Dedicated to

My Beloved Parents Dr. Ramesh Chandra Jha & Smt. Meera Devi

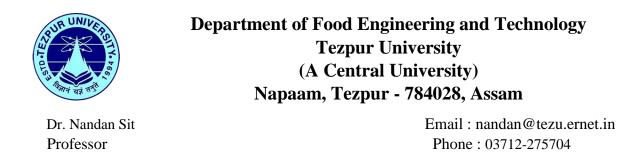
Declaration by the Candidate

The thesis entitled "Supercritical fluid extraction of bioactive compounds from haritaki (*Terminalia chebula*) using novel pre-treatments and its application in development of functional food" is being submitted to *School of Engineering, Tezpur University* in partial fulfilment for the award of the degree of *Doctor of Philosophy* in the *Department of Food Engineering and Technology* is a record of bonafide research work accomplished by me under the supervision of **Prof. Nandan Sit.**

All helps from various sources have been duly acknowledged.

No part of the thesis has been submitted elsewhere for award of any other degree.

Arinashikumangha


Avinash Kumar Jha

FPP17104

Date:

Place: Tezpur

Department of Food Engineering and Technology School of Engineering, Tezpur University Tezpur, Assam- 784028 (India)

Certificate of the Supervisor

This is to certify that the thesis entitled "Supercritical fluid extraction of bioactive compounds from haritaki (*Terminalia chebula*) using novel pre-treatments and its application in development of functional food" submitted to the School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in Food Engineering and Technology is a record of research work carried out by Mr. Avinash Kumar Jha under my supervision and guidance.

All help received by him from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Signature by Supervisor

Nandan sit Professor Department of Food Engineering and Technology School of Engineering, Tezpur University Tezpur, Assam- 784028 (India)

Date:

Place: Tezpur

I am grateful to my supervisor, Prof. Nandan Sit, Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, for his dedication, expert guidance, and tireless efforts in assisting me in completing the thesis. I'm also thankful to his for all of his care and helpful recommendations throughout the process, from the start to the end. Working under his direction has been a fantastic experience. I owe a debt of gratitude for organising my research in a systematic manner.

I express my deep sense of gratitude to Hon. Vice-Chancellor Prof. Shambhu Nath Singh, Tezpur University, Tezpur, Assam for providing the opportunity to carry out the thesis work. I am also grateful to Prof. P. P. Sahu, Dean of School of Engineering, and Prof. S. C. Deka, Controller of Examinations, Tezpur University, for their unwavering support throughout the thesis.

With a sense of gratitude and great pleasure, my thanks go to the esteemed member of my Doctoral Committee, Prof. S. C. Deka, Department of Food Engineering and Technology, Tezpur University, and Prof. Poonam Mishra, Department of Food Engineering and Technology, Tezpur University, for their valuable suggestions and encouragement at various stages of investigation and thesis writing.

Heartfelt thanks are due to the members of Departmental Research Committee for extending all sorts of help and guidance throughout my research work. I also acknowledge Prof. Charu Lata Mahanta, Prof. Manuj Kr. Hazarika, Prof. B. Srivastava, Prof. L. S. Badwaik, Dr. Swami Hulle Nishant Rachayya, Dr. Amit Baran Das, Dr. Tabli Ghosh, Dr. Soumya Ranjan Purohit and Dr. Nickhil C. the faculty members of the Department of Food Engineering and Technology for their regular suggestions and encouragement throughout my Ph.D. study.

My sincere thanks to the technical staff, Dr. Dipankar Kalita, Dr. Arup Jyoti Das, Mr. Labadeep Kalita, and Mrs. Swdwmsri Mashahary and non-technical staff, Mr. Krishna Borah and Mr. Anjan Keot of the Department for giving the essential assistance during my research work and formal work in the Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam.

I wish to thank sponsors of my Ph.D., the award of CSIR-SRF 2020-23 (Award no. 09/796(0113)/2020-EMR-I), Govt. of India, for funding this research, and Tezpur

University for providing Research and Innovation grant (File no. TU/Fin/R/18-19/339) to carry out the project. Without the financial assistance received from the stated sponsors, it wouldn't have been possible for me to perform the present research.

I also wish to express my sincere thanks to my colleagues Dr. Arun Kumar Gupta, Dr. Maanas Sharma, Dr. G.V.S. Bhagyaraj, Mr. Shubham Rohilla, Ms. Sangita Muchahary, Mrs. Manisha Medhi, Mr. Swapnil P. Gautam, Ms. Maibam Baby Devi, Ms. Urbashi Neog who supported me and provided much-needed encouragement during my research work.

