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CHAPTER NO 4: RESULTS AND DISCUSSION

Part A- Evaluation of anti-proliferative and pro-apoptotic efficacy of phenolic

fraction of Etlingera linguiformis.

In this section we are presenting our findings on efficacy of free phenolics and bound
phenolics extracted from Etlingera linguiformis (CAN). The data generated using standard

methods that are commonly used in such studies using in vitro and in vivo models.

4.1. Cytotoxicity Assay against Human RBCs and PBMCs

To check the toxicity of the selected plant extract we have used the membrane stability
activity on human RBCs against Triton-X 100 induced haemolysis and viability of human

PBMCs using MTT based method.

The CAN phenolic extract shows protective role against Triton-X 100 induced haemolysis
with respect to the +ve and —ve control (Figure 4.1). The activity of the plant extract was
compared with ascorbic acid. On the other hand, the cell viability was observed at 24 h when the
human PBMCs were exposed to either the CAN free phenolic and CAN bound phenolic extract.
Cell viability was shown to be higher than the control with rising concentration across all time
periods of exposure (Figure 4.2), suggesting that CAN extract is not toxic to human RBCs and
substantially stimulates proliferation in human PBMCs (p<0.001).

55



o ==} = [
= = =1 =t
'

% Erythrolysis
L] e
L) L)

=1

Treatment

(-)C

(+)C (100) (200) (300) pug/ml

Figure 4.1: Effect of different concentration of CAN on % inhibition of Triton-X

induced haemolysis of human erythrocytes incubated in PBS. Values were expressed

as mean + sem; n=3. Error bars represent standard deviation * Significantly different

(p<0.001) against untreated control.
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Figure 4.2: Cytotoxic effects of (a) CAN FP at 24 h and (b) CAN BP at 24 h,

measured by MTT based method. Values were expressed as mean + sem; n=3. Error

bars represent standard deviation * Significantly different (p<0.001) against untreated

control. ° Significantly different (p<0.01) against untreated control.
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4.2. Cytotoxicity effect of CAN free phenolic and CAN bound phenolic on human lung

cancer cell lines

CAN free phenolic and CAN bound phenolic extracts were tested for their cytotoxicity
on human lung cancer cell lines; A549, NCI-H522 and NCI-H23, using the MTT based method
and trypan blue exclusion assay. For 24 and 48 hours, cells were treated to either the extracts at

concentrations of 25, 50, 100 pg/ml, or the vehicle control, 0.1% DMSO.

The CAN free phenolic and CAN bound phenolic fraction shows inhibition of cell viability
on human lung cancer cell lines at dose dependent manner after 24 and 48 hours of treatment. It
also strongly limit the overall cell growth in a dose dependent manner in all three cell lines with
noticeably reduced in IC50 values (Figure 4.3, 4.4, 4.5 and 4.6). The number of death cell
substantially increases with respect to the dose and time of incubation with the phenolic fractions

of CAN

The plant fractions shows selective cytotoxicity in cancer cell lines yet remain non toxic

to normal human cells, suggesting the presence of specific photochemical in the plant extracts.

Exploration of such plant based active compound would enlighten the discovery of new
anticancer therapeutics and reduce the cost and other limitations that tagged with conventional

anticancer approach/module present today.
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Figure 4.3: Cytotoxic effects of (a) CAN FP at 24 h and (b) CAN FP at 48 h against
A549 cells, measured by MTT based method. (c) Cell counting assay of A549 cells
against CAN FP measured by trypan blue dye exclusion method. The viability is
calculated as % of control (100%) Values were expressed as mean + sem; n=3. Error
bars represent standard deviation * Significantly different (p<0.001) against untreated

control. ° Significantly different (p<0.01) against untreated control.
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Figure 4.4: Cytotoxic effects of (a) CAN FP at 24 h and (b) CAN FP at 48 h against
NCI-H23 cells, measured by MTT based method. (c) Cell counting assay of NCI-H23
cells against CAN FP measured by trypan blue dye exclusion method. The viability is
calculated as % of control (100%) Values were expressed as mean + sem; n=3. Error
bars represent standard deviation * Significantly different (p<0.001) against untreated

control. ° Significantly different (p<0.01) against untreated control.
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Figure 4.5: Cytotoxic effects of (a) CAN FP at 24 h and (b) CAN FP at 48 h against
NCI-H522 cells, measured by MTT based method. (c) Cell counting assay of NCI-
H522 cells against CAN FP measured by trypan blue dye exclusion method. The
viability is calculated as % of control (100%) Values were expressed as mean + sem;
n=3. Error bars represent standard deviation * Significantly different (p<0.001) against
untreated control. ° Significantly different (p<0.01) against untreated control. ©

Significantly different (p<0.05) against untreated control.
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4.3. CAN free phenolic and CAN bound phenolic induced apoptosis in lung cancer cell lines
detection by AO/EtBr double staining and validation by flowcytometry using Annexin
V-FITC and PI

AO/EtBr dye staining was performed on lung cancer cells exposed with 25 pg/ml, 50 ug/ml,
and 100 pg/ml of phenolic extracts of CAN to identify if the cells undergo necrosis, apoptosis, or
a combination of both. Acridine Orange (AO) may readily enter the regular and initial apoptotic
cells with intact membranes, and flash green fluorescence upon attaching to DNA, making it
possible to detect fundamental morphological variations in apoptotic cells using the double
AO/EtBr fluorescence labeling approach. Varying fluorescence is seen at various phases of
apoptosis, which serves as an indicator of these processes; for example, green/yellow indicates
an intact or early apoptotic cell, whereas orange indicates late apoptotic and red indicates a dead
cell. Since AO/EtBr staining may be used to both qualitatively and quantitatively identify

apoptosis, it is widely accepted as a reliable approach for doing so.

