
Chapter 5

JAMiSR- Joint Adaptive Multispectral Image Super-

resolution via Sparse Representations and its Ap-

plications

5.1 Introduction

The fundamental work on natural image SR using sparse representation was pro-

posed by Yang et al. [115], which is known as sparse coding SR (ScSR). In traditional

sparse coding, individual image patches are reconstructed separately assuming that

they are independent and uncorrelated due to which instabilities arise among the

sparse solutions. Although the patch-based methods have achieved success in im-

proving the image quality both visually and quantitatively, yet they lack in min-

imizing the serrated edges and the ringing artifacts as demonstrated in Fig. 5.1.

Figure 5.1: Pictorial demonstration of jaggy edge and ragged surface generated in
the patch-based SR methods.

Different research works suggested different approaches to improve the results

of ScSR either by learning a more effective dictionary or extracting features of

impact or considering novel a priori information in the reconstruction problem
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[53, 57, 82, 130]. Currently, focus is on the sparse representation of groups of similar

patches to maintain a consistency among the recovered patches in image restoration

problems [62, 113, 117, 123, 126]. A graphical example is shown in Fig. 5.2, which

depicts the superiority of group-based sparse coding over single patch-based sparse

coding in terms of consistency and stability of the estimated sparse coefficients for

a prescribed number of non-zeros coefficients in the sparse matrix (i.e. the sparsity

pattern). The group-based sparse coding is well balanced for the given sparsity

pattern.

Figure 5.2: Example of a group-based sparse coding showing more stabil-
ity/consistency in coefficients’ estimation (source: [117], Fig. 1)

In this work, we focus on developing a joint sparse representation-based SR al-

gorithm by integrating the concepts of both patch and group sparse coding together

in a single framework. It is observed that similar patches may occur at multiple lo-

cations (non-locally) within a single image irrespective of any scaling [45]. Although

different SR works are available combing the non-local self-similarity (NLSS) with

patch-based sparse representation [17, 75], only a few works are reported exploiting

the group sparse representation (GSR) technique for remote sensing image SR.

5.1.1 Patch sparse representation (PSR)

As discussed in Chapter 3 and 4, in traditional patch-based sparse representation, an

image patch xi ∈ Rn×1, ∀i = 1, 2, ..., N can be exactly represented or approximated

by linear combination of a few basis functions or atoms/columns of an overcomplete

dictionary D ∈ Rn×K where n ¿ K. The dictionary atoms are selected based on
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the sparse coefficient vector αi ∈ RK×1 Fig. 5.3 shows the sparse representation of

an image patch using only a few selected dictionary atoms.

Figure 5.3: Schematic representation of patch-based sparse representation

Mathematically, the patch-based sparse representation problem is given by Eq.

1.14 in Chapter 1 and Eq. 3.10 in Chapter 3. In computational imaging, PSR has

been widely used for SR-based image restoration [35, 133]. As reported in previous

chapters, in SISR, a coupled overcomplete dictionary DC consisting of both low-

and high-resolution dictionaries, D` and Dh, respectively are usually learned using

training sample patches extracted from both the given LR and similar available

HR image datasets [115]. Usually, DC can be efficiently learned using the K-SVD

algorithm reported in [111]. As shown in Fig. 5.1, sparsity prior based SR images are

always not able to provide sufficient improvements in terms of visual or quantitative

evaluations. This can be either due to the lack of accurate dictionary training or

inconsistent sparse coefficients.

5.1.2 Group sparse representation (GSR)

A patch group may be represented by a matrix with columns formed by nonlocal

image patch vectors having the most identical features in them, and is the basic

unit of group sparse coding. A given image X is first subdivided into N numbers of

overlapping patches of size
√

n×√n. Next, as shown in Fig. 5.4, for each example

patch xi, the closest k similar patches are selected from a search window of size

W ×W . Here, the similarity is measured in terms of the Euclidean distance between
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the target patch x′ and the candidate patch x as follows:

di =

√√√√
√

n∑
i=1

√
n∑

j=1

(xi,j − x′i,j)
2, (5.1)

where xi,j and x́i,j represent the pixel values of the target and candidate patches,

respectively, while di is the distance between them. Now, similar patches within

the search window Sxi
are vectorized and stacked as columns of the group matrix

Xgi
= {xi,1, . . . ,xi,k} ∈ Rn×k, where xi,j represents the j-th patch in the i-th group.

Figure 5.4: Formation of patch-group matrix (source: [126], Fig. 1).

Similar to patch-wise sparse coding, assuming a group dictionary Dgi
∈ Rn×M

having M atoms, we can carry out sparse coding for each patch-group Xgi
corre-

sponding to the i-th patch over Dgi
as follows:

β̂gi
= arg min

βgi

(
1

2

∥∥Xgi
−Dgi

βgi

∥∥2

2
+ λ

∥∥βgi

∥∥
1

)
, (5.2)

where βgi
∈ RM×k are the corresponding group sparse coefficients matrices. If we

put all the patch-groups extracted from N patch locations of the given image X

together as XG = [Xg1 ,Xg2 , . . . ,XgN
] ∈ Rn×kN , we can use a dictionary DG =

[Dg1 ,Dg2 , . . . ,DgN
] ∈ Rn×MN to rewrite the Eq. 5.2 as follows:

β̂G = arg min
βG

(
1

2
‖XG −DGβG‖2

2 + ρ ‖βG‖1

)
, (5.3)

where ρ is the regularization parameter and βG ∈ RMN×kN is an expanded version of

βgi
. Split Bregman iteration (SBI) [46] or accelerated SBI method (ASBM) [43] are

successfully utilized to solve the above minimization problem in image restorations
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[62, 126]. Incorporating GSR into SR problem can help in enhancing the non-local

information in an image. However, it is found that with higher upscale ratios,

SR reconstructed images suffer from oversmoothing. GSR alone is not adequate

to restore the high-frequency information in the target HR image which might be

obtained by PSR.

