
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Chapter-4 

To Comparison of response surface methodology 

(RSM) and artificial neural network (ANN) 

modelling for supercritical fluid extraction of 

phytochemicals from Terminalia chebula pulp and 

optimization using RSM coupled with desirability 

function (DF) and genetic algorithm (GA) and 

ANN with GA 
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4.1. Introduction 

In developing nations, access to health care originating from the significant 

expenses of medications, health services and diagnostics, has become a significant matter 

of concern. Terminalia chebula Retz. (T. chebula) often called as haritaki in Sanskrit 

native to South Asia, is considered as a source of nutrients having a medical advantage 

and is available in the tropic territories in the world referred to as Chebulae Fructus (Hezi) 

in China [21]. It has traditionally been utilized for its therapeutic properties in various 

bioactive compounds since ancient times to fix geriatric diseases and to improve memory 

[3]. It has been accounted that haritaki organic products are highly rich in phytochemicals. 

To get a high return of phenolic components from haritaki, it is important to build up an 

efficient extraction technique. Currently, natural herbal antioxidants from various fruits 

are gaining attention for their potential helpfulness. For prospective usage in functional 

foods or nutraceuticals, the bioactive components from haritaki may be extracted. For the 

extraction of phenolic mixtures from haritaki, many extraction techniques have been 

used, including subcritical water extraction and reflux framework coupled with water-

ethanol and water-propylene glycol [23].  

In any case, because of high temperature and long treatment periods, the 

antioxidant activities of natural products usually reduce in traditionally extraction 

techniques. Many authors have featured the advantages of utilizing supercritical fluid 

extraction to diminish process energy, reduce manpower, and increase shelf life. 

Supercritical CO2 extraction is a green, new approach that successfully employed for 

selective extraction of comparable chemicals and offers strong selectivity for 

lipophilic/non-polar or mildly polar compounds [16, 28]. For the extraction of bioactive 

components from herbs and other products, organic solvent extraction and steam 

distillation are traditionally used. These procedures are characterised by a labor-intensive 

process, a lengthy extraction duration, a low yield, toxic solvent residue, and the 

degradation of chemicals that are sensitive to temperature. The use of the supercritical 

fluid extraction (SFE) technique can eliminate these drawbacks [10, 26]. It is a fast 

evolving technique to make bioactive chemicals using only technology and benign 

settings. The most common solvent in SFE is carbon dioxide since it is medically inert, 

environmentally safe, non-explosive, and easily available [29].  
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Many researchers have successfully extracted phenolics from fruits using 

supercritical fluid extraction, demonstrating the technology’s ecological suitability and 

usefulness as a complementary safe solvent for extracting food-grade bioactive 

components from agricultural products. One important thermodynamic benefit of using 

supercritical liquid is the simple isolation from extracted solutes that can be achieved by 

simply changing the temperature. As compared to organic solvents, supercritical fluids 

have liquid-like densities and provide improved mass exchange characteristics. They are 

classified as low-viscosity and high diffusivity fluids. The lower surface tension allows 

supercritical fluids to penetrate the porous biological matrix while removing solutes [25]. 

Various approaches like response surface methodology (RSM) or artificial neural 

network (ANN) can be used for modelling of the process and efficient optimization of the 

process parameters of extraction for maximum recovery of the phytochemicals from plant 

materials. RSM is a collection of statistical methods for planning experiments, 

constructing models, assessing the impact of processing parameters on responses, and 

optimizing processes [27]. Artificial neutral (ANN) is the complex mathematical 

modelling commonly used to mimic the biological neural networks and processes 

information. ANN is used to optimize and model complex biological process and highly 

non-linear data and overcome the problem uneasy for human or statistical methods. Its 

acceptance in food processing is growing rapidly day by day for data modelling due to its 

advanced design to manage complex biological data and non-linear data. It has properties 

such as noise resistance, multi-nonlinear variable accommodation, parallel processing 

power, Capability for approximation of universal function, and strong generalization 

efficiency [8, 20, 22]. For data fitting and prediction, a well-trained ANN model can be 

used. For the clamorous data, ANNs have been used for optimization and prediction and 

are often favoured over regression models. The basic behaviour of neural computations 

comes from connecting neurons in a network. ANN is showing superiority over the RSM, 

unpredicted nonlinear data, fuzzy inputs, and subtle patterns under certain conditions [1, 

33]. Genetic algorithm (GA) is an optimization method that can be used even if a full 

model of the process is not available. GA is based on Darwin’s genetic evolution theory 

and employs genetic operators such as selection, mutation, and crossover to find the best 

solution to problems. In many practical applications, the combination of ANN and GA 

(ANN-GA) has been used for optimization [1, 12, 30].  
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Therefore, the present study was taken up with the aim to model the process of 

supercritical fluid extraction by different methods viz. RSM and ANN, to optimize the 

process parameters of supercritical fluid extraction on the extractability of 

phytochemicals from dried T. chebula pulp using various approaches viz. RSM coupled 

with desirability function, RSM coupled with GA and ANN coupled with GA, and 

compare them. 