The degree of induced apoptosis by phenolic extracts of CAN in lung cancer cells was
further confirmed by flowcytometry. The treated cells were stained with Annexin V-FITC and
Propidium Iodide (PI) after 48 hours of incubation with different concentration of CAN
Phenolics. As during apoptosis, loss of plasma membrane integrity leads to externalization of
phosphatidylserine which is selectively detected by Annexin V-FITC and on the other hand PI

permeates the cell membrane and detects necrotic cells.

The exposure of CAN free and CAN bound phenolics shows induction of apoptosis in
A549 cells in dose dependent manner after 48 h of treatment (Figure 4.7, 4.9). The CAN free
phenolics also stimulate apoptosis in NCI-H522 cells in dose dependent manner (Figure 4.8). We
could also see similar effect in NCI-H23 cells using fluorescence microscope (Figure 4.10). The
percentage of late apoptotic and necrotic cells significantly increases in all three cell lines. The
results of induced apoptosis detected by fluorescence microscopic is further confirmed by

flowcytometry in A549, NCI-H522 cells.
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Figure 4.7: AO/EtBr staining of A549 cells treated with (a) CAN free phenolics for 48 h. The

cells could be divided into viable, early apoptotic, late apoptotic and necrotic/dead cells. (b), (c)

Effect of CAN free phenolics on apoptosis of A549 cell lines after 48 h of treatment. The

pictorial representation of pattern of apoptosis phase distribution is shown in contour plot of

Annexin V-FITC/PI for evaluation of apoptosis. Values were expressed as mean + sem; n=3.

Error bars represent standard deviation * Significantly different (p<0.001) against untreated

control. ° Significantly different (p<0.01) against untreated control.
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Figure 4.8: AO/EtBr staining of NCI-H522 cells treated with (a) CAN free phenolics for 48 h.
The cells could be divided into viable, early apoptotic, late apoptotic and necrotic/dead cells.
(b) Effect of CAN free phenolics on apoptosis of NCI-H522 cell lines after 48 h of treatment.
The pictorial representation of pattern of apoptosis phase distribution is shown in contour plot
of Annexin V-FITC/PI for evaluation of apoptosis. Values were expressed as mean & sem; n=3.
Error bars represent standard deviation  Significantly different (p<0.001) against untreated

control. Significantly different (p<0.01) against untreated control.
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Figure 4.9: AO/EtBr staining of A549 cells treated with (a) CAN bound phenolics for 48 h. The
cells could be divided into viable, early apoptotic, late apoptotic and necrotic/dead cells. (b), (¢)
Effect of CAN bound phenolics on apoptosis of A549 cell lines after 48 h of treatment. The
pictorial representation of pattern of apoptosis phase distribution is shown in contour plot of
Annexin V-FITC/PI for evaluation of apoptosis. Values were expressed as mean + sem; n=3.
Error bars represent standard deviation * Significantly different (p<0.001) against untreated
control. ® Significantly different (p<0.01) against untreated control.
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Figure 4.10: AO/EtBr staining of NCI-H23 cells treated with (a) CAN free phenolics
for 48 h. The cells could be divided into viable, early apoptotic, late apoptotic and
necrotic/dead cells. Values were expressed as mean + sem; n=3. Error bars represent
standard deviation * Significantly different (p<0.001) against untreated control. b

Significantly different (p<0.01) against untreated control. © Significantly different

(p<0.05) against untreated control.
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4.4. CAN free phenolic and CAN bound phenolic induced autophagy and lipid
accumulation in lung cancer cell lines detection by fluorescence microscopy,

flowcytometry and Oil Red O staining

Autophagy being the second form of cell death in cancer cells by formation of acidic
vesicular organelles (AVOs) followed by lysosomal degradation of cellular components. The
detection and quantification of autophagosome production in lung cancer cells was done using
flow cytometry as well as microscopic examination. The microscopic investigation of A549 cell
lines showed that numbers of autophagic vacuoles were significantly decreased in number but
size of AVOs increased after 48 hours of exposure to CAN free phenolic fraction (25 pg/ml, 50
pg/ml, 100 pg/ml) compared to control cells (Figure 4.11). In case of NCI-H23 cells we have
observed significant increase in numbers of autophagic vacuoles and size of AVOs after 48 hours
of exposure to CAN free phenolic fraction (Figure 4.12). We further confirmed the result of
induced autophagy by using flowcytometry in A549 cells. We have observed the increase in
mean fluorescent intensity in treated cells indicating the percentage of fold change of acid

vesicles which validates the above findings (Figure 4.11).

Further we have analyzed the lipid accumulation in response to the CAN phenolic fraction
in A549 and NCI-H23 cells using Oil Red O staining (40X). Cells treated with CAN free
phenolic (25 pg/ml, 50 pg/ml, 100 pg/ml) for 48 hours exhibits a lipid accumulation phenotype
(Figure 4.11, 4.12). The observed significant increase in lipid accumulation in lung cancer cells
indicated cellular stress induced by the plant fraction which might correlate to autophagy

pathway.
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Figure 4.11: Effect of CAN FP on A549 autophagosome formation. (a) Number of
autophagosome generation (b) Average size of the autophagosome (c) The data are
represented in scattered plot along with bar graph depicting fold changes in vesicle
formation. (d) Oil Red O staining of A549 cell lines upon CAN FP treatment for 48 h.
Values were expressed as mean + sem; n=3. Error bars represent standard deviation *
Significantly different (p<0.001) against untreated control. b Significantly different