5.2 Joint Sparse Representation (JSR)

Joint sparse representation (JSR) model aims to mitigate the associated drawbacks

of PSR and GSR mentioned in Subsections 5.1.1 and 5.1.2, by fitting them within

a joint model that integrates both the local sparsity (from patch) with the non-

local self-similarity (from patch groups) of an image. In JSR, a joint regularization

problem is formulated by combining the sub-problems of PSR and GSR, respectively.

Since different patch-groups Xgi
of XG would contain the same patches available in

the patch dataset X of the input image, we can also use the patch-based dictionary

D to represent the patch-group XG i.e.

XG = DαG, (5.4)

where αG ∈ RK×kN is a matrix consisting of sparse representations α of N groups

as its columns. The corresponding unconstrained optimization problem is:

α̂G = arg min
αG

(
1

2
‖XG −DαG‖2

2 + λ ‖αG‖1

)
. (5.5)

This suggests that we can combine β̂G and α̂G of Eqs. 5.3 and 5.5, respectively to

estimate XG using the JSR model as follows:

Ĉ = arg min
C

1

2
‖XG −UC‖2

2 + λ ‖αG‖1 + ρ ‖βG‖1 , (5.6)
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where U = [D DG] and C =


 αG

βG


. Eq. 5.6 can be solved by splitting it into

two unconstrained minimization sub-problems related to α̂G and β̂G. To solve

such regularization problems, methods, like ADMM [10] or SBI [46] are successfully

applied. The patch sparsity prior term associated with α helps in reducing the

over-smoothing effect by inducing more local information, while the group sparsity

prior term associated with β subdues the visual artifacts by maintaining nonlocal

uniformity. An example of how combining PSR and GSR provides enhanced result

in terms of contrast and PSNR for a MS band image is shown in Fig. 5.5. Recently,

the JSR models are also being successfully exploited by researchers to solve other

image restoration problems (e.g. image inpainting) [122].

Figure 5.5: Example of improved performance by the JSR approach over the PSR
and GSR corresponding to 2 times upscaling.

5.3 Adaptive versus global dictionary learning

The performance of a sparse representation-based technique highly relies on the se-

lection of effective dictionary learning method. Traditional global dictionary learn-

ing methods used in image SR can not yield an efficient dictionary for MS satellite

imagery as the individual bands inherently carries low spatial information and some-

times they represent no significant information. The global dictionaries are poten-

tially unstable and too many atoms are found to be irrelevant (i.e. low correlation)

to the given patch. Also, due to high computational time, the global dictionaries are

learned offline, which itself is a limitation for practical remote sensing applications.
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On the other hand, an adaptive dictionary can be trained online from the given LR

test image itself during SR reconstruction [49, 112]. Here, the dictionary atoms are

locally adopted to the given signal, which increases the stability and accuracy of

sparse approximation [35]. A dictionary D can be learned by applying the sparse

coding approach (e.g. K-SVD) using a set of example patches taken from the given

MS image, called the patch dataset XT = {x1,x2, ...,xN}. Mathematically, the

adaptive dictionary learning problem may be defined as follows:

(
D̂, α̂

)
= arg min

{D,α}

(
N∑

k=1

1
2
‖xk −Dαk‖2

2 + λ ‖αk‖1

)

such that ‖αk‖2
2 ≤ 1, k = 1, 2, ..., N

(5.7)

Here, the sparse coefficients α and the dictionary D are jointly optimized by fixing

either of them and iteratively updating the other until the cost function reaches the

convergence.

5.4 Proposed method

The proposed algorithm restores the desired HR image by solving two sparse coding

sub-problems- the patch sparse representation (PSR) and the group sparse repre-

sentation (GSR) for individual image patches and patch-groups, respectively. The

above two sub-problems may be combined and called it as the joint sparse repre-

sentation (JSR) problem, which can be fitted within the ADMM framework for the

final estimation of the SR image. We named it as the joint sparse representation-

based adaptive multispectral image SR (JAMiSR). A graphical representation of the

proposed method is given in Fig. 5.6. Details of adaptive dictionary learning and

joint sparse reconstruction techniques are given in the following subsections.
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Figure 5.6: Schematic overview of the proposed JAMiSR method.

5.4.1 Self-adaptive group dictionary training

We now recall the traditional SISR problem, i.e. recovering the HR version X of an

image from the observed LR image Y following the imaging model defined as

Y = SHX + n, (5.8)

where n is the additive white Gaussian noise or representation error, which is nor-

mally taken care of by the fidelity term, while solving for sparse approximation.

First, we learn a coupled overcomplete dictionary DC from the HR-LR combined

patch dataset YC = (Yh;Y`). In line with the discussions on LR-HR dataset

preparation for global dictionary learning (in Subsections 3.3.2, 4.4.1), in the pre-

vious chapters, we adopt the similar strategy for self-adaptive dictionary learning

as well. Here, HR patches having the most relevant high-frequency information are

directly extracted from the input image itself and stored as columns in the matrix

Yh. On the other hand, for the corresponding LR feature patch, the input image

is first blurred, downsampled, and then resized to the original image size by using

bicubic interpolation. In order to extract high-frequency features and their orienta-

tions from the LR patch, we apply four 1-D Sobel filters in x-, y- and two diagonal

directions (+45 deg and −45 deg) on each patch. We prefer the Sobel filters here

since they are simple to use and capable of generating effective gradient maps, which

essentially import details, like edge, contour, etc., for accurate sparse representation.

Now, an LR feature vector is formed corresponding to each patch by concatenating
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four gradient maps resulting from the preceding step. Finally, the feature matrix

Y` is obtained by stacking feature vectors corresponding to every patch in the input

image as columns. Assuming that low- and high-resolution dictionaries Dh and D`

share the same sparse coefficients matrix A, the coupled dictionary DC = (Dh;D`
)

can now be jointly learned from YC. Mathematically, this is given as:

min
{DC ,A}

‖YC −DCA‖2
2 + λ

(
1
p

+ 1
q

)
‖A‖1 , (5.9)

where p and q are the dimensions of high- and low-resolution patch vectors, respec-

tively and λ is the regularization parameter. Eq. 5.9 is a simultaneous sparse coding

and dictionary updating problem, which is efficiently solved by the coupled K-SVD

algorithm [111].