4.2. Materials and methods  

4.2.1. Preparation of dried haritaki pulp powder 

The mature T. chebula fruits were collected from the Horticulture section of 

Tezpur University. The fruit was cleaned, and the pulp and seed were separated. A 

laboratory tray dryer (Labotech, BDI-51, B. D. Instrumentation, Ambala, India) was used 

to dry the pulp at a temperature of 40 °C. The dry pulp was crushed and put through a 

100 mesh screen before being sealed in polythene bags with an aluminium laminate until 

further usage. All the reagents used in the present study were of analytical grade. 

4.2.2.  Extraction of phytochemicals by supercritical CO2 

The supercritical fluid extractor vessel (Applied Separations, USA) was filled 

with the powdered haritaki pulp (1g), and the extracts were then collected in glass tubes 

in a separator. According to the experimental design, the extraction was carried out under 

varied extraction circumstances. The extraction co-solvent utilised was a 1:1 mixture of 

ethanol and water, and the constant mass flow rate of CO2 during all tests was 5 kg/h. 

Carbon dioxide was pressurised using a high-pressure pump and then charged into 

the extraction vessel at the necessary pressure. According to the experimental plan, the 

extraction vessel containing the sample was allowed to heat in the oven while a 

thermocouple recorded the temperature. The extract was placed in a glass vial after the 

dissolved chemicals in supercritical CO2 were forced through a heated micrometre valve 

and expanded at room temperature and pressure. For each extraction experiment, the 

extractor was charged with a steady supply of CO2 at a rate of 5 mL/min. The internal 

flow metering mechanism of the SFE maintained a constant flowrate. 

4.2.3.  Experimental design  

The experiments were designed using a central composite rotatable design 

(CCRD) with four numerical factors (independent and dependent parameters of CCRD in 
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Table 4.1). The numerical variables included temperature (X1), pressure (X2), time (X3), 

and co-solvent flow rate (X4). Temperature, pressure, time, and flow rate were all adjusted 

to range from 40 to 60 °C, 100 to 200 bar, 40 to 80 min, and 1 to 5 mL/min, respectively. 

30 tests in total were conducted (Table 4.2). To minimize the impact of external variables, 

all experiments were conducted in a randomized order [31].  

Table 4.1. Independent and Dependent parameters of CCRD 

Sl. No. Independent parameters Dependent parameters 

1. Time (40, 50, 60, 70 and 80 min)                         Total phenolic content 

2. Temperature (40, 45, 50, 55 and 60 ℃)                Total flavonoid content 

3. Pressure (100, 125, 150, 175 and 200 

bar)           

DPPH radical scavenging activity 

4. Flow rate (1, 2, 3, 4 and 5 mL/min)   

 

Dependent variables were TPC, TFC and DPPH free radical scavenging activity.  

4.2.4. Determination of bioactive compounds  

The total phenolic content was calculated as discussed in section 3.2.8.2, the total 

flavonoid content was calculated as discussed in section 3.2.8.3, and the total antioxidant 

activity was calculated as discussed in section 3.2.8.4. 

4.2.5. RSM modelling 

For response surface methodology, Design Expert version 8 was used to analyze 

and model data for responses. The experimental data was fitted to a second order 

polynomial model: 

𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖𝑋𝑖

4

𝑖=1

+ ∑ 𝛽𝑖𝑖

4

𝑖=1

𝑋𝑖
2 + ∑ ∑ 𝛽𝑖𝑗

4

𝑖<𝑗=1

𝑋𝑖𝑋𝑗                                                         (4.1) 

Where Y represents the responses TPC, TFC and DPPH radical scavenging 

activity, βo, is the constant, βi, βii and βij are the regression coefficients and Xi and Xj are 

the independent variables in coded values. An analysis of variance was used for model 

analysis (ANOVA). Lack-of-fit test and R2 (coefficient of determination) was calculated 

for determining the adequacy of the model. To determine the relative dispersion of the 

experimental points from the model’s prediction, the coefficient of variation (CV) was 
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calculated. Response surfaces were generated to study the effect of interactions on the 

responses. 

