 PAN image with a swath coverage of 9.6 km and spa-

tial resolution around 0.65 m is considered. As mentioned above in MS image SR,

we select 20 HR-PAN RoIs with homogeneous details for learning the dictionary.

LR versions for each of these images are generated using the same process used for

generating LR-MS test data. Examples of few sample images used in dictionary

learning are shown in Fig. 4.14.

Figure 4.14: Example of training data set for CartoSat-2 PAN images of the regions
of Patna, Chilka Lake and Amrtitsar, respectively

Figure 4.15: SR results of CartoSat-2 PAN test image for 2 times zooming. Column-
wise from left to right: ground-truth and input images, resulted HR and error images
by bicubic, Yang’s method, Chen’s method, Lucas’s method and the proposed method

PAN image SR simply applies SISR algorithm which is applied to each band

of MS image during SR. A ground-truth image of size 512×512 is obtained from
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Table 4.5: Quantitative measures for super-resolution reconstruction of CartoSat-2
PAN image corresponding to upscale ratio 2.

Image Methds PSNR MSSIM UIQI NIQE

Test3

Bicubic 40.13 0.9921 0.8586 24.29
Yang et al. 41.43 0.9965 0.8825 17.39
Chen et al. 41.32 0.9950 0.8720 18.16
Lucas et al. 40.97 0.9950 0.8730 20.94
Proposed 41.52 0.9966 0.8862 17.07

CartoSat-2B satellite of ISRO passing over Mumbai, India on 10 December 2015.

An LR test image of size 256×256 is created by blurring and down-sampling. SR

results are shown in Fig. 4.15. On an average the increase in PSNR value of the

proposed method for PAN image SR is about 1.4 dB over the bicubic output, while it

is approximately 0.1-2 dB than Yang’s and Chen’s methods. Similarly, improvement

of values are also noticed for MSSIM, UIQI. The NIQE value is also significantly

reduced, which indicates a better reconstruction in case of the proposed method.

E) SR of real MS images

In this work, experiments are carried out to check the performance of the pro-

posed method, when input LR images itself are fed, without any preprocessing, like

blurring and downsampling, to the proposed method for SR at different upscaling

ratios. We evaluate the quality of super-resolved outputs by computing the no-

reference evaluation metric, i.e. NIQE as mentioned above besides visual analysis.

If we consider the QuickBird MS image as the input LR image directly and apply SR

reconstruction to it for 2× upscaling, the NIQE values for both the input and out-

put images obtained are 14.86 and 11.51, respectively. Similarly, we calculate NIQE

values of reconstructed images with inputs taken from both LISS-IV and LISS-III

sensors. NIQE measures for input and reconstructed LISS-IV images are 21.70 and

19.37, respectively, while those of LISS-III image are 24.25 and 21.49, respectively.

In addition, the obtained visual results for different real test MS images are also

better and at par with those obtained for downsampled LR-MS test images already

explained above. We have shown the SR results in Fig. 4.16 for the three images

discussed above.
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Figure 4.16: Visual outputs of real MS image SR from different sensors

4.6.2 Spectral signature comparisons

Different surfaces reflect or absorb electromagnetic radiation in varying amounts

depending on the composition of their constituent materials, surface orientations,

and so on. The reflectance of a material is also affected by the wavelength of

electromagnetic waves, and by examining the reflactance difference in remote sensing

images, we may gain a good notion about different land cover classes. A spectral

signature, also known as a spectral graph, is a plot of the reflectance values of various

band images with respect to the wavelength.

An RoI of homogeneous region corresponding to identical locations in each band

is selected. Now, average intensities of pixels in the RoI corresponding to each band

are plotted against the band numbers. Spectral profile plots of the QuickBird test

MS image and corresponding HR-MS image are shown in Fig. 4.17, where it can be

observed that spectral orientations of ground-truth and test images are not disturbed

even after SR reconstruction.
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Figure 4.17: Comparisons of profiles: Spectral signatures for QuickBird ground-
truth image, bicubic interploated image and super-resolved image by the proposed
method

4.6.3 End-members identification via spectral unmixing

Decomposition of the spectral signature of a mixed pixel into a set of end-members

and their corresponding abundances is known as spectral unmixing. A linear mixture

model considers a mixed image; pixel is being a linear mixture of the end-members

with fractional abundances which are positive and always add up to one. Spectral

unmixing results are highly dependent on the input end-members; changing the

end-members changes the results.

There are different methods of performing linear spectral unmixing, like, max-

imum likelihood based unmixing, spectral angle mapper, etc. In this work, we use

ENVI software to perform spectral unmixing of LR and SR MS images using the

maximum likelihood method and compare the effect of SR in end-member identifica-

tions. This is done by first, selecting different end-members from a MS image as an

RoI in their abundance and then obtaining a mixed image with these end-member

constituents.