I express my heartfelt thanks to my seniors like Dr. Sourav Chakraborty, Dr. Hilal A. Makroo, Dr. Pallab K. Borah, Mr. Manas Jyoti Das, my lab mates (Mr. Bhaskar Jyoti Kalita, Mr. Mohit Singla, Mr. Awanish Singh, Ms. Ditimoni Dutta, Ms. Pinky Deka, Mr. Prashant Kumar Srivastava, Ms. Bharati Kumari and Ms. Nipona Shill), and juniors for their continuous support throughout my research.

I want to thank everyone who has supported me in some way, whether directly or indirectly, and whose names have not been stated explicitly.

Finally, I would like to express my heartfelt gratitude to my loving parents, Dr. Ramesh Chandra Jha, Smt. Meera Devi and my in-laws, as well as my elder sisters (Mrs. Mala Jha, Mrs. Kalpana Mishra, Mrs. Archana Mishra, Mrs. Vandana Mishra), my elder brother-in-law (Dr. P. K. Pranav, Mr. Sunil Kumar Mishra, Mr. Raghavendra Mishra, Mr. Vibhash Mishra) and my wife (Mrs. Kajal Jha) for their unwavering love, encouragement, care, concern and support throughout my Ph.D. It would have been difficult for me to finish my study without their incredible understanding, encouragement, and support during the last five years. I'd want to recognise the constant love and support of my friends and a close family, who have kept me going throughout my Ph. D. programme.

Above all, I am thankful to my "Grandparents" and "The God Almighty" who has showered his blessings on me to complete my Ph. D thesis.

Arinashikumangha

Avinash Kumar Jha

List of Tables

Table No.	Title	Page No.	
2.1.	Botanical classification of Haritaki	11	
2.2.	Bioactive compounds of haritaki and their activities	12	
2.3.	Summary of pharmacological studies on haritaki	24-27	
3.1.	Mathematical models fitted to the thin layer drying curve of <i>T</i> . <i>chebula</i> fruit	62	
3.2.	Moisture sorption isotherm models used to fit experimental EMC-ERH data for haritaki pulp powder	66	
3.3.	Engineering properties of haritaki	68	
3.4.	Model and statistical parameters obtained from fitting of drying models for convective drying of <i>T. chebula</i> fruits	71-72	
3.5.	Diffusivity of <i>T</i> . chebula fruit during drying at different temperatures	74	
3.6.	Degradation kinetics parameters and activation energy for phytochemicals and color of <i>T. chebula</i> fruit during drying	78	
3.7.	Estimated parameters of fitted models to the experimental data for the sorption isotherm of haritaki pulp powder at 30, 40 and $50 \ ^{\circ}C$	83-84	
4.1.	Independent and Dependent parameters of CCRD	96	
4.2.	Experimental and predicted values of responses for different combinations of experimental conditions	100-101	
4.3.	Analysis of variance (ANOVA) of the RSM models for the responses	102-103	
4.4.	Comparison of the statistical parameters of ANN and RSM models for the various responses	110	
4.5.	Comparison of the optimization results obtained from the three different approaches	112	
5.1.	Optimized condition of SFE	123	
5.2	Components identified in extracted haritaki pulp by LC-MS analysis	137-139	
5.3.	Colour properties of fresh, dried and pre-treated samples	140-141	
6.1.	Physical properties of freeze dried encapsulate	158	

6.2.	Thermal properties and Mass loss of different encapsulates	163
7.1.	Acidity, pH and syneresis of the yoghurt during storage period	179
7.2.	Color parameters of yoghurt samples during storage period	182
7.3.	Variation in phytochemical properties of yoghurt during storage	185
7.4.	Texture of yoghurt samples during storage period	193
7.5.	Sensorial properties of yoghurt samples	195