4.2.6.  ANN modelling 

The neural network fitting tool of Matlab (Matlab 9.6 – R2019a, The Mathworks 

Inc., MA, USA) was employed for modelling of experimental data by ANN that was 

produced during extraction of phytochemicals of haritaki pulp. In ANN, Multilayer 

perceptron (MLP) is the broadly used technique for data modelling. MLP comprises of 

feed-forward (FF) backpropagation (BP) of algorithm input layer in neural network, 

hidden layers, and output layer. There can be one or more neurons contained in each layer. 

The number of hidden layer neurons was varied from 8 to 12 for the training of data for 

development of various neural network models. The number of neurons in the hidden 

layers determine the performance of the ANN model as a very small number of neurons 

in the hidden layers may limit the ability of the ANN to properly model the process and 

the network may not train well, whereas too many neurons might make the network 

memorizing the data rather than training it [2]. Sigmoid transfer function was used 

between the input layer and hidden layer as well as between the hidden layer and output 

layer. Trial and error method were used to obtain the best combination of hidden layer 

and transfer function (minimum error condition) for the provided data [11, 22, 6]. 

Training of ANN models was done until the error reaches the minimum between 

experimental and predicted values of responses. For training of data set, the Levenberg-

Marquardt training algorithm was used. The weights and bias are all together known as 

neural network parameters. The trained network model was validated using validation 

data set (experimental data which was not used for training). The development of the 

ANN model was carried out by dividing the data set in three groups: 70% for training, 

15% for testing and 15% for validation. The weight values of the synaptic joints between 

the input and hidden layer and that between the hidden and output layer were calculated 

by well versed ANN model for optimization of the parameters. 

4.2.7. Analysis of the developed models 

The performances of the models developed by RSM and ANN were compared 

statistically by calculating coefficient of determination (R2) when intercept is zero, mean 

absolute error (MAE), root mean square error (RMSE) and Chi-square (χ2) values [27] as 

follows: 
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R2 = 
∑ (𝑦𝑝𝑖)2𝑛

𝑖=1

∑ (𝑦𝑜𝑖)𝑛
𝑖=1

2                                                                                                                           (4.2) 

MAE= 
1

𝑛
∑ |𝑦𝑝𝑖 − 𝑦𝑜𝑖|

𝑛
𝑖=1                                                                                                          (4.3) 

RMSE = √
∑ (𝑦𝑝𝑖−𝑦𝑜𝑖)𝑛

𝑖=1
2

𝑛

2

                                                                                                          (4.4) 

χ2 = ∑
(𝑦𝑝𝑖−𝑦𝑜𝑖)2

𝑦𝑝𝑖

𝑛
𝑖=1                                                                                                                    (4.5) 

where, n is the number of data points, ypi is the predicted value and yoi is the 

observed value. 

4.2.8. Optimization of the process  

Three different approaches were used for optimization of the optimization using 

desirability function (RSM-DF), RSM couples with GA (RSM-GA) and ANN coupled 

with GA (ANN-GA). The numerical optimization technique of the “Design-Expert” 

software was used for RSM-DF approach. For RSM-GA and ANN-GA approaches, the 

models generated through RSM and ANN were optimized by employing genetic 

algorithm toolbox in MATLAB. For the ANN-GA and RSM-GA optimization, the 

population size used was 200. The criteria selected for optimization was maximization of 

all the responses i.e., TPC, TFC and DPPH. 

4.3. Results and discussion  

4.3.1.  RSM modelling and Effect of process parameters and their interaction on the 

responses 

 Extraction of phytochemicals from haritaki was investigated with the application 

of CCRD based response surface methodology with four independent variables, viz. flow 

rate (X1), pressure (X2), temperature (X3), and time (X4) along with TPC, TFC, and DPPH 

scavenging activity as dependent variables. Table 4.2 represents the experimental and 

predicted values of runs along with dependent variables while Table 4.3 displayed the 

response of ANOVA for all the dependent variables. ANOVA was conducted to evaluate 

the model significance and the result showed that all the models were significant with a 

level of p< 0.05. In the case of TPC, X1, X2, X3, X4, X1
2, X2

2 and X3
2 model parameters 

were found significant at a level of p<0.05 with values of 0.958 coefficient of 

determination (R2) and 5.15% coefficient of variance (C.V). In the case of TFC, X1, X2, 
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X3, X4, X1X2, X1
2, X2