Next, for the GSR, we learn self-adaptive group dictionaries Dgi
for individual

patch-groups Ygi
rather than learning single overcomplete dictionary Dg from all

available patch-groups because learning a single dictionary by joint sparse coding of

all available patch-groups at a time is computationally expensive. Adaptive group

dictionaries Dgi
(i = 1, 2, ..., M) are directly learned from the given image patch-

groups Ygi
(i = 1, 2, ..., M) using the singular value decomposition (SVD) technique

to obtain its low-rank estimate Ygr , i.e.

Ygr = Ugi

∑
gi

VT
gi

=
r∑

j=1

σgi⊗j

(
ugi⊗jv

T
gi⊗j

)
, (5.10)

where Ugr and Vgr are orthogonal matrices consisting of the left- and right-singular

vectors of Ygr , respectively and
∑

gr
= diag

(
γYgi⊗j

)
is a diagonal matrix consisting

of r non-zero singular values of Ygi
represented by γYgi⊗j

= [σgi⊗1; σgi⊗2; ...; σgi⊗r]

on its principal diagonal in the descending order, i.e. σgi⊗1 ≥ σgi⊗2 ≥ ... ≥ σgi⊗r.

Now, if columns of Ugi
and Vgi

are denoted by ugi
and vgi

, respectively then each

submatrix dgi
∈ Rm×k of the group-dictionary Dgi

is obtained as follows:

dgi⊗j = ugi⊗jv
T
gi⊗j, j=1,2,...,r. (5.11)
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Finally, the adaptively learned dictionary for the group Ygi
can be obtained by

concatenating all the r submatrices obtained from above as follows:

Dgi
= [dgi⊗1,dgi⊗2, ...,dgi⊗r] . (5.12)

The proposed self-adaptive group dictionary training is more robust and effective

as it assures that all the patches in each group Ygi
are using the same dictionary

Dgi
and sharing the same dictionary atoms. The learning is also very efficient as it

needs to solve only one SVD problem for each group.

5.4.2 Joint sparse reconstruction-based SR

The proposed JSR-based reconstruction, first, resizes the LR image Y according to

the upscale ratio using bicubic interpolation. Then a joint regularization problem

incorporating a priori terms of the PSR and GSR subproblems is solved using the

ADMM. Mathematically, the proposed reconstruction model is given as follows:

X̂ = arg min
X
‖Y − SHX‖2

2 + λ<JSR (X) , (5.13)

where <JSR (X) represents the JSR regularization, which can be further split into

PSR and GSR regularizations, i.e.

X̂ = arg min
X
‖Y − SHX‖2

2 + λ1<PSR (X) + λ2<GSR (X) , (5.14)

where λ1 and λ2 are the regularization parameters. Here, the first regularization

term <PSR (X) solves a patch-wise optimization problem with the input bicubic

upscaled image Y and pre-trained LR and HR dictionaries of Eq. 5.9 as follows.

<PSR (X) =
∑

i

1

2

∥∥∥ỹi − D̃αi

∥∥∥
2

2
+ λ1 ‖αi‖1, (5.15)
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where D̃ =


Dl

EpDh


 , ỹi =


yi

w


 and yi = Ep (SHX) gives the i-th feature

patch extracted by operator Ep and w contains the overlapping pixels between the

present HR patch and previously generated HR image. In this work, an efficient

`1-minimization method known as the features sign search algorithm [56] is adopted

to solve the PSR-based regularization subproblem.

Algorithm 3: Proposed JSRMiSR Algorithm

Input: Y, S, H, Ep, Γ, D`, Dh, Dgi

Initialization: t ← 0, δ ← 10−4, λ1, λ2, µ1, µ2

1: while not converge do

2: k ← k + 1

3: αi
t ← arg min

α

∑
i

∥∥∥Ep (SHX)− D̃αi

∥∥∥
2

2
+ λ1 ‖αi‖1

4: βt
gi
← arg min

β

∑
i

∥∥Γi (SHX)−Dgi
βgi

∥∥2

2
+ λ2

∥∥βgi

∥∥
1

5: Xt ←
(SH)tY+µ1

∑
i

(EpSH)tEpD̃αi+µ2
∑
j

(ΓjSH)tDgiβgi

(SH)tSH+µ1
∑
i

(PSH)tEpSH+µ2
∑
i

(ΓiSH)tDgiβgi

6: check convergence :‖Xt −Xt−1‖/‖Xt‖ ≤ δ

7: end while

Output: X∗ ← Xt

The second regularization term <GSR (X) solves a group sparse coding problem

for the bicubic upscaled image Y by forming groups of similar patches. It finds

sparse representation of the i-th group Ygi
involving the dictionary Dgi

, i.e. βgi
as

follows:

<GSR (X) =
∑

i

1

2

∥∥Ygi
−Dgi

βgi

∥∥2

2
+ λ2

∥∥βgi

∥∥
1
, (5.16)

where Ygi
= Γi(SHX) is a patch-group extracted using the operator Γ from the

i-th search window. The above GSR regularization subproblem is efficiently solved

using the accelerated split Bregman algorithm [43].

Now, after solving the above two subproblems, their results are used to solve

the main problem in Eq. 5.14 to find the target image X̂. Mathematically, we can
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write it as follows:

X̂ = arg min
X
‖Y − SHX‖2

2 + µ1 Σ
i

∥∥∥Ep(SHX)− D̃αi

∥∥∥
2

2

+µ2 Σ
i

∥∥Γi(SHX)−Dgi
βgi

∥∥2

2
,

(5.17)

where µ1 and µ2 are small positive regularization parameters. Minimization problem

in Eq. 5.17 is strictly convex and a closed-form solution can be obtained by setting

its gradient w.r.t. X to zero. The solution is shown in step 5 of Algorithm 1. In this

work, we jointly solve both PSR (αi) and GSR (βgi
) within the ADMM framework

to estimate the final result X. The proposed algorithm proves to be very crucial as

the results seem to improve significantly.