(p<0.01) against untreated control.
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Figure 4.12: Effect of CAN FP on NCI-H23 autophagosome formation. (a) Average size
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against untreated control. b Significantly different (p<0.01) against untreated control.
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4.5. Effect of CAN free phenolic and CAN bound phenolic in intracellular ROS and MMP

generation detected by flow cytometry

In this section, we have used flowcytometry with DCFDA-FITC-A and Rhodamine-123 to
evaluate the propensity of CAN free Phenolic and CAN bound phenolic fraction (25 pg/ml, 50
pug/ml, 100 pg/ml) to produce intracellular ROS and MMP in the exposed lung cancer cell lines.
The degree of fluorescence by oxidized DCF is measured after CAN phenolics treatment.
Diminished fluorescence in the presence of Rhodamine-123, a fluorescent dye used to evaluate

mitochondrial membrane integrity or mitochondrial membrane depolarization, represented the

loss of the MMP.

We have observed a significant increase in intracellular ROS level in A549 cells as the
mean fluorescence intensity increases after 48 hours of CAN free phenolic fraction exposure.
The result demonstrates that the treated A549 cell shows an increase in number of ROS-positive
cells relative to untreated cells by 2.8 (p<0.001) folds. Also the MMP activity was significantly
increased in dose dependent manner by 1.18-1.56 (p<0.001) folds compared to control (Figure
4.13). On the other hand in A549 cells, the ROS level increased by 0.86 (p<0.001) folds and
MMP fold change rises from 0.9 to 1.0 (p<0.001) when treated with CAN Bound Phenolic
fraction for 48 hours (Figure 4.14).

Hence the CAN free and CAN bound phenolics treated cancer cells exhibit increase in
intracellular ROS levels indicated by increase in mean fluorescent intensity thus resulted in
mitochondrial dysfunction. The finding is supported by decrease in mitochondrial membrane
potential and/or hyper polarization with increase in dose of the extract. This indicates that the
phenolics treated cells undergo cellular stress and overall cell death in cancer cells either by

apoptosis or autophagy,
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Figure 4.13: Effect of CAN free phenolics on (a) intracellular ROS level of A549 cells
upon treatment for 48 h. The histogram and corresponding bar graph represents the fold
change in ROS generation after 48 h of plant fraction treatment. (b) Mitochondrial
membrane potential of AS549 cells. The histogram and corresponding bar graph
represents the fold change in MMP after 48 h of plant fraction treatment. Values were
expressed as mean + sem; n=3. Error bars represent standard deviation * Significantly
different (p<0.001) against untreated control. ® Significantly different (p<0.01) against

untreated control.
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Figure 4.14: Effect of CAN bound phenolics on (a) intracellular ROS level of A549 cells

upon treatment for 48 h. The histogram and corresponding bar graph represents the fold

change in ROS generation after 48 h of plant fraction treatment. (b) Mitochondrial

membrane potential of A549 cells. The histogram and corresponding bar graph

represents the fold change in MMP after 48 h of plant fraction treatment. Values were

expressed as mean + sem; n=3. Error bars represent standard deviation * Significantly

different (p<0.001) against untreated control. b Significantly different (p<0.01) against

untreated control. ¢ Significantly different (p<0.05) against untreated control.
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4.6. Cell cycle analysis in lung cancer cell lines using CAN free phenolic and CAN bound

phenolics

As most of the known anticancer drugs act by altering cell cycle distribution of cancer cells
at GO/G1, S, G2/M phase and leading to cell death or apoptosis. We have investigated the effect
of CAN free and CAN bound phenolic fractions (25 pg/ml, 50 pg/ml, 100 pg/ml) in cell cycle
phase distribution in lung cancer cell lines by quantifying the DNA content using Propidium

Iodide (PI) fluorescence in flowcytometer.

We have observed a significant increase in A549 cell population at S and G2/M phase after
48 hours when exposed to CAN free phenolics (Figure 4.15). The population of the treated cells
was arrested in S phase 41.55-74.40% (p<0.001) and in G2/M phases 11.35-31.45% (p=<0.001)
with respect to the control cells 14.35% and 8.55% respectively. A considerable increase in the
S-Phase and G2/M cell population was observed after 48 hours of treatment with CAN free
phenolic in NCI-H522 cells. The distribution of NCI-H522 cells were at S phase 38.30%
(p<0.001) and at G2/M phase 20.50% (p<0.001). The cell population in both A549 and NCI-
H522 cell lines undergoes apoptosis by 5.2-6.8% (p<0.001).

The A549 cells exposed to 25 pg/ml, 50 pg/ml, and 100 pg/ml of CAN bound phenolic
extract showed a considerable increase in cell population and arrest at the GO/G1 phase by
79.45% (p<0.01) in 48 hours (Figure 4.16). We have observed similar pattern of cell cycle arrest
in A549 cell lines when treated with Cisplatin drug (0-2.5mM/ml). The A549 cell populations
were arrested in S phase 22.20-45.10% (p<0.001) and at G2/M phase 12.4-46.68% (p<0.001)
with respect to the control 12.65% and 11.15% respectively (Figure 4.16). Similar to the CAN
free phenolics action in A549 cells the Cisplatin treated cells undergoes apoptosis by 5.9%
(p<0.001) when treated with 0-2.5mM/ml concentration after 48 hours.
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Figure 4.15: Effect of CAN free phenolics on cell cycle distribution of (a) A549 cells
and (b) NCI-H522 cells after 48 h of incubation. Histogram display of DNA content (x-
axis, PI-fluorescence) vs. cell count (y-axis) and bar graph representation of cell cycle
distribution at GO/G1, S and G2/M phase. Values were expressed as mean + sem; n=3.
Error bars represent standard deviation  Significantly different (p<0.001) against

untreated control. ° Significantly different (p<0.01) against untreated control.