2, X3
2 and X4

2 while in the case of DPPH radical scavenging activity 

X1, X2, X3, X4, X1
2, X2

2, X3
2 and X4

2 model parameters appeared to be significant. The R2 

value for TFC and DPPH scavenging effect obtained was 0.918 and 0.919 along with 6.95 

and 1.88% of C.V respectively.
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Table 4.2. Experimental and predicted values of responses for different combinations of experimental conditions 

Sl. 

No. 

Co-

solvent 

flow rate 

(mL/min) 

Pressure 

(bar) 

Temperature 

(°C) 

Time 

(min) 

Experimental values ANN predicted values RSM predicted values 

TPC (mg 

GAE/mL) 

TFC 

(mg 

QE/mL) 

DPPH 

(%) 

TPC (mg 

GAE/mL) 

TFC 

(mg 

QE/mL) 

DPPH 

(%) 

TPC (mg 

GAE/mL) 

TFC 

(mg 

QE/mL) 

DPPH 

(%) 

1 3 150 50 60 425.17 131.58 92.28 411.67 134.48 90.45 416.98 133.55 90.79 

2 2 175 55 70 324.09 117.77 88.27 386.12 130.72 89.01 339.49 116.83 89.24 

3 4 125 45 70 370.3 121.26 84.46 393.45 127.83 86.58 395.11 127.08 86.44 

4 2 175 45 70 290.68 112.01 84.45 300.04 123.72 84.49 296.62 114.93 84.73 

5 3 150 50 60 421.95 139.18 91.46 411.67 134.48 90.45 416.98 133.55 90.79 

6 3 150 50 60 401.28 131.28 93.84 411.67 134.48 90.45 416.98 133.55 90.79 

7 3 200 50 60 394.27 119.84 89.48 397.71 137.76 89.54 386.20 129.77 90.41 

8 4 175 45 70 396.11 119.33 89.37 379.64 110.23 88.95 397.48 116.89 88.57 

9 4 175 55 70 394.27 122.94 90.28 395.04 121.42 90.09 405.30 122.24 90.46 

10 5 150 50 60 342.34 101.4 85.26 343.51 100.83 84.62 325.17 101.62 85.36 

11 3 150 50 60 411.16 135.82 89.46 411.67 134.48 90.45 416.98 133.55 90.79 

12 1 150 50 60 158.49 69.59 77.24 172.87 74.62 79.08 145.50 63.43 77.22 

13 2 125 55 50 280.01 76.28 79.24 285.47 77.15 80.22 285.28 82.54 79.90 

14 2 175 45 50 271.25 106.24 81.45 277.59 134.39 82.94 272.26 104.18 81.21 

15 4 175 45 50 366.99 101.49 88.26 338.56 96.30 86.07 377.32 99.43 88.29 
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16 3 150 50 60 404.95 127.63 89.34 411.67 134.48 90.45 416.98 133.55 90.79 

17 2 175 55 50 322.17 117.31 86.47 358.53 130.03 83.36 320.88 113.62 84.56 

18 2 125 45 50 241.12 71.21 78.44 248.84 85.40 81.43 253.61 74.04 78.33 

19 4 125 55 70 380.35 125.61 86.45 376.99 120.40 87.69 385.98 131.49 86.55 

20 2 125 45 70 281.31 78.82 82.46 280.49 84.00 82.57 285.45 87.59 82.75 

21 3 150 60 60 411.16 116.23 86.47 409.44 127.39 86.47 391.58 116.58 86.73 

22 3 150 50 80 436.57 138.32 92.43 430.16 131.28 90.78 410.89 129.55 90.88 

23 3 150 50 60 437.35 135.79 88.37 411.67 134.48 90.45 416.98 133.55 90.79 

24 2 125 55 70 298.17 84.35 85.44 300.59 85.62 85.85 311.36 88.54 85.48 

25 4 175 55 50 388.38 117.27 89.45 378.71 107.02 84.33 390.88 112.32 89.02 

26 3 150 50 40 369.11 103.25 83.38 373.55 92.19 81.60 364.63 106.08 85.01 

27 4 125 55 50 346.51 119.57 84.42 324.00 87.02 80.91 364.09 118.78 84.21 

28 4 125 45 50 376.24 102.08 86.37 350.73 103.70 81.29 367.48 106.83 85.25 

29 3 150 40 60 362.68 109.03 83.45 339.90 100.50 84.58 352.10 102.74 83.27 

30 3 100 50 60 370.32 124.76 84.46 350.03 120.16 82.40 348.23 108.88 83.61 
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Based on results on responses, a second-order polynomial quadratic regression 

equation was established in terms of coded values (Eq. 4.6-4.8) for the parameters of 

extraction: 