5.5 Results and discussions

The proposed SR algorithm is tested on MS images captured by ResourceSat-2

satellite developed and launched by Indian Space Research Organization (ISRO)

and collected from National Remote Sensing Center (NRSC), ISRO, Hyderabad,

India.

5.5.1 Performance evaluation and comparisons

5.5.1.1 Dataset preparation

We have considered MS images acquired by the Linear Imaging Self Scanner IV

(LISS-IV) sensor of the ResourceSat-2. It consists of three spectral bands out of

which two are visible bands, i.e. Green (B2: 0.52-0.59 µm) and Red (B3: 0.62-0.68

µm ) and the third one is the near infrared band i.e. NIR (B4: 0.77-0.86 µm).

Each band has a spatial resolution of 5.8 m and swath coverage of 25 Km. As

shown in Fig. 5.7, three representative images (Test1: 256×256, Test2: 512×512,

and Test3: 510×510 ) are taken from the dataset for evaluating the algorithm;
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‘Test1’ and ‘Test3’ have Date of Pass 07-OCT-2014, Latitude 25◦04′03′′02S and

Longitude 66◦95′44′′83E, while they are respectively 06-FEB-2017, 13◦44′16′′52N

and 79◦58′50′′52E for ‘Test2’. The corresponding LR test images are obtained by

blurring and downsampling of these test images.

(a) Test1 (b) Test2 (c) Test3
Figure 5.7: LISS IV original test images. From left to right: Test1, Test2 and Test3

5.5.1.2 Experimental settings

In this work, Gaussian blur filters of sizes 5×5, 7×7 and 9×9 with standard de-

viations 1.2, 1.6 and 2.0 are applied on each MS band, and then downsampled by

factors 2, 3, and 4, respectively to generate the LR image bands for simulations. The

Table 5.1: Selection of different parameters for the proposed algorithm
Parameters Values
Gaussian blur filter:

For upscale =2
kernel size = 5×5; standard deviation = 1.2

For upscale =3 kernel size = 7×7; standard deviation = 1.6
For upscale =4 kernel size = 9×9; standard deviation = 2.0

Patch size 5×5
Patch searching window size 20×20
Overlapping pixels between adjacent patches 4
Number of patches in each group 60
Regularization parameters λ1 = 0.15; λ2 = 0.2
Regularization constants µ1 = 0.00005; µ2 = 0.005; δ =10−4

Dictionary sizes
PSR: Dh = 25×256; D` = 100×256;
GSR: Dgi

= 25×60

other parameters for this experiment are set as shown in the Table 5.1. We have

considered six state-of-the-art sparse representation and learning-based SR meth-

ods, namely, ScSR [115], Moustafa [71], CRNS [17], GSRGSiSR [113], RAISR [85]

and CDLSR [94] for comparisons with the proposed method. Results are compared
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both visually and quantitatively. Moreover, for fair comparisons, we have consid-

ered five state-of-the-art deep learning-based methods and evaluated their results

on three publicly available standard remote sensing datasets along with a few MS

datasets collected from ISRO. Additionally, remote sensing image analysis are also

being conducted in terms of MS image classifications and spectral graph-based eval-

uation techniques. All simulations are done in the MATLAB environment running

on a Workstation equipped with 128 GB of RAM and Windows 10 OS.

5.5.1.3 Evaluation parameters

For validation of the proposed algorithm, we have computed several quantitative

metrics e.g. peak signal-to-noise ratio (PSNR), structural similarity (SSIM), er-

reur relative globale adimensionnelle de synthese (ERGAS), spectral angle map-

per (SAM), Q-index, spatial correlation coefficient (sCC), etc., along with three

no-reference based parameters, namely, natural image quality evaluator (NIQE),

entropy (EN), and enhanced measure evaluation (EME) are used for comparison

of results and validation. For high quality reconstruction with rich information,

PSNR, SSIM, Q-index, EME and EN should increase, while that of ERGAS, SAM

and NIQE should decrease.

5.5.1.4 Visual interpretation of reconstructed images

SR reconstruction of each MS band is performed separately and then results are

combined to achieve the desired HR MS image. We perform reconstruction of SR

images corresponding to upscale ratios 2 and 4 for the images Test1 and Test2, while

for Test3 we choose to perform SR by ratios 2 and 3, respectively. The reconstructed

false color RGB images for different methods are shown in Fig. 5.8 for all the test

images.

Here, results for 3× upscaling of Test1 and Test2 are not included because

their sizes are not exactly divisible by 3 and an additional interpolation before
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downsampling by 3 may change the pixel properties with respect to the ground-

truth besides adding to extra computation. While, it is also possible to select a

suitable RoI of proper size, but for fair comparisons, we have not carried out that in

our simulations. In all the visual comparisons, a small region of the reconstructed

image is selected and then its zoomed in version is superimposed over it to highlight

the quality of reconstruction. From visual inspection, it is clear that the proposed

method provides the best perceptual quality of reconstructed images. It is able

to restore the texture as well as structure components better than other methods.

Although methods, like the CRNS, the GSRGSiSR and the RAISR are slightly

closer in terms of PSNR, however, finer details in the reconstructed images tend

to be smoothed. GSRGSiSR lacks in recovering the edges and sharp details, when

subjected to higher upscalings e.g. 3 and 4. Also, it is noticed that other methods,

like ScSR, CDLSR, etc., which do not utilize blurring in practice and simply use

downsampling for LR image generation, fail to maintain similar performances for

the same test images. Furthermore, error images between original and reconstructed

images of Test1 and Test2 are shown in Fig. 5.9 for a better interpretation of visual

results. Images in the first row of Fig. 5.9 from left to right (a-h) show the error

images of Test1 for upscale ratio 2, where the intensity of error pixels are more (i.e.

∼ 65) in case of bicubic interpolation, while it is the least visible in the proposed

method. Similarly, error images of Test2 corresponding to upscale ratio 4 are shown

in 5.9(j-q) and it demonstrate the least error produced by the proposed method.