Significantly different (p<0.05) against untreated control.
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Figure 4.16: Effect of (a) CAN bound phenolics on cell cycle distribution of A549 cells
and (b) Cisplatin on cell cycle distribution of A459 cells after 48 h of incubation.
Histogram display of DNA content (x-axis, PI-fluorescence) vs. cell count (y-axis) and
bar graph representation of cell cycle distribution at GO/G1, S and G2/M phase. Values
were expressed as mean + sem; n=3. Error bars represent standard deviation *
Significantly different (p<0.001) against untreated control. b Significantly different
(p<0.01) against untreated control.
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4.7. Effect of CAN free phenolic and CAN bound phenolic in cell proliferation of lung

cancer cell lines using CFSE labeled flowcytometry

The effect of CAN free and CAN bound phenolics in overall lung cancer cell proliferation
was monitored using intracellular dye, carboxylfluorescein succininmidyl ester (CFSE) in
flowcytometry. As with each cell division, the fluorescent dye distributes throughout the
daughter cells causing a drop in fluorescence intensity in proliferating cells is therefore measured

by flowcytometry.

The exposure of A549 cells with CAN free phenolic fractions for 72 hours shows
significant reduction in cell proliferation up to 5.48% ((p<0.001) with increase in dose of the
extract (25 pg/ml, 50 pg/ml, 100 pg/ml). In case of NCI-H522 cell lines the proliferation rate is
inhibited up to 71.54% (p<0.001) (Figure 4.17). Although no significant change in rate of
proliferation was observed in case of CAN bound phenolics treatment in A549 cells.
Interestingly the proliferation rate of human PBMCs was increased in dose dependent manner
upon exposure to either phenolic fractions of CAN (Figure 4.18). This observation corresponds
to the cell viability of CAN phenolic fractions measured by MTT based method (Figure 4.2).
Thus from the present findings we can conclude that the plant phenolic fractions inhibiting
overall cell proliferation in lung cancer cell lines in dose dependent manner and on the other

hand enhances cell proliferation in human PBMCs.
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Figure 4.17: Effect of CAN free phenolics on cell proliferation of CFSE labelled lung
cancer cell lines incubated for 72 h; (a) CAN free phenolics in A549 cells (b) CAN free
phenolics in NCI-H522 cells. The CFSE labelled cells at 0 h were negative control. The
reduction of CFSE fluorescence was measured by flow cytometry at 72 h. Values were
expressed as mean + sem; n=3. Error bars represent standard deviation * Significantly
different (p<0.001) against untreated control. b Significantly different (p<0.01) against

untreated control.
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Figure 4.18: Effect of CAN bound phenolics on cell proliferation of CFSE labelled (a) A549 cells
incubated for 72 h; (b) CAN free phenolics in human PBMCs for 5 days (c) CAN bound phenolics
in human PBMCs for 5 days. The CFSE labelled cells at 0 h were negative control. The reduction
of CFSE fluorescence was measured by flow cytometry at 72 h and 120 h. Values were expressed
as mean + sem; n=3. Error bars represent standard deviation * Significantly different (p<0.001)

against untreated control. © Significantly different (p<0.05) against untreated control.
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4.8. The effect of CAN free phenolic and CAN bound phenolic fractions in clonogenic and

cell migration ability in lung cancer cell lines

Cell migration and colony formation is an essential cellular behavior of cancer cells that
plays a crucial role in disease aggressiveness and metastasis. Therefore, reducing this clonogenic
and migratory potential of cancer cells is essential for both successful lung cancer eradication
and disease prevention. This motivated to study the inhibitory effect CAN free phenolic and

CAN bound phenolic fractions in colony formation and cell migration in lung cancer cell lines.

The lung cancer cells A549 and NCI-H23, the clonogenicity was significantly inhibited in
dose dependent manner as well as the rate of migration was subdued remarkably in increase in
dose (25 pg/ml, 50 pg/ml, 100 pg/ml) when exposed to CAN free phenolics for 48 hours (Figure
4.19). The clonogenicity of A549 cells were remarkably reduced to 10% and migratory efficacy
is inhibited up to 8% when treated CAN free phenolics. Likewise, in NCI-H23 cells, the
clonogenicity is reduced to less than 5% and the rate of migration is significantly inhibited when
treated CAN free phenolics. The data suggest that CAN free phenolics have significantly reduced
cell migration without the confounding influence of cell proliferation. The CAN free and CAN
bound phenolics also reduced the clonogenicity of NCI-H522 cells to 5% and 30% in done
dependent manner (Figure 4.20).
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Figure 4.19: Effect of CAN free phenolics on (a) Clonogenic assay and cell migration in A549 cell
lines; (b) Clonogenic assay and cell migration in NCI-H23 cell lines. Values were expressed as mean
+ sem; n=3. Error bars represent standard deviation * Significantly different (p<0.001) against

untreated control. ° Significantly different (p<0.01) against untreated control.
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4.9. OHRLCMS chromatogram results for CAN free phenolic compound

The major compounds in Lex free phenolic fraction include Genistein, Trolox, Resperpine,
Xylitol, 2-Hydroxy-1,4-naphthoquinone, 3,4-Dimethylbenzoic acid, Resorcinol, 6-Gingerol, etc.
along with a composite mixture of known anticancer phytochemicals along with some unknown
molecular peaks present in the fraction that may have acted over anticancer efficacy (Table 4.1).