 

TPC = 416.98 + 44.92X1 + 9.49X2 + 9.87X3 + 11.56X4 - 2.20X1X2 - 8.76X1X3-1.05X1X4 

+ 4.24X2X3 - 1.87X2X4 - 45.41X1
2 - 12.44X2

2 - 11.28X3
2 - 7.30X4

2                              (4.6) 

 

TFC = 133.55 + 9.55X1 + 5.22X2 + 3.46X3 + 5.86X4 - 9.38X1X2 + 0.86X1 X3 + 1.68X1X4 

+ 0.24X2X3 - 0.70X2X4 - 1.88X3X4 - 12.75X1
2 - 3.55X2

2 - 5.97X3
2 - 3.93X4

2              (4.7)                                                                             

 

DPPH = 90.79 + 2.07X1 + 1.53X2 + 0.87X3 + 1.46X4 + 0.04X1X2 - 0.65X1X3 - 0.81X1X4 

+ 0.44X2X3 - 0.22X2X4 + 0.29X3X4 - 2.42X1
2 - 0.74X2

2 - 1.49X3
2 - 0.75X4

2                 (4.8)                                                                                                                 

 

Table 4.3. Analysis of variance (ANOVA) of the RSM models for the responses 

Source 

TPC  TFC  
DPPH radical scavenging 

activity  

Sum of 

Squares 
p-value 

Sum of 

Squares 
p-value 

Sum of 

Squares 
p-value 

Model 115860 < 0.0001 10341.55 < 0.0001 457.4706 < 0.0001 

X1-Flow rate 48424.66 < 0.0001 2112.751 < 0.0001 99.55227 < 0.0001 

X2-Pressure 2162.771 0.0228 654.5882 0.0052 69.22407 0.0001 

X3-Temperature 2338.598 0.0187 287.4568 0.0471 18.02667 0.0198 

X4-Time 3209.288 0.0075 825.792 0.0023 51.56802 0.0005 

X1X2 77.57206 0.6379 1409.252 0.0002 0.0225 0.9278 

X1X3 1228.678 0.0752 11.9025 0.6661 6.8644 0.1286 

X1X4 17.61901 0.8220 44.95703 0.4057 10.4976 0.0652 

X2X3 287.3873 0.3699 0.893025 0.9056 3.1684 0.2917 

X2X4 55.83826 0.6894 7.7841 0.7268 0.81 0.5887 

X3X4 33.03376 0.7583 56.8516 0.3513 1.3456 0.4873 

X1
2 56560.88 < 0.0001 4318.204 < 0.0001 154.7957 < 0.0001 

X2
2 4245.026 0.0029 354.693 0.0297 24.52681 0.0083 



103 
 

X3
2 3492.611 0.0057 991.8907 0.0011 57.51953 0.0003 

X4
2 1463.379 0.0544 433.3431 0.0180 13.89987 0.0370 

Residual 5043.436  921.4223  39.79563  

Lack of Fit 4111.639 0.1979 835.4748 0.0474 18.09634 0.8879 

R2 0.958 0.918 0.919 

Adj R2 0.919 0.841 0.845 

%C.V. 5.15 6.95 1.88 

Adequate 

Precision 
20.94 12.84 11.86 

 

The adjusted R2 was found to be near to R2 of the models and adequate precision 

recorded was in the range of 11.86 – 20.94 that depicts an adequate signal with less noise. 

Also, the non-significant lack of fit displayed that the selected model is a better fit for the 

predicted response.  