List of Figures

Figure	Title	Page No.
No.	The	1 age 110.
2.1.	(a) Haritaki tree (b) Fruit with seed and flesh (c) <i>Terminalia chebula</i> (Haritaki)	9
2.2.	Fresh fruit, dried pulp, seed and powder of different varieties of haritaki (a) Ellipse shape, (b) Oval shape, (c) Small ellipsoid shape, (d) Ellipsoid shape haritaki (Source of image Tezpur University)	10
2.3.	Conventional, Non- conventional and Integration of different extraction techniques	19
3.1.	Variation in moisture ratio vs time for <i>T. chebula</i> fruit at different temperatures	70
3.2.	Plot for experimental vs predicted MR for 'Approximation of diffusion' model	73
3.3.	Residual analysis plot	73
3.4.	Plot for ln(MR) vs drying time	74
3.5.	Arrhenius plot for $ln(D_{eff})$ vs inverse of temperature for drying of fruit	
3.6.	Variation in vitamin C during drying at different temperature	
3.7.	Variation in TPC during drying at different temperature	
3.8.	Variation in TFC during drying at different temperatures	76
3.9.	Variation in antioxidant activity during drying at different temperatures	
3.10.	Variation in total color during drying at different temperatures	77
3.11.	Moisture sorption isotherms of haritaki pulp powder at 30, 40 and 50°C.	80
3.12.	Standardized residuals analysis plot	80-81
4.1.	Response surface plot showing the effects of time, temperature, pressure and flow rate on TPC	103-104
4.2.	Response surface plot showing the effects of time, temperature, pressure and flow rate on TFC	105

4.3.	Response surface plot showing the effects of time, temperature,	106	
	pressure and flow rate on DPPH		
	General architecture of the feed forward back propagation		
4.4.	multilayer perceptron (MLP) neural network consisting of 4	108	
4.4.	neurons in the input layer, 10 neurons in the hidden layer and 3	108	
	neurons in the output layer.		
4.5.	Correlation coefficients (R) for training, validation, testing and	109	
4.3.	overall datasets for the developed ANN model	109	
1.6	Comparison of the performances of the ANN and RSM models	111	
4.6.	for (a) TPC, (b) TFC and (c) DPPH	111	
	Fresh and dried sample obtained from different drying		
5 1	techniques (a) Fresh fruit pulp (b) Freeze dried (FD) fruit pulp	120	
5.1.	and powder (c) Vacuum dried (VD) fruit pulp and powder (d)	120	
	Tray dried (TD) fruit pulp and powder		
5.2.	Experimental overview of pre-treatment process of haritaki pulp	121	
5.3.	Impact of fresh and various drying treatment on bioactive	126	
	compounds of haritaki pulp	126	
5 4	Effect of various pre-treatment treatment on bioactive	100	
5.4.	compounds of haritaki pulp	128	
E	Effect of various combined pre-treatment on bioactive	120	
5.5.	compounds of haritaki pulp	130	
E C	FTIR spectra of haritaki pulp extract (a) Individual pre-treatment	122 124	
5.6.	(b) Combined pre-treatment	133-134	
	(a) Effect of temperature on final pre-treated best one variant of		
5.7.	haritaki pulp extracted using SFE (b) Effect of pH on final pre-	136	
	treated best one variant of haritaki pulp extracted using SFE		
	Haritaki encapsulates obtained from freeze-drying (a)		
6.1.	starch:zein (0:100) (b) starch:zein (30:70) (c) starch:zein (50:50)	155	
	(d) starch:zein (70:30) (e) starch:zein (100:0)		
6.2.	Encapsulation of bioactive compounds via encapsulator	156	
	SEM images of haritaki encapsulates obtained from freeze-		
6.3.	drying (a) starch:zein (0:100) (b) starch:zein (30:70) (c)	160	
	starch:zein (50:50) (d) starch:zein (70:30) (e) starch:zein (100:0)		