OHRLCMS chromatogram of methanolic extract of CAN free phenolic compound are
shown in Figure 4.21.
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Table 4.1: Anticancer activity of bioactive compounds found in CAN polyphenols.

Compound

Plant source

Inhibition of Cancer

Genisteine

Flemingia vestita Benth

Prostrate, Cervix, Colon

Trolox

Rutaceae family

Breast, Ovary, Colon

Resperpine

Rauwolfia vomitoria

Lung, Ovary, Breast

Xylitol

Betulaceae tamily

Lung, Oral, Pancreas,

2-Hydroxy-1,4-

naphthoquinone

Lawsonia inermis

Lung, Abdomen, Breast

3,4-Dimethylbenzoic acid

Viburnum cylindricum

Lung, Cervical

Resorcinol

Mpyristica fatua Houtt

Lung, Liver, Pancreas

6-Gingerol

Zingiberaceae family

Lung, Leukaemia, Breast
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Figure 4.21: OHRLCMS chromatogram of methanolic extract of CAN free phenolic compound

83




4.10. Animal toxicity of CAN free phenolics in Balb/C mice.

The treatment of CAN free phenolics to Balb/C mice did not cause any toxicity and
mortality. The plant phenolics did not alter the test results of hepatotoxicity, nephtotoxicity and
hematological parameters as shown in Table 4.2, Table 4.3 and Table 4.4.
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Table 4.2: Result of hepatological parameters in Balb/C mice

@ayy | @D WL UL U qany | (mgdny | (mgary | ™MD
Comra | 567 | 288% | 12950 | 3250% | 133.17= | 085% | 0.05% | 081% | 125.00
0.19 0.11 4019 | 1029 | 2112 0.24 0.04 020 | +9.57
CanFP
OO0 | 669k | 353 | 14400 | 3260+ | 14140+ | 152+ | 0.00% | LS2% | 110.20
by | 042 0.29 5325 | 1001 | 40.14 0.56 0.00 056 | +24.89
wt)

Table 4.3: Result of nephrotoxicity parameters in Balb/C mice

Creatinin Sodium Potassium
BUN (mg/dL) (mg/dL) (mmol/L) (mmol/L)
Control 14.92 + 3.57 0.10 £ 0.02 15717 £ 1.47 6.82 + 0.63
Can FP
(100 mg/kg 19.02 + 4.53 0.12 +0.02 161.80 +3.11 8.24 +1.01
body. wt)

Table 4.4: Result of hematological parameters in Balb/C mice

Parameters (Unit)
WBC(m/mm’)
Lymphocytes (%)
Monocytes (%)
Neutrophils (%)
Eosinophils (%)
Basophils (%)
Total RBC(m/mm”*)
MCV (1))

HCt(%)

MCH (pg)
MCHC(g/dl)
RDW

Hb(g/dl)

Control
5.85+1.65
82.424+3.74
2.53+0.16
10.68+2.94
3.5+1.38
0.3£0.09
9.02+0.30
49.13+1.21
44.32+1.87
15.38+0.33
31.3£0.39
12.78+0.44

13.87+0.52
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Can FP

5.82+1.50
80.67+3.01
2.4+0.64
12.78+2.14
3.17£1.96
0.3240.16
9.1240.35
49.42+1.73
45.05+£2.04
15.9340.38
32.24+0.90
12.45+0.29

14.5+0.35




4.11. Effect of CAN free phenolics against A549 induced cancer in athymic nude mice.

In the present study we have done a pilot study in athymic nude mice to understand the
antitumor activity of CAN free phenolics against A549 induced carcinoma. The findings
suggests that the tumour burden in phenolics treated groups was 94% while the tumourigenicity
was inhibited up to 6% with respect to the control. Survival/mortality rate is to be kept in mind

before doing the experiments for significance of the results (Figure 4.22).
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Figure 4.22: Effect of CAN free phenolics on (a) athymic nude mice against A549 induced
carcinoma. (b) Bar graph represents the % tumour burden and inhibition. Values were
expressed as mean + sem; Error bars represent standard deviation. © Significantly different

(p<0.05) against untreated control.
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Part B- Evaluation of anti-proliferative and pro-apoptotic efficacy of phenolic

fraction of Smilax ovalifolia.

In this section we are presenting our findings on efficacy of free phenolics and bound
phenolics extracted from Smilax ovalifolia (LEX). The data generated using standard methods

that are commonly used in such studies using in vitro and in vivo models.

4.12. Cytotoxicity Assay against Human RBCs and PBMCs

To check the toxicity of the selected plant extract we have used the membrane stability
activity on human RBCs against Triton-X 100 induced haemolysis and viability of human

PBMCs using MTT based method.

As shown in (Figure 4.23) the phenolic extract shows protective role against Triton-X 100
induced haemolysis with respect to the +ve and —ve control. The activity of the plant extract was
compared with ascorbic acid. On the other hand, the cell viability was observed at 24 h when the
human PBMCs were exposed to either the free phenolic or bound phenolic extract. Cell viability
was shown to be higher than the control with rising concentration across all time periods of
exposure as shown in (Figure 4.24), suggesting that extract is not toxic to human RBCs and

substantially stimulates proliferation in human PBMCs (p<0.001).
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Figure 4.23: Effect of different concentration of LEX on % inhibition of Triton-X
induced haemolysis of human erythrocytes incubated in PBS. Values were expressed
as mean + sem; n=3. Error bars represent standard deviation * Significantly different

(p<0.001) against untreated control.
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Figure 4.24: Cytotoxic effects of (a) LEX FP at 24 h and (b) LEX BP at 24 h,
measured by MTT based method. Values were expressed as mean + sem; n=3. Error
bars represent standard deviation * Significantly different (p<0.001) against untreated

control. ° Significantly different (p<0.01) against untreated control.
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4.13. Cytotoxicity effect of LEX free phenolic and LEX bound phenolic on human lung

cancer cell lines

LEX free phenolic and LEX bound phenolic extracts were tested for their cytotoxicity on
human lung cancer cell lines; A549, NCI-H522 and NCI-H23, using the MTT based method and

trypan blue exclusion assay.