(a) (b) (c) (d) (e) (f) (g) (h)

(j) (k) (l) (m) (n) (o) (p) (q)
Figure 5.9: Error between original and reconstructed images: first row (a-h)- Test1-
band2 with upscale ratio 2, second row (j-q)- Test-band3 with upscale ratio 4. In each
row, from left to right it shows error images by: Bicubic, ScSR, Moustafa, CRNS,
GSRGSiSR, RAISR, CDLSR and the proposed method, respectively.
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5.5.1.5 Quantitative analysis

We also evaluate eight quantitative parameters mentioned above and shown in Table

5.2. We observe that average PSNR is the highest in case of the proposed method

that is 35.36 dB, with an average improvement of 1-4 dB over other techniques.

Similarly, SSIM is also the highest in case of the proposed method, while ERGAS

and SAM values are the least. Parameters, like sCC and EME are also far better

than other methods. Although we observe smaller NIQE values for the GSRGSiSR

method (which may be due to the over smoothing effect) compared to the proposed

method, it does make little impact as the proposed method comfortably outperforms

it in terms of all other metrics. PSNR values of different test images are also

graphically compared in Fig. 5.10, which reiterate the superiority of the proposed

method. The remaining quantitative measures of Test1 with 4× upscaling, Test2

with 2× upscaling and Test3 with 2× upscaling are graphically depicted in Fig. 5.11.

It can be observed that almost in case of every parameter the proposed method is

able to achieve the best performance, when compared to others.

Figure 5.10: Comparison of PSNR values of Test1, Test2 and Test3 images with
respect to upscale ratios 4, 2 and 2, respectively
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Figure 5.11: Comparison of SSIM, ERGAS, SAM, Q-index, sCC, EME, Entopy and
NIQE values for Test1, Test2 and Test3 images corresponding to upscale ratios 4, 2
and 2, respectively
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5.5.1.6 Convergence test of the proposed algorithm

An empirical test is done by plotting the PSNR values of the reconstructed images

with varying iteration numbers for the algorithm. Figs. 5.12a-5.12b show the con-

vergence plot of all the three bands i.e. band2, band3 and band4 of the LISS-IV

Test1 and Test2 images, respectively. It can be observed that in all the bands, the

PSNR value is increasing gradually until it becomes constant after a certain num-

ber of iterations. The convergence behavior of Test3 image with respect to upscale

values 2, 3 and 4 are also very stable. We consider maximum iteration number as

30 to reduce the computation time of the algorithm as it is observed that the PSNR

increases up to 20-30 iterations and after that it becomes nearly flat.

(a) (b)
Figure 5.12: Convergence analysis of the proposed method shown in terms of pro-
gression of PSNR values with respect to the iteration number. (a) for ‘Test1’ image
with upscale ratio 2; (b) for ‘Test2’ image with upscale ratio 4

5.5.1.7 Computational complexity and runtime comparison

Major computation comes from two aspects- firstly, learning the K-SVD dictionary

and solving the PSR problem, and secondly solving the GSR problem. If K is the

number of atoms in the dictionary then PSR needs O(K3) operations. If N is the

total number of pixels, ts is the time required for searching similar patches for any

given patch, the complexity of SVD dictionary learning from each group is O(m×k).

Therefore, the overall complexity of the GSR part can be given as O(N(m×k+ts)).
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The overall computational cost of the JSR problem is O(K3 + N(m × k + ts)).

The execution time of the proposed method is graphically compared with those

of other methods in Fig. 5.13. In this work, since we have performed band-

wise SR, we compute the execution time for the reconstruction of a test image

as the average time over all of its bands. Here, the first plot (top) compares the

average SR reconstruction time taken by different methods for equal number of

test images randomly taken from each of the dataset. Also, to get an idea of the

underlying experimentation on different test images, we have shown a comparison

of average execution times against the three test images of LISS-IV for different

methods (bottom part).

Figure 5.13: Average reconstruction time of different methods (corresponding to
upscale ratio 2) for equal number of randomly selected images from different datasets
(top), and average band-wise reconstruction time of different methods for the three
test images of LISS-IV dataset.

It can be noticed that although the execution time of the proposed method

is little higher, it is faster than its closest competitors: GSRGSiSR, CRNS and

CDLSR. RAISR outperforms the proposed method in terms of execution time, but

its reconstruction quality is poor. This is because the objective of the former is only

to achieve rapid reconstruction using a simple mapping from LR-to-HR without

targeting high accuracy in SR reconstruction. We have not compared the proposed

method with the ScSR as the dictionary training in the latter is done globally from

similar external HR datasets. The coupled dictionary training in ScSR takes 2-3

hours, while in CDLSR it takes 30-35 minutes [94]. Since, the results of the proposed

SR method are highly promising, in future, parallel processing-based approach using
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general-purpose graphics processing unit (GP-GPU) may be explored for achieving

speed up in execution.

5.5.2 Comparison with deep learning-based SR methods

In this work, a few DL-based methods are also considered for comparing their

performances with the proposed method and establish the merits of the proposed

method over the DL-based methods, particularly, in remote sensing. Since, DL-

based methods require large datasets for network learning, we consider few publicly

available land-use datasets, namely, PatternNet1, UC Merced Dataset (UCMD)2

and the Aerial Image Database (AID)3. PatternNet consists of 38 classes of Google

Earth images of size 256×256 and spatial resolution ranging from 0.062 m to 4.693

m[132]; UCMD has 21 classes and images are of size 256×256 with 0.3 m spatial

resolution[119]; AID imagery have total 30 classes and measuring 600×600 pixels

and spatial resolution in the range 0.5 m to 0.8 m[110].

Figure 5.14: Example images of different test datasets considered for validation
of this proposed work and the DL-based methods, column-wise from left to right:
PatternNet, UC Merced, AID, LISS-III and CAVE.