6.4. starch:zein (30:70) (C) starch:zein (50:50) (D) starch:zein (70:30) (E) starch:zein (100:0) 161 (70:30) (E) starch:zein (100:0) XRD pattern of encapsulates (A) starch:zein (0:100) (B) 6.5. starch:zein (30:70) (C) starch:zein (50:50) (D) starch:zein (70:30) (E) starch:zein (100:0) 162 6.6. Thermal properties of different encapsulates 164 6.7. Mass loss of different encapsulates 165 7.1. Yoghurt samples 175 Storage modulus (G') and loss modulus (G'') of yoghurt 186 24 th days 186 Storage modulus (G') and loss modulus (G'') of yoghurt 187 7.3. samples (E1, E2, E3, E4, E5 and E6) during storage period of 1 st , 12 th and 24 th days 188 24 th days Storage modulus (G') and loss modulus (G'') of yoghurt 188 7.4. samples (F1, F2 and F3) during storage period of 1 st , 12 th and 24 th days 189 7.5. Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1 st , 12 th and 24 th days 190 7.6. E6) during storage period of 1 st , 12 th and 24 th days 190 7.7. Viscosity profile of yoghurt samples (F1, F2 and F3) during storage period of 1 st , 12 th and 24 th days 191 <		FTIR spectra of encapsulates (A) starch:zein (0:100) (B)	
XRD pattern of encapsulates (A) starch:zein (0:100) (B)6.5.starch:zein (30:70) (C) starch:zein (50:50) (D) starch:zein (70:30) (E) starch:zein (100:0)6.6.Thermal properties of different encapsulates6.7.Mass loss of different encapsulates1657.1.Yoghurt samples7.2.samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days7.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days7.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days7.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days7.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days	6.4.	starch:zein (30:70) (C) starch:zein (50:50) (D) starch:zein	161
6.5.starch:zein (30:70) (C) starch:zein (50:50) (D) starch:zein162(70:30) (E) starch:zein (100:0)(70:30) (E) starch:zein (100:0)6.6.Thermal properties of different encapsulates1646.7.Mass loss of different encapsulates1657.1.Yoghurt samples175Storage modulus (G') and loss modulus (G'') of yoghurt18624 th daysStorage modulus (G') and loss modulus (G'') of yoghurt1867.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1877.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days1887.5.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1907.7Viscosity profile of yoghurt samples (F1, F2 and F3) during 191191		(70:30) (E) starch:zein (100:0)	
(70:30) (E) starch:zein (100:0)1646.6.Thermal properties of different encapsulates1646.7.Mass loss of different encapsulates1657.1.Yoghurt samples175Storage modulus (G') and loss modulus (G'') of yoghurt18624 th daysStorage modulus (G') and loss modulus (G'') of yoghurt18624 th daysStorage modulus (G') and loss modulus (G'') of yoghurt1877.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1877.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days1887.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 190 7.7Viscosity profile of yoghurt samples (F1, F2 and F3) during191		XRD pattern of encapsulates (A) starch:zein (0:100) (B)	
6.6.Thermal properties of different encapsulates1646.7.Mass loss of different encapsulates1657.1.Yoghurt samples175Storage modulus (G') and loss modulus (G'') of yoghurt1757.2.samples (C1, C2 and C3) during storage period of 1 st , 12 th and 24 th days18624 th daysStorage modulus (G') and loss modulus (G'') of yoghurt1867.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1 st , 12 th and 24 th days1877.4.samples (F1, F2 and F3) during storage period of 1 st , 12 th and 24 th days1887.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1 st , 12 th and 24 th days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1 st , 12 th and 24 th days1907.7Viscosity profile of yoghurt samples (F1, F2 and F3) during 191191	6.5.	starch:zein (30:70) (C) starch:zein (50:50) (D) starch:zein	162
6.7.Mass loss of different encapsulates1657.1.Yoghurt samples175Storage modulus (G') and loss modulus (G'') of yoghurt1757.2.samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days18624^{th} daysStorage modulus (G') and loss modulus (G'') of yoghurt1877.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1877.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days18824^{th} daysViscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1907.7Viscosity profile of yoghurt samples (F1, F2 and F3) during 191191		(70:30) (E) starch:zein (100:0)	
7.1.Yoghurt samples175Storage modulus (G') and loss modulus (G'') of yoghurt18624 th days18624 th days186Storage modulus (G') and loss modulus (G'') of yoghurt1877.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1877.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days1887.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1907.7Viscosity profile of yoghurt samples (F1, F2 and F3) during 191191	6.6.	Thermal properties of different encapsulates	164