The LEX free phenolic and LEX bound phenolic fraction shows inhibition of cell viability
on human lung cancer cells at dose dependent manner after 24 and 48 hours of treatment. It also
strongly inhibits the overall cell growth in a dose dependent manner in all three cell lines with
noticeably reduced in IC50 values (Figure 4.25, 4.26, 4.27 and 4.28). The number of death cell

substantially increases with respect to the dose and time of incubation.

The plant fractions shows selective cytotoxicity in cancer cells yet remain non toxic to
normal human cells, suggesting the presence of specific photochemical that significantly targets

cancer cells.

Exploration of such plant based active compound would enlighten the discovery of new
anticancer therapeutics and reduce the cost and other limitations that tagged with conventional

anticancer approach/module present today.
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Figure 4.25: Cytotoxic effects of (a) LEX FP at 24 h and (b) LEX FP at 48 h against A549
cells, measured by MTT based method. (c) Cell counting assay of A549 cells against LEX
FP measured by trypan blue dye exclusion method. The viability is calculated as % of
control (100%) Values were expressed as mean = sem; n=3. Error bars represent standard
deviation * Significantly different (p<0.001) against untreated control. ¢ Significantly

different (p<0.05) against untreated control.

91



NCI-H23 a3t 24 h NCI-AZ5 at4s n

Control 28 pgimil 50 pg'mi 100 pg/ml Contral 28 pgiml S0 palel 100 pglenl
g po! g

() Control (25)  (50)  (100) pg/ml

E NCI-H23 at 48 h wmm nean % of viable cei
I Mean of % death cell
[ % total cell
100
g 80 4
[
= 60 A
3 a
£
g 40 4 b
=
T a
© 20 - a
i
=2
>
£ ol
control 25 50 100
Dose [pg/ml)

Figure 4.26: Cytotoxic effects of (a) LEX FP at 24 h and (b) LEX FP at 48 h against NCI-
H23 cells, measured by MTT based method. (c) Cell counting assay of NCI-H23 cells
against LEX FP measured by trypan blue dye exclusion method. The viability is
calculated as % of control (100%) Values were expressed as mean = sem; n=3. Error bars
represent standard deviation * Significantly different (p<0.001) against untreated control.

® Significantly different (p<0.01) against untreated control.
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Figure 4.27: Cytotoxic effects of (a) LEX FP at 24 h and (b) LEX FP at 48 h against
NCI-H522 cells, measured by MTT based method. (c) Cell counting assay of NCI-

H522 cells against LEX FP measured by trypan blue dye exclusion method. The
viability is calculated as % of control (100%) Values were expressed as mean + sem;
n=3. Error bars represent standard deviation * Significantly different (p<0.001) against
untreated control. ° Significantly different (p<0.01) against untreated control. b

Significantly different (p<0.05) against untreated control.
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Figure 4.28: Cytotoxic effects of (a) LEX BP at 24 h and (b) LEX BP at 48 h against
A549 cells, measured by MTT based method. (c) Cell counting assay of A549 cells

against LEX BP measured by trypan blue dye exclusion method. The viability is

calculated as % of control (100%) Values were expressed as mean + sem; n=3. Error

bars represent standard deviation * Significantly different (p<0.001) against untreated

control. ° Significantly different (p<0.01) against untreated control.
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4.14. LEX free phenolic and LEX bound phenolic induced apoptosis in lung cancer cell
lines detection by AO/EtBr double staining and validation by flowcytometry using
Annexin V-FITC and PI

AO/EtBr dye staining was performed on lung cancer cell lines exposed with 25 pg/ml, 50
pg/ml, and 100 pg/ml of phenolic extracts of LEX to identify if the cells undergo necrosis,
apoptosis, or a combination of both. Acridine Orange (AO) may readily enter the regular and
initial apoptotic cells with intact membranes, and flash green fluorescence upon attaching to
DNA, making it possible to detect fundamental morphological variations in apoptotic cells using
the double AO/EtBr fluorescence labeling approach. Varying fluorescence is seen at various
phases of apoptosis, which serves as an indicator of these processes; for example, green/yellow
indicates an intact or early apoptotic cell, whereas orange indicates late apoptotic and red
indicates a dead cell. Since AO/EtBr staining may be used to both qualitatively and

quantitatively identify apoptosis, it is widely accepted as a reliable approach for doing so.

The degree of induced apoptosis by phenolic extracts of LEX in lung Cancer cell lines are
further confirmed by flowcytometry. The treated cells were stained with Annexin V-FITC and
Propidium Iodide (PI) after 48 hours of incubation with different concentration of LEX
Phenolics. As during apoptosis, loss of plasma membrane integrity leads to externalization of
phosphatidylserine which is selectively detected by Annexin V-FITC and o the other hand PI

permeates the cell membrane and detects necrotic cells.