We have also tested the two best performing DL-based and the sparse represen-

1PatternNet is available at https://sites.google.com/view/zhouwx/dataset
2UCMD is available at http://weegee.vision.ucmerced.edu/datasets/landuse.html
3AID is available at https://captain-whu.github.io/AID/
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tation based methods of above experiments on the CAVE4 MS dataset along with

self-procured LISS-III and LISS-IV datasets. The LISS-III imagery have four spec-

tral bands namely, Green (B2: 0.52-0.59 µm), Red (B3: 0.62-0.68 µm , near infrared

i.e. NIR (B4: 0.77-0.86 µm) and the mid infrared (MIR) (B5: 1.55-1.70 µm), respec-

tively. While, the CAVE MS dataset consists 32 scenes and each image includes 31

spectral bands (400 nm -700 nm, with 10 nm steps) each having a size of 512×512

[120]. The CAVE data is commonly used for validations of spectral reconstruction

in MS image SR [65, 120]. Figure 5.14 shows two representational images from each

category considered for this comparison. The LISS-III test images ‘Golconda’ and

‘Pune’ are of size 256×256 and the LR versions corresponding to downsapmling fac-

tor 2 are generated from them using a blurring operator as discussed in subsection

5.5.1.2. Also, the LR versions of all the test images are generated using the same

approach.

5.5.2.1 Evaluation of DL-based methods

A few state-of-the-art DL-based SR methods, namely, CFSRCNN[102], MHAN[125],

SAN[28], VDSR[55] and SRCNN[34] are simulated to get a fair idea which among

them is performing better on the publicly available standard remote sensing datasets.

Since these images are in RGB format, we first transform them into YCbCr to

apply SISR algorithm on the Y -channel. First, we have re-trained the respective

DL models by selecting 80-90% images of each dataset and about 10% images for

validation. We select a few test images from the above datasets randomly such that

they are not included in the training. To provide a fair comparison with the non-

DL methods, LR test images for evaluating the DL-based methods are generated

by the same procedure. While preparing the training dataset for LISS-IV, equal

number of RoI images of size 256×256 are selected from the original images (of

size, say 10000×10000). RoI images selected from individual bands are based on

their entropy and variance values. Next, we have tested the methods for 5-8 images

4CAVE data is available at https://www.cs.columbia.edu/CAVE/databases/
multispectral/
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from each dataset and shown the average results. Here, we have calculated only the

PSNR and SSIM values for simplicity. Additionally, in another experiment, we have

selected the five best performing methods from the DL, and sparse representation

categories and results are compared with the proposed method corresponding to

LISS-III, LISS-IV and the CAVE datasets.

The target HR image of each MS LR-band is individually reconstructed using

the proposed JAMiSR algorithm, and finally individual bands are merged to ob-

tain a false colour RGB image for visual representation. The visual outputs by

different DL-based methods are compared with that of the proposed method in Fig.

5.15. From the visual interpretation of the reconstructed images, it is observed that

the DL-based methods can not overcome the effects of image degradations i.e blur-

ring and downsampling, which are considered in SR works. However, the proposed

method is able to reduce these effects to a large extent through adaptive dictionary

learning and ADMM-based JSR algorithm. Magnified versions of RoI sub-images

of the test images, Airplane, Buildings, and Bridge are shown in Fig. 5.15 for bet-

ter visual interpretation. The reconstructed images are also sharper in case of the

proposed method presenting the fine details and edges in a less artifact manner and

reduced haziness in backgrounds. For quantitative evaluation, two metrics, PSNR

and SSIM are calculated in each case and displayed below the reconstructed images

of each method in Fig. 5.15. The PSNR and SSIM comparisons for the other test

images of datasets, PatternNet, UC Merced, and AID is done and shown in Table

5.3. We can observe that the average PSNR and SSIM of the proposed method

is high for all the test images of the three public datasets. The improvements in

PSNR are in the range of 2-3 dB, while SSIM values are in the range of 0.1-0.15

approximately.
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5.5. Results and discussions

In a second set of experiments, we have selected five best performing DL- and

sparse representation-based methods and compared with the proposed method using

LISS-III, LISS-IV and CAVE MS datasets. The reconstructed images by different

methods are shown in Fig. 5.16 for the three MS image datasets. From the visual

results, we can see that the proposed method is able to provide best visual results

with higher PSNR and SSIM values. The RoIs selected contain clear structural

information of urban areas, industrial and other important places. It is because the

proposed method can reproduce local information the best along with the maximum

removal of undesired artifacts. In some experiments, the results of the GSRSiSR

method performs closer to the proposed method, but this is only when the test

image is either having less structures or a high uniform background e.g. in LISS-III

second image and the LISS-IV first image. Moreover, the GSRSiSR method induces

higher smoothing and fails to bring out small objects distinctly as compared to the

proposed method. For LISS-IV test images ‘Test1’ and ‘Test3’, the performances

of all the three DL-based methods are poor as we can see distorted objects, highly

suppressed by the smoothing effects. In case of the CAVE dataset, the edges of the

Sponge image generated by the proposed method is sharply visible, while a uniform

background is also being restored.

The objective evaluation of the reconstructed images are carried out using PSNR

and SSIM and displayed below the output images of each method in Fig. 5.16. Few

other quantitative metrics like, ERGAS, SAM, Q-index, and Entropy are also eval-

uated and compared graphically in Fig. 5.17 for the two test images of LISS-III

dataset. The spectral information of all the images also remain intact in case of

the proposed method without suffering any color changes. In another experiment,

we have performed an additional comparison of the sparse-dictionary models with

DL-models on a common test set. For MS datasets, we apply the SR algorithm on

every LR band image separately. Here in Fig. 5.18, SR reconstruction results are

shown for band2 and band3 of the Test1 and Test2 images (as shown in Fig. 5.7)

with upscaling factors 2 and 4, respectively. From visual inspection, it is clear that

the proposed method provides the best perceptual quality of reconstructed images.