Storage modulus (G') and loss modulus (G'') of yoghurt7.2.samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days186 24^{th} daysStorage modulus (G') and loss modulus (G'') of yoghurt1877.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1877.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days1887.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1907.7Viscosity profile of yoghurt samples (F1, F2 and F3) during191	6.7.	Mass loss of different encapsulates	165
7.2.samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days186 24^{th} days7.3.Storage modulus (G') and loss modulus (G'') of yoghurt7.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days7.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days7.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days7.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days7.7Viscosity profile of yoghurt samples (F1, F2 and F3) during 191	7.1.	Yoghurt samples	175
24th daysStorage modulus (G') and loss modulus (G'') of yoghurt7.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} daysStorage modulus (G') and loss modulus (G'') of yoghurt7.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days7.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days7.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days7.7Viscosity profile of yoghurt samples (F1, F2 and F3) during7.9Viscosity profile of yoghurt samples (F1, F2 and F3) during		Storage modulus (G') and loss modulus (G'') of yoghurt	
Storage modulus (G') and loss modulus (G'') of yoghurt 7.3. samples (E1, E2, E3, E4, E5 and E6) during storage period of 187 1^{st} , 12^{th} and 24^{th} days Storage modulus (G') and loss modulus (G'') of yoghurt 7.4. samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 188 24^{th} days 7.5. Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days 7.6. Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days 7.7 Viscosity profile of yoghurt samples (F1, F2 and F3) during 191	7.2.	samples (C1, C2 and C3) during storage period of 1 st , 12 th and	186
7.3.samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days Storage modulus (G') and loss modulus (G'') of yoghurt1877.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days1887.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1907.7Viscosity profile of yoghurt samples (F1, F2 and F3) during191		24 th days	
 1st, 12th and 24th days Storage modulus (G') and loss modulus (G'') of yoghurt r.4. samples (F1, F2 and F3) during storage period of 1st, 12th and 188 24th days 7.5. Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1st, 12th and 24th days 7.6. Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1st, 12th and 24th days 7.7 		Storage modulus (G') and loss modulus (G'') of yoghurt	
Storage modulus (G') and loss modulus (G'') of yoghurt7.4.samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and 24^{th} days1887.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1907.7Viscosity profile of yoghurt samples (F1, F2 and F3) during191	7.3.	samples (E1, E2, E3, E4, E5 and E6) during storage period of	187
 7.4. samples (F1, F2 and F3) during storage period of 1st, 12th and 188 24th days 7.5. Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1st, 12th and 24th days 7.6. Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1st, 12th and 24th days 7.7 Viscosity profile of yoghurt samples (F1, F2 and F3) during 191 		1 st , 12 th and 24 th days	
 24th days 7.5. Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1st, 12th and 24th days 7.6. Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1st, 12th and 24th days 7.7 Viscosity profile of yoghurt samples (F1, F2 and F3) during 191 		Storage modulus (G') and loss modulus (G'') of yoghurt	
7.5.Viscosity profile of yoghurt samples (C1, C2 and C3) during storage period of 1^{st} , 12^{th} and 24^{th} days1897.6.Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1^{st} , 12^{th} and 24^{th} days1907.7Viscosity profile of yoghurt samples (F1, F2 and F3) during191	7.4.	samples (F1, F2 and F3) during storage period of 1^{st} , 12^{th} and	188
 7.5. storage period of 1st, 12th and 24th days 7.6. Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1st, 12th and 24th days 7.7 Viscosity profile of yoghurt samples (F1, F2 and F3) during 		24 th days	
 storage period of 1st, 12th and 24th days 7.6. Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and E6) during storage period of 1st, 12th and 24th days Viscosity profile of yoghurt samples (F1, F2 and F3) during 191 	75	Viscosity profile of yoghurt samples (C1, C2 and C3) during	190
 7.6. 190 E6) during storage period of 1st, 12th and 24th days Viscosity profile of yoghurt samples (F1, F2 and F3) during 7.7 	1.3.	storage period of 1 st , 12 th and 24 th days	169
E6) during storage period of 1 st , 12 th and 24 th days Viscosity profile of yoghurt samples (F1, F2 and F3) during	76	Viscosity profile of yoghurt samples (E1, E2, E3, E4, E5 and	100
77 191	7.0.	E6) during storage period of 1 st , 12 th and 24 th days	190
storage period of 1 st , 12 th and 24 th days	77	Viscosity profile of yoghurt samples (F1, F2 and F3) during	101
	1.1.	storage period of 1 st , 12 th and 24 th days	191