Fig. 4.1-4.3 depicts the response surface plots for extraction parameters which 

were generated using second-order quadratic polynomial regression equation. The 

general trend of all the investigated compounds was similar, their values increased with 

the increasing trend of all variables to a certain extent followed by a regular decline. It is 

evident from (Fig. 4.1) that the extraction of phenols from haritaki was significantly 

influenced by independent variables X1,X2, X3, and X4 as well as the quadratic model 

terms X1
2, X2

2 and X3
2.  
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Fig. 4.1. Response surface plot showing the effects of time, temperature, pressure and 

flow rate on TPC 

TPC of haritaki extract was found to be gradually increasing with the increase of 

extraction time, flow rate, pressure and temperature. In case of the time of extraction, a 

steady increase in phenol content (252.45–431.56 mg GAE) until 70 min of extraction 

was observed with a maximum content of 431.56 mg GAE thereafter gradual but the drop 

was noticed up to 80 min. The flow rate of extraction ranging from 1-5 mL/min was used, 

an increasing trend was recorded with an increase of 158.38–430.41 mg GAE that 

subsequently decreases with increasing flow rate. In contrary, changing the level of 

pressure from 150 to 200 bar significantly decreased the phenol content. A similar pattern 

was seen in the temperature instance, where phenol content was significantly changed by 

a temperature increase of 50°C at a significant level of 0.05 with a significant p-value of 

0.0187. The ANOVA findings indicated that the interaction between the models had no 

discernible impact (p>0.05) on the phenol content of haritaki. 

In the case of flavonoid content, the interaction between X1X2 and quadratic 

models was found significant at a significant level of p<0.05 which was also supported 

by ANOVA results with F-value of 12.03 representing the significance of the model (Fig. 

4.2). The trend of change in flavonoid extraction was quite similar in all independent 

variables; however, it was significantly influenced by the flow rate that produced the 

maximum flavonoid content with the level of 132.85 mg QE/mL. 
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Fig. 4.2. Response surface plot showing the effects of time, temperature, pressure and 

flow rate on TFC 

 The variables (extraction time and flow rate) had less of an impact on the change 

in flavonoid content even when they tended to increase to their uppermost permissible 

limits. However, in the case of pressure and temperature, flavonoid extraction displayed 

a bell-shaped curve, and the variables mostly affected the extraction of flavonoid content, 

with the highest content noted at 150 bar and 50 °C and a notable tendency of drop after 

that. The present study showed similar result as reported by Yin et al. [32] that depicted 

highest flavonoid content extracted at 50 ℃ from Pueraria lobate. 
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Fig. 4.3. Response surface plot showing the effects of time, temperature, pressure and 

flow rate on DPPH 

The phytochemicals present in the extract contributes to the total antioxidant 

activity as measured by DPPH radical scavenging activity. DPPH radical scavenging 

activity of haritaki extract was drastically affected by the extraction parameters which 

was also depicted by ANOVA results where all the independent variables and quadratic 

models were found significant with non-significant lack of fit. With an increase in 

extraction time, DPPH radical scavenging activity of haritaki extract was seen to increase 

and maximum activity recorded was at 80 min where flow rate depicted a systematic trend 

in the DPPH radical scavenging activity of haritaki extract that tends to decrease 

significantly after 3 mL/min of flow rate (Fig. 4.3). The 3-D surface plot also shows that 

as the extraction pressure is increased, the activity of the haritaki extract likewise rises 

until a pressure of 150 bar, after which it gradually decreases. When it came to 

temperature, DPPH radical scavenging activity grew systematically as extraction 

temperature rose, then it began to fall. The peak activity was found to be at 50 °C. The 

results obtained for the effect of extraction time on phytochemicals showed higher 

recovery with the advancement of time. The same was supported by the linear effect in 
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3-D surface plots of TPC, TFC and DPPH activity. On the other hand, ANOVA results 

also showed statistical significance of the model terms for every response. The flow rate 

of the solvent influenced the extraction of the phytochemicals. The recovery of the 

phytochemicals i.e., concentration in the extract increased with increase in the flow rate 

up to certain value (approximately 3 mL/min) and then became constant. The reason for 

increased recovery of haritaki phytochemicals at higher flow rate might be due to 

decreased mass transfer resistance, saturation of CO2 and fulfilment of equilibrium 

condition because of higher yield of bioactive compounds. However, with further 

advancement in extraction flow rate caused decrease in residence time i.e., fluid bed 

interaction time [18]. Hence, determination of the optimum flow rate of the extraction of 

a particular compound in a semi-continuous manner using SFE becomes an important 

factor that depends on temperature and pressure of extraction. 