In this example, three different types of end-members are selected from the given

LISS-IV MS image that includes water body, vegetation and barren soil. As shown

in the Fig. 4.18 the RoIs are selected for three end-member types, namely, ‘water

body’ consisting of total 457 number of pixels, ‘vegetation’ consisting of 722 pixels
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(a) (b)

(c) (d)
Figure 4.18: End-member identification from sepctral unmixing on LISS-IV MS
image: (a) RoI image (b) spectral profiles for three end-members from ground truth
image (c) spectral profiles for three end-members from LR-MS test image (d) spectral
profiles for three end-members from resulted SR image

and ‘barren soil’ consisting of 606 pixels, respectively. The unmixed end-member

profile distributions are displayed for the ground truth MS image, LR test image

and SR MS image. It can be observed that, the SR reconstructed image by the

proposed algorithm is better able to identify an end-member type of the true MS

image compared to the LR test image.

4.6.4 Speed-up calculation

Fig. 4.19(a) shows computational time required with varying number of cores for

the proposed dictionary learning algorithm. It can be noticed that the CPU time

required for the multicore implementation of a dictionary of size 256 is reduced to 1

min. 49 secs with 16 cores from its sequential time of 52 min. 33 secs. The speed-up

is about 28 times. In a similar way, as shown in Fig. 4.19(b), the highest speed-up
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(a) (b)

(c)
Figure 4.19: Plot of computational time versus number of cores (a) dictionary train-
ing time for different sizes (b) reconstruction time for different upscale ratio; and (c)
Comparison of reconstruction time of different methods for zoom factor 2

for the SR reconstruction with a 256 size dictionary is achieved corresponding to 4×
upscaling, which is given as, 255.23 (secs.)/21.26 (secs.) ≈ 12.

Here, with a target to show a near real-time execution time, more focus is

given on achieving a better speed-up of the proposed algorithm through parallel

processing. Although the sequential execution time has less significance in achieving

more speed-up, for general idea of the method, a comparison is also shown with all

other methods in Fig. 4.19(c). It is observed that the proposed method with parallel

implementation is able to provide fast results compared to others.
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4.6.5 Effect of dictionary size

Fig. 4.20 shows plot of PSNR value versus dictionary size for the proposed method

with zoom factor 4 for different bands of QuickBird Test image. It is observed that

changing of dictionary size from 256 to 512 or 512 to 1024 contributes only a small

change (about 0.05 – 0.10 dB) in PSNR while the parallel execution time of the

algorithm is increased by approximately 5 times. Thus, a dictionary size of 256 is

considered in the proposed algorithm to obtain a faster output.

Figure 4.20: Comparison of band image’s PSNR values with respect to different
dictionary size in the proposed algorithm

4.6.6 Regularization parameter dependency

In sparse regularization problems, a balance between the sparsity of the solution

and fidelity of the approximation is maintained by the regularization parameter λ.

It controls the noise level of the input image and helps in optimal reconstruction

of the target image by adjusting its value. Generally, for a more distorted data,

the corresponding λ value should be also high for robust reconstruction. So, an

empirical evaluation is conducted by setting different regularization parameter values

and speculating the outputs for a set of test images to finalize its value.

In our experiment, we solve three regularization problems, namely, MCA decom-

position, dictionary training and SR reconstruction. The regularization parameters

controlling these problems are set as follows: For MCA decomposition in Eq. 4.6, we

consider same parameter values as given in [39] and set the sparsity regularization
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parameter λ1 to 1 while the TV regularization parameter γ is set to [0, 2.5]. Again,

for sparse representation during dictionary learning and SR reconstruction, the reg-

ularization parameter λ2 in Eq. 4.12 and Eq. 4.13 is set to a common value. Here,

the value of λ2 depends upon the level of noise in the input image and we empiri-

cally set its value as 0.15 in all our experiments, which generally yields satisfactory

results.

4.7 Conclusion

In this chapter, we demonstrate a sparse representation and morphological feature

extraction-based MS SISR technique. Overcomplete dictionaries are learnt for both

PAN and LR-MS datasets collected from QuickBird and ResourceSat-2, respectively.

We consider both objective and visual analysis to evaluate reconstructed HR MS

images. Results are compared with other recent methods and observe that the pro-

posed method outperforms others both qualitatively and quantitatively. Speed-up

is also achieved for the proposed algorithm using OpenMP-based parallel process-

ing. As a future research, this work can be considered for GP-GPU based hardware

implementations to achieve speed-ups suitable for real-time remote sensing applica-

tions.
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