Moreover, the PSNR and SSIM values of the proposed method shown in respective
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Figure 5.15: Comparison of reconstructed images of DL-based methods with the
proposed method. From top to bottom: first three rows are for PatternNet (Air-
plane), next three rows are for UC Merced (Buildings) and the last three rows are
for AID image (Bridge), respectively corresponding to upscaling factors 2, 3, and 4.
Column-wise from left to right: original image, region of interest (RoI) image, re-
sults of different methods: SRCNN, VDSR, SAN, CFSRCNN, MHAN, and proposed
method, respectively.
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Figure 5.16: Visual results of LISS-III, LISS-IV, and CAVE MS images shown for
upscale ratios 2, 3 and 4 respectively. Column-wise from left to right: original, RoI,
reconstructed images using CDLSR, GSRGSiSR, SAN, CFSRCNN, MHAN and the
proposed method, respectively. Row-wise from top to bottom: first two rows represent
LISS-III images corresponding to upscale ratio 2, next two rows represent LISS-IV
images corresponding to upscale ratio 3, and finally the last two rows represent the
CAVE images corresponding to upscale ratio 4.

figures indicate its superiority over the other methods. The reasons behind the poor

performances of the DL-based methods in this work are, firstly, consideration of

the blurring in image degradation model, secondly, smaller datasets with compara-

tively less (approximately 100) training images. Moreover, the proposed JAMiSR is

capable of reconstructing an HR image from the given input image only through self-

adaptive group dictionary learning and optimization-based reconstruction, which is

very less time consuming (≈ 100 seconds) for training compared to the training of

DL-based methods (≈ 5-8 hours). However, it may be mentioned here that the

DL-based image reconstruction alone can be very fast; it takes only few seconds
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Figure 5.17: Comparison of quantitative metrics of DL-based and sparse representa-
tion methods for SR of LISS-III test images ‘Golconda’ and ‘Pune’ respectively w.r.t.
upscale ratio 2.

provided sufficient numbers of DL-based super-resolution models are being trained

offline from large number of available datasets. An estimate of average inference

time for the DL-models to perform 2× SR reconstruction on a single band image

of size 256×256 is given in Table 5.4. A graphical comparison of sequential time of

the proposed method with respect to other sparse dictionary-based methods is also

shown in Fig. 5.13, where it is clearly indicated that the former is able to surpass

other methods. In CPU, it takes ≈ 350–400 seconds for learning dictionaries as well

as SR image reconstruction. However, the run-time of the parallel version of the

proposed algorithm is reasonably less (≈ 15 seconds) and comparable to the DL

inference time. However, the proposed method has distinct advantage over other

sparse- and DL-models in terms of output quality.

Table 5.4: Comparison of inference time of the DL-methods and the proposed
method.

Methods CFSRCNN VDSR SAN CFSRCNN MHAN
Proposed

(Sequential)
Proposed
(Parallel)

Time (in sec) 0.4175 0.0170 5.821 0.0172 1.754 384 14.25
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Figure 5.18: Visual comparison of the SR outputs for LISS-IV dataset. (a) Rows
1–4 “Test1” band2. (b) Rows 1–2 “Test2” band3 images for upscale ratios 2 and
4 using different sparse dictionary- and DL-based methods. The PSNR and SSIM
measures for all the visual outputs are provided at the bottom of image for better
interpretation.

5.5.3 Remote sensing applications of the proposed method

5.5.3.1 Spectral graph comparisons

In a MS image, for the same area of view, different bands exhibit different reflectance

values. Therefore, different bands convey information of different features/objects

in the image e.g. blue band specifies deep water (50 m), atmosphere, etc.; green

band specifies vegetation, deep water (30 m), etc.; red band specifies the man-made

objects, soil, deep water (9 m), etc., and NIR band specifies geological features,

forest, fires, etc..

Table 5.5: Imaging features of MS image bands
Band Imaging
Blue Deep water (50 m), atmosphere, etc.
Green Vegetation, deep water (30 m), etc.
Red Man-made objects, soil, deep water (9 m), etc.
NIR Geological features, forest, fires, etc.
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A spectral profile characterizes properties of different band images; it is a plot of

pixel intensity values corresponding to the wavelength of each band. Fig. 5.19 shows

the spectral differences between the original and reconstructed images of different

sparse representation-based and the proposed methods for the LISS-IV ‘Test1’ and

LISS-III ‘Pune’ images. From the spectral profiles of all the reconstructed images,

it is observed that the proposed method is able to regenerate the HR image better

by providing the closest approximation of the spectral profile with respect to the

original. On the other hand, methods, like ScSR and CRNS tend to deviate from

the spectral graphs of the original images across all the wavelengths indicating their

limitation in providing better spectral estimations. Therefore, characterization of

terrestrial objects for remote sensing analysis using spectral profiling is likely to be

more benefitted from the HR images generated by the proposed method.

Figure 5.19: Spectral differences between the original and reconstructed images by
different methods

5.5.3.2 Classification performance analysis

We have performed classification on the HR reconstructed images obtained from

different methods to interpret the image contents and analyze the effects of SR

algorithm on a given LR MS image. ENVI classic 5.1 is used for classification and

analyzing the results. With the help of expert defined training classes, supervised

classification, like support vector machine (SVM) can cluster pixels from the test

images. We have conducted the experiment with two test images having different
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(a) LISS-IV ‘Test1’

(b) LISS-III ‘Pune’
Figure 5.20: Results of supervised classification performed on LISS-IV ‘Test1’ image
(a) and LISS-III ‘Pune’ image (b). From left to right: original image, LR image, and
reconstructed images of ScSR and the proposed method.

number of classes. In the first test image, RoIs are labeled as bare land (green),

buildings (blue) and vegetation (red), while in the second image they are labeled as

infrastructure (red), forest (green), sea water (blue), vegetation (yellow), and water

body (cyan). Multiple RoIs are selected under each class for training with the test

images. Figs. 5.20(a) and 5.20(b) show the classification results obtained for the

two MS test images from LISS-IV and LISS-III, respectively.

It is significantly noticeable that the proposed method has the most similar clas-

sified regions to that of the LR image. On the other hand, some regions are not dis-

tinctly classified in the conventional sparse representation method, like ScSR, when
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compared to the proposed method. For quantitative evaluation, the corresponding

pixel counts for each class are also shown in the figure. An average accuracy of pixel

counts is also computed across different classes for both the images. It is observed

that maximum accuracy is obtained in case of the proposed method, while in case

of the ScSR, the pixel count is quite different from both the original and LR images.