It has been reported that higher pressure favours the extraction of chemicals [4], 

however the contrary tendency was seen in the present investigation. This is because the 

pressure utilised in the recovery of bioactive compounds greatly influenced the content 

of haritaki. Initial increases in extraction pressure improved CO2 density and solubility, 

leading to higher compound recovery (Figs. 4.1 and 4.2), but further increases in pressure 

decreased the diffusivity of haritaki phytochemicals, decreased convective mass transfer, 

and negatively affected compound recovery [18]. 

The extraction solvent (ethanol) improved CO2 solvation effectiveness at lower 

temperatures, however the extracted bioactive components of haritaki were dramatically 

impacted by an increase in extraction temperature. A declining trend was observed in all 

compounds, which might be attributed to the decrease in density of CO2 and resulted in 

decreased the components extraction, however interaction of pressure and temperature 

was opposite [13]. According to a study by Kassama et al. [14], immediate heating has a 

considerable negative impact on the effect that an increase in temperature and solubility 

of the solute has on the compound of interest. A similar condition was reported by Kuś et 

al. [17] in the extraction of bio actives of black poplar buds using SFE-CO2. 

4.3.2. ANN modelling 

For training, testing, and validation of the ANN, the feed forward back 

propagation model with three layers input, hidden, and output and 30 data sets was 

utilised. While the input layer contained four neurons and the output layer contained three 
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neurons as decided by the number of independent variables and responses respectively, 

the number of neurons were varied from 8 to 12 for the hidden layer.  

 

 

Fig. 4.4. General architecture of the feed forward back propagation multilayer perceptron 

(MLP) neural network consisting of 4 neurons in the input layer, 10 neurons in the hidden 

layer and 3 neurons in the output layer. 

The optimal topology was discovered to be attained when the hidden layer 

included 10 neurons. Therefore, the final topology for the developed ANN model 

contained four, ten and three neurons for input, hidden and output layers respectively 

(Fig. 4.4).   
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Fig. 4.5. Correlation coefficients (R) for training, validation, testing and overall datasets 

for the developed ANN model 
 

As noted in Fig. 4.5, the correlation coefficients (R) for training, testing, and 

validation are 0.998, 0.991, and 0.989, respectively, while R for the entire dataset is 0.995. 

This data shows that the constructed model is sufficiently reliable to predict the outputs 

for various sets of input values. The sizes for the matrices for the weights joining the 

neurons input layer to hidden layer is 10×4 and for the weights joining the hidden layer 

to output layer is 3×10, while the size of the matrices of the biases for the hidden layer is 

10×1 and for the output layer is 3×1. 

 



110 
 

4.3.3. Comparison of the developed RSM and ANN models 

The experimental values and corresponding predicted values for the developed 

RSM and ANN models are presented in Table 4.4. The performances of the RSM and 

the ANN models were compared using the statistical parameters such as coefficient of 

determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Chi 

square (χ2) values and are given in Table 4.4.   

Table 4.4. Comparison of the statistical parameters of ANN and RSM models for the 

various responses 

 TPC  TFC  DPPH  

R2 value 

ANN Model 0.9973 0.9909 0.9994 

RSM Model 0.9987 0.9977 0.9998 

MAE 

ANN Model 13.40311 8.175279 1.643748 

RSM Model 10.94936 4.326667 0.843028 

RMSE 

ANN Model 18.78651 11.0563 2.125115 

RSM Model 12.9659 5.462292 1.151747 

χ2 

ANN Model 29.38151 33.96452 1.611373 

RSM Model 14.28889 8.336857 0.448451 

 

Table 4.4 shows that the R2 values for the TPC, TFC, and DPPH RSM models 

are greater than the comparable R2 values for the created ANN models. Additionally, the 

RSM models had lower RMSE, MAE, and χ2 values than the ANN models. In the current 

study, RSM models exhibit greater predictive capability than ANN models, as evidenced 

by higher R2 values and lower MAE, RMSE, and χ2 values for the RSM models [7]. 
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(a)  

 

(b)  

 

(c)  

 

Fig. 4.6. Comparison of the performances of the ANN and RSM models for (a) TPC; (b) 

TFC; and (c) DPPH 

For all of the responses, the experimental values were plotted against the ANN and 

RSM model predictions, and the results were compared (Fig. 4.6). Additionally, it is 

evident from (Fig. 4.6) that the RSM model outperformed the ANN model in the current 

study. The effectiveness of a generated model depends on a variety of variables, including 

the quantity of experiments, the kind of procedure, etc. While ANN performs well with 

both smaller and bigger numbers of experimental data, RSM, which is simpler, 

occasionally predicts well when the number of experiments is limited. RSM was 

determined to be better in the current analysis because there were only 30 experiments, 
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but the ANN model could also accurately predict the answers. Similar results were 

reported by Zeng et al. [34], Rizalman and Lee [24] and Naderloo [19] while comparing 

performances of RSM and ANN models. 