The exposure of LEX free and LEX bound phenolics shows induction of apoptosis in
A549 cells in dose dependent manner after 48 h of treatment (Figure 4.29, 4.32). The LEX free
phenolics also stimulate apoptosis in NCI-H522 cells in dose dependent manner (Figure 4.30).
We could also see similar effect in NCI-H23 cells using fluorescence microscope (Figure 4.31).
The percentage of late apoptotic and necrotic cells significantly increases in all three cell lines.
The results of induced apoptosis detected by fluorescence microscopic is further confirmed by

flowcytometry in A549, NCI-H522 cells
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Figure 4.29: AO/EtBr staining of A549 cells treated with (a) LEX free phenolics for 48 h. The
cells could be divided into viable, early apoptotic, late apoptotic and necrotic/dead cells. (b), (¢)
Effect of LEX free phenolics on apoptosis of A549 cell lines after 48 h of treatment. The
pictorial representation of pattern of apoptosis phase distribution is shown in contour plot of
Annexin V-FITC/PI for evaluation of apoptosis. Values were expressed as mean + sem; n=3.
Error bars represent standard deviation * Significantly different (p<0.001) against untreated

control.
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Figure 4.30: Effect of LEX free phenolics in (a) NCI-H522 cells for 48 h. The cells
could be divided into viable, early apoptotic, late apoptotic and necrotic/dead cells. The
pictorial representation of pattern of apoptosis phase distribution is shown in contour
plot of Annexin V-FITC/PI for evaluation of apoptosis. Values were expressed as mean

+ sem; n=3.

97



NCI-H23 at 48 h
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Figure 4.31: AO/EtBr staining of NCI-H23 cells treated with (a) LEX free phenolics
for 48 h. The cells could be divided into viable, early apoptotic, late apoptotic and
necrotic/dead cells. Values were expressed as mean = sem; n=3. Error bars
represent standard deviation * Significantly different (p<0.001) against untreated

control. ® Significantly different (p<0.01) against untreated control.
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A549 at 48 h
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Figure 4.32: AO/EtBr staining of A549 cells treated with (a) LEX bound phenolics for 48 h.
The cells could be divided into viable, early apoptotic, late apoptotic and necrotic/dead
cells. (b) Effect of LEX bound phenolics on apoptosis of A549 cell lines after 48 h of
treatment. The pictorial representation of pattern of apoptosis phase distribution is shown in
contour plot of Annexin V-FITC/PI for evaluation of apoptosis. Values were expressed as
mean + sem; n=3. Error bars represent standard deviation * Significantly different (p<0.001)

against untreated control. ° Significantly different (p<0.01) against untreated control.
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4.15. LEX free phenolic and LEX bound phenolic induced autophagy and lipid
accumulation in lung cancer cell lines detection by fluorescence microscopy,

flowcytometry and Oil Red O staining.

The detection and quantification of autophagosome production in lung cancer cells was
done using flow cytometry as well as microscopic examination. The microscopic investigation of
A549 cell lines showed that numbers of autophagic vacuoles were significantly increased in
number and size of AVOs increased after 48 hours of exposure to LEX free phenolic fraction (25
pg/ml, 50 pg/ml, 100 pg/ml) compared to control cells (Figure 4.33). In case of NCI-H23 cells
we have observed significant increase in numbers of autophagic vacuoles and size of AVOs after
48 hours of exposure to LEX free phenolic fraction (Figure 4.34). We further confirmed the
result of induced autophagy by using flowcytometry in A549 cells. We have observed the
increase in mean fluorescent intensity in treated cells indicating the percentage of fold change of

acid vesicles which validates the above findings (Figure 4.33).

Further we have analyzed the lipid accumulation in response to the LEX phenolic fraction
in A549 and NCI-H23 cells using Oil Red O staining (40X). Cells treated with LEX free
phenolic (25 pg/ml, 50 pg/ml, 100 pg/ml) for 48 hours exhibits a lipid accumulation phenotype
(Figure 4.33, 4.34). The observed significant increase in lipid accumulation in lung cancer cells
indicated cellular stress induced by the plant fraction which might correlate to autophagy

pathway.
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Figure 4.33: Effect of LEX FP on A549 autophagosome formation. (a) Number of
autophagosome generation (b) Average size of the autophagosome (c) The data are
represented in scattered plot along with bar graph depicting fold changes in vesicle
formation. (d) Oil Red O staining of A549 cell lines upon LEX FP treatment for 48 h. Values
were expressed as mean + sem; n=3. Error bars represent standard deviation * Significantly

different (p<0.001) against untreated control. b Significantly different (p<0.01) against

untreated control
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Figure 4.34: Effect of LEX FP on NCI-H23 autophagosome formation. (a) Average size

of the autophagosome (b) Number of autophagosome generation (¢) Oil Red O staining

of NCI-H23 cell lines upon LEX FP treatment for 48 h. Values were expressed as mean

+ sem; n=3. Error bars represent standard deviation * Significantly different (p<0.001)

against untreated control. ® Significantly different (p<0.01) against untreated control.

Significantly different (p<0.05) against untreated control.
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4.16. Effect of LEX free phenolic and LEX bound phenolic in intracellular ROS and MMP

generation detected by flow cytometry

In this section, we have used flowcytometry with DCFDA-FITC-A and Rhodamine-123 to
evaluate the propensity of LEX free phenolic and LEX bound phenolic fraction (25 pg/ml, 50
pug/ml, 100 pg/ml) to produce intracellular ROS and MMP in the exposed lung cancer cell lines.
The degree of fluorescence by oxidized DCF is measured after LEX phenolics treatment.
Diminished fluorescence in the presence of Rhodamine-123, a fluorescent dye used to evaluate
mitochondrial membrane integrity or mitochondrial membrane depolarization, represented the

loss of the MMP.