ANN	Artificial Neural Network
SEM	Surface Electron Microscopy
СМ	Centimeter
QE	Quercetin Equivalent
RSM-CCRD	Response Surface Methodology-Central Composite
	Rotatable Design
ТА	Titrable Acidity
TFC	Total Flavonoid Content
TPC	Total Phenolic Content
L*	Lightness
a*	Redness
b*	Blueness
MR	Moisture ratio
FTIR	Fourier Transform Infrared
DPPH	2,2-diphenyl-1-picryl-hydrazyl-hydrate
\mathbb{R}^2	Coefficient of determination
RMSE	Root mean square error
GAE	Gallic Acid Equivalent
LC-MS	Liquid Chromatography Mass Spectrometry
t	Time, min
χ^2	Chi-square
UAE	Ultrasound-assisted extraction
scCO ₂	Supercritical carbon dioxide
DW	Distilled water
kg	Kilogram
g	Gram
mm	Millimeter
mm^2	Square millimeter
RW	Refractance window
k	Consistency
DT	Drying temperature
FT	Foam thickness

kJ mol ⁻¹	Kilojoules per mole
$m^2 s^{-1}$	Metre per second squared
m s ⁻¹	metre per second
kWh kg ⁻¹	kilowatt-hour per kilogram
kWh	Kilowatt hours
MSI	Moisture Sorption Isotherm
aw	water activities
EMC	Equilibrium Moisture Content
GAB	Guggenheim, Anderson, and deBoer
BET	Brunauer-Emmett-Teller
LDPE	Low Density Polyethylene
ALP	Aluminium Laminated Polyethylene
t _{1/2}	Half-life
MW	Microwave
W	Watt
kHz	Kilohertz
HC1	Hydrogen chloride
EAE	Enzyme-Assistant Extraction
MHz	Megahertz
ABTS	2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
DW	Dry weight
CRE	Conventional reflux extraction
UMAE	Ultrasound-Microwave-Assisted Extraction
IL-UMAE	Ionic Liquid-based Ultrasonic-Microwave-Assisted
	Extraction
EMImBF4	1-ethyl-3-methylimidazolium tetrafluoroborate
v/v	volume per volume
EUMAE	Enzyme-based Ultrasound-Microwave-Assisted Extraction
UV	Ultraviolet
GA	Gallic acid
CA	Caffeic acid
DNA	Deoxyribonucleic acid
HPLC	High Performance Liquid Chromatography

FGIDs	Functional Gastrointestinal Disorders
G′	Storage modulus
G"	Loss modulus
MUFA	Monounsaturated fatty acid
PUFA	Polyunsaturated fatty acids
MPE	Microencapsulated Phenolic Extract
CW	Carrot Waste
GSE	Guarana Seed Extract
L	Length
В	Breadth
Т	Thickness
Wt	Weight
AMD	Arithmetic Mean Diameter
GMD	Geometric Mean Diameter
SA	Surface Area
\mathbf{M}_{t}	Moisture content of sample at any time (kg water/ kg dry
	matter)
M_{o}	Initial moisture content (kg water/kg dry matter)
M_{e}	Equilibrium moisture content (kg water/kg dry matter)
$\mathbf{D}_{\mathrm{eff}}$	Effective diffusivity
D_0	Effective moisture diffusivity at infinite temperature (m^2/s)
R	Gas constant (8.314 \times 10 ⁻³ kJ/ mol)
mL	Milliliter
Na ₂ CO ₃	Sodium Carbonate
NaNO ₂	Sodium nitrite
AlCl ₃	Aluminium chloride
NaOH	Sodium hydroxide
μL	Microliter
mg/L	Milligrams per liter
Μ	Molar
nm	Nanometer
ΔE^*	Colour difference
Qst	Net isosteric heat of sorption

LiCl	Lithium chloride
MgCl ₂	Magnesium chloride
$K(CO_3)_2$	Potassium Carbonate
$Mg(NO_3)_2$	Magnesium nitrate
KI	Potassium iodide
NaCl	Sodium Chloride
KCl	Potassium chloride
RH	Relative humidity
SSE	Sum of square errors
R _{min}	Minimum radius
R _{max}	Maximum radius
V	Volume
CO_2	Carbon dioxide
SFE	Supercritical fluid extraction
GA	Genetic algorithm
H ₂ O	Water
MAE	Microwave assisted extraction
ANOVA	Analysis of variance
CV	Coefficient of variation
FD	Freeze dried
VD	Vacuum dried
TD	Tray dried
MW+E	Microwave assisted -Enzymatic extraction
US+MW	Ultrasound assisted -Microwave extraction
US+E	Ultrasound assisted - Enzyme extraction
US+MW+E	Ultrasound- Microwave- Enzyme assisted extraction
DF	Desirability function
FF	Feed-forward
BP	Backpropagation
MLP	Multilayer perceptron
DMRT	Duncan Multiple Range Test
MAE	Mean absolute error

FW	Fresh weight
AA	Ascorbic acid
AC	Anthocyanins
DSC	Differential scanning calorimetry
CH ₂ OH	Methanol
CH_2	Methylene
XRD	X-Ray Diffraction
TGA	Thermogravimetric Analysis