4.3.4.  Optimization of the process parameters by different approaches 

The extraction method was optimised using three alternative strategies. The 

methods include ANN combined with a genetic algorithm (ANN-GA), RSM combined 

with a genetic algorithm (RSM-GA), and RSM combined with a numerical method 

employing a desirability function (RSM-DF). For ANN-GA optimization, the final 

trained ANN model was used as the fitness function and for RSM-GA optimization, the 

fitness function used was as follows: 

F = - (y1 + y2 + y3)                                                                                                         (4.9) 

Where, y1, y2 and y3 are the predicted values of TPC, TFC and DPPH 

respectively for the RSM model. In a genetic algorithm, response maximisation was 

achieved by using the negative sign. The population size employed for the ANN-GA and 

RSM-GA optimizations was 200, as previously noted, and the optimal value was attained 

after 63 and 69 generations, respectively. Using Design Expert software, optimization 

was also carried out numerically for the RSM models using the desirability function. A 

comparison of the optimum values of the responses obtained by the three optimization 

methods viz. ANN-GA, RSM-GA and RSM-DF is shown in Table 4.5.  

Table 4.5. Comparison of the optimization results obtained from the three different 

approaches 

 

Flow rate 

(mL/min) 

Pressure 

(bar) 

Temperature 

(°C) 

Time 

(min) 

TPC 

(mg 

GAE/ml) 

TFC 

(mg 

QE/ml) 

DPPH 

(%) 
 

Approach         

RSM-GA 
3.23 172.79 52.37 68.53 428.03 136.58 92.63  

ANN-GA 
3.30 174.07 51.18 65.23 414.25 135.55 91.32  

RSM-DF 
3.34 166.94 51.97 67.47 432.28 137.36 92.54 

Desirability 

(0.951) 

 

The results demonstrate that, although the results are extremely similar, 

optimization using RSM-GA and RSM-DF generated slightly higher values of the 

responses, i.e. TPC, TFC, and DPPH. This shows that all three techniques are effective 
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and can be employed to maximise the process of phytochemical extraction from T. 

chebula pulp by supercritical fluid extraction. 

 

4.4. Conclusion 

In order to extract phytochemicals from the pulp of haritaki, the supercritical 

extraction process was modelled using statistical and artificial intelligence techniques 

(RSM and ANN), and several methods were used to optimise the extraction conditions. 

In this chapter, it was found that the RSM model performed better in response prediction 

than the ANN model. By contrasting the statistical parameters of the two models, this was 

proven. As a result, it can be said that both RSM and ANN approaches are reasonably 

effective at predicting responses, albeit the performances may vary based on a variety of 

aspects, such as the specific process, the quantity of tests conducted, the independent and 

dependent parameters used, etc. Additionally, the RSM and ANN models were used to 

optimise the SFE process using the desirability function and genetic algorithm as RSM-

DF, RSM-GA, and ANN-GA. Additionally, in this instance, it was found that the RSM-

DF and RSM-GA models performed better than the ANN-GA model, which was the goal 

of optimization. The optimum conditions obtained for RSM-DF were 3.34 mL/min, 

166.94 bar, 51.97 ℃, 67.47 min, for RSM-GA were 3.23 mL/min, 172.79 bar, 52.37 ℃, 

68.53 min, while that for ANN-GA were 3.30 mL/min, 174.07 bar, 51.18 ℃, 65.23 min. 

The optimized values of responses i.e., TPC (mg GAE/mL), TFC (mg QE/mL) and DPPH 

(%) for RSM-DF approach were 432.28, 137.36, 92.54 respectively, for RSM-GA 

approach were 428.03, 136.58, 92.63 respectively, and for ANN-GA approach were 

414.25, 135.55, 91.32 respectively. Therefore, finally it can be concluded that both RSM 

and ANN models can be used for predicting the responses with good accuracy, but one 

must select the specific model depending on the situation to get the best results. Similarly, 

for optimization also, all the approaches gave fairly good results and again one must 

choose a particular approach for fulfilling the specific criteria for optimization. 
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