We also calculate the land cover area under each classified region from their

pixel counts and standard per-pixel resolution (PR) of the sensor. Since, LISS-IV

has 5.8 m spatial resolution, so each pixel covers an area of 33.64 m2 and thus Test1

image will have a coverage of 2.2046 km2, which is spread over the three classes.

Similarly, LISS-III has 23.5 m spatial resolution, resulting into a pixel area of 552.25

m2 and total image coverage of 36.19 km2, distributed among the five land cover

classes i.e. infrastructure, forest, sea water, vegetation and water body as depicted

in Fig. 5.20b. This further shows that the land cover area classification resulting

from the proposed method is more accurate and at par with the original images.

5.5.4 Parallel implementation using GPGPU hardware

The computation time of the proposed JAMiSR appears to be more because the

coupled dictionary training, patch sparse coding of PSR as well as non-local similar

patch searching and group sparse coding via SVD of GSR increases the computa-

tional cost. Moreover, the ADMM algorithm needs to solve both the PSR and GSR

subproblems in each iteration. Therefore, in the proposed algorithm, we have used

GPGPU hardware to accelerate the execution time of the proposed JSR-based MS

image SR using the CUDA programming model in the MATLAB environment.

An analysis of the CPU execution time is done to make an assessment of the

potentially parallelizable sections of the proposed algorithm. As shown in Table 5.6,

the major time consuming parts in the sequential program are found to be PSR (K-

SVD dictionary training and patch sparse optimization) and GSR (block matching,

group sparse coding via SVD).
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Table 5.6: CPU run-time for different sections of the proposed SR algorithm.
Function Run time (in secs)
GSR 167.93
PSR 33.20
`1-feature-sign-search 108.67
non-local patch search 35.67
mean 4.025

The parallel computing toolbox of MATLAB allows to run computations on

NVIDIA CUDA-enabled GPU(s) in workstations using built-in functions or gener-

ating CUDA codes from MATLAB. Computationally heavy functions may be con-

verted into MEX file that contains CUDA code and execute them in GPU by calling

through MATLAB. A CPU-GPU hybrid environment is utilized to speed-up the

code executions in this work. Here, the PSR is implemented using CUDA-mex

and the other functions are implemented using C++ mex functions in the MATLAB

parallel computing environment.

We use GPU coder to convert the existing sequential functions by duly modifying

them. Since, in CPU all the variables are defined in the global memory, so while

we convert them using GPU coder it can not generate the MEX file. To run in

multiple blocks/threads, the variables are needed to be declared in shared memory

and accordingly the code is modified to properly return the outputs back to CPU.

GPU coder allows to automatically define the input variables types and dimensions

before generating the MEX file by running the main program which calls the function

to be converted. By manually setting the variable ranges to a possible maximum

value will allow to use the generated MEX files for any image sizes within that limit.

In this work while configuring MEX-setup we use Microsoft Visual C++ 2015 for C

language compilation. The algorithm is then run on a workstation equipped with

Intel Xeon Processor, Windows 10 OS, 128 GB RAM, and NVIDIA’s QUADRO

P5000 GPU card (Compute capability = 6.1, CUDA Toolkit = 10.1, memory = 16

GB).

In sequential version of JAMiSR, the PSR and GSR subproblems in CPU re-

quires 4.82 seconds and 5.82 seconds, respectively in an inner loop, which in turn
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Table 5.7: Comparison of proposed method’s sequential and parallel implementation
time for MS datasets of varying sizes.

Dataset Input size Output size Seq. time Parallel time
(in secsonds) (in seconds)

LISS-III 128×128×4 256×256×4 1365 57

LISS-IV 256×256×3 512×512×3 3443 261

QuickBird 512×512×4 1024×1024×4 26463 787

LISS-IV 1024×1024×3 2048×2048×3 44478 1178

are called in an outer loop of the ADMM algorithm. Through parallelization, the

proposed MEX-CUDA based implementation of the PSR takes approx. 0.70 sec-

onds, while the GSR takes approx 0.36 seconds for each patch. Hence, the overall

execution time of the algorithm is accelerated by several times. We have compared

the run time of the proposed algorithm for different test MS images of sizes starting

from 128×128×4 to 1024×1024×3. A time comparison for sequential vs parallel im-

plementations of the proposed algorithm is shown in Table 5.7. It can be observed

that to reconstruct a four channel MS image of 256×256, the parallel algorithm re-

quires about 57 seconds, while its sequential counterpart takes approximately 1365

seconds. Here, we have additionally used the MATLAB parfor instruction to si-

multaneously process all the bands of the MS images, where each image will be

reconstructed through the proposed MEX-CUDA based parallelization. A speed-up

in the order of 15-35 times is achieved through the parallelization of the algorithm.

The graphical comparison of band-wise average execution times in CPU vs GPU

shown in Fig. 5.21 also clearly indicates the reduction of computational time by the

parallel implementation of the proposed algorithm.

5.5.5 Conclusion

In this chapter, we have presented an efficient image SR method based on JSR and

adaptive dictionary learning for MS remote sensing images. The non-local self simi-

larity information of different patch-groups provide improved sparse representations

over learned dictionaries. The proposed MS image SR algorithm learns two overcom-
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Figure 5.21: Comparison of average execution time for band-wise super-resolution
of different sized images.

plete dictionaries: an adaptive group dictionary for every patch groups present in the

image and an adaptive patch-based dictionary. Reconstructed images with group

sparsity are enriched with both the local and non-local information. Therefore, the

proposed JAMiSR method is able to show better performances, while reducing the

high-computation costs of global dictionary training. Results are demonstrated both

visually and quantitatively, where significant improvements are achieved over several

state-of-the-art methods. Extensive simulations are also carried out for the DL-

based methods using both publicly available datasets as well as some self-procured

MS image datasets. On an average, the proposed method performs better in most

of the experiments. Also, the high classification accuracy of the reconstructed MS

images indicate that the proposed algorithm is able to improve the resolution of

input LR MS images required for practical remote sensing applications.
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