We have observed a significant increase in intracellular ROS level in A549 cells as the
mean fluorescence intensity increases after 48 hours of LEX free phenolic fraction exposure..
The result demonstrates that the treated A549 cell line there is an increase in number of ROS-
positive cells relative to untreated cells by 2.8 (p<0.001) folds. Also the MMP level was
significantly decreased by 0.76 folds in compared to control (Figure 4.35). On the other hand the
A549 cell lines, the ROS level increased by 1.25 (p<0.001) folds and MMP fold change
decreased in dose dependent manner from 0.88 to 0.73 (p<0.001) when treated with LEX bound
phenolic fraction for 48 (Figure 4.36).

Hence the LEX free and LEX bound phenolics treated cancer cells exhibit increase in
intracellular ROS levels indicated by increase in mean fluorescent intensity thus resulted in
mitochondrial dysfunction. The finding is supported by decrease in mitochondrial membrane
potential and/or hyper polarization with increase in dose of the extract. This indicates that the
phenolics treated cells undergo cellular stress and overall cell death in cancer cells either by

apoptosis or autophagy,
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Figure 4.35: Effect of LEX free phenolics on (a) intracellular ROS generation of A549
cells upon treatment for 48 h. The histogram and corresponding bar graph represents the
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Figure 4.36: Effect of LEX bound phenolics on (a) intracellular ROS generation of A549

cells upon treatment for 48 h. The histogram and corresponding bar graph represents the

fold change in ROS generation after 48 h of plant fraction treatment. (b) Mitochondrial

membrane potential of AS549 cells. The histogram and corresponding bar graph

represents the fold change in MMP after 48 h of plant fraction treatment. Values were

expressed as mean + sem; n=3. Error bars represent standard deviation * Significantly

different (p<0.001) against untreated control. ® Significantly different (p<0.01) against

untreated control. © Significantly different (p<0.05) against untreated control.
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4.17. Cell cycle analysis in lung cancer cell lines using LEX free phenolic and LEX bound

phenolic

As most of the known anticancer drugs act by altering cell cycle distribution of cancer cells
at GO/G1, S, G2/M phase and leading to cell death or apoptosis. We have investigated the effect
of LEX free and LEX bound phenolic fractions in cell cycle phase distribution in lung cancer cell
lines by quantifying the DNA content using Propidium lodide (PI) fluorescence in

flowcytometer.

We have observed a significant increase in A549 cell population at S and G2/M phase after
48 hours when exposed to LEX free phenolics (25 pg/ml, 50 pg/ml, 100 pg/ml) (Figure 4.37).
The population of the treated cells was arrested in S phase up to 82% (p<0.01) with respect to the
control cells 14.35% (p<0.001). A considerable increase in the S-Phase and G2/M cell
population was observed after 48 hours of treatment with LEX free phenolic in NCI-H522 cells.
The cells were arrested at S phase by 37.6% (p<0.001) and at G2/M phase by 13.75% (p<0.001)
with respect to the control 20.4% (p<0.001) (Figure 4.37). The cell population in both A549 and
NCI-H522 cell lines undergoes apoptosis by 5.5-13.75% (p<0.01) with respect to control.

A549 cells exposed to 25 pg/ml, 50 pg/ml, and 100 pg/ml of LEX bound phenolic extract
showed a considerable increase in cell population and arrest at the S phase by 24.8% (p<0.01)
and at G2/M phase by 28.15% (p<0.05) with respect to the control 14.35% and 8.55%
respectively at 48 hours (Figure 4.38). Similar to the LEX free phenolics action in A549 cells the
LEX bound phenolics treated cells undergoes apoptosis by 5.5% (p<0.001) compared to the

control.
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Figure 4.37: Effect of LEX free phenolics on cell cycle distribution of (a) A549 cells and
(b) NCI-H522 cells after 48 h of incubation. Histogram display of DNA content (x-axis,
PI-fluorescence) vs. cell count (y-axis) and bar graph representation of cell cycle
distribution at GO/G1, S and G2/M phase. Values were expressed as mean + sem; n=3.
Error bars represent standard deviation ° Significantly different (p<0.001) against

untreated control. ° Significantly different (p<0.01) against untreated control.

Significantly different (p<0.05) against untreated control.
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Figure 4.38: Effect of (a) LEX bound phenolics on cell cycle distribution of A549 cells
after 48 h of incubation. Histogram display of DNA content (x-axis, PI-fluorescence) vs.
cell count (y-axis) and bar graph representation of cell cycle distribution at GO/G1, S and
G2/M phase. Values were expressed as mean + sem; n=3. Error bars represent standard
deviation * Significantly different (p<0.001) against untreated control. ® Significantly

different (p<0.01) against untreated control.
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4.18. Effect of Lex Free Phenolic and Bound Phenolic in cell proliferation of lung cancer

cell lines using CFSE labeled flowcytometry

The effect of LEX free and LEX bound phenolics in overall lung cancer cell proliferation
was monitored using intracellular dye, carboxylfluorescein succininmidyl ester (CFSE) in
flowcytometry. As with each cell division, the fluorescent dye distributes throughout the
daughter cells causing a drop in fluorescence intensity in proliferating cells is therefore measured

by flowcytometry.

The exposure of AS549 cells with LEX free phenolic fractions for 72 hours shows
significant reduction in cell proliferation up to 29.16% (p<0.001) with respect to the control. The
rate of proliferation was decreased by 15.6% (p<0.01) in case of LEX bound phenolics treatment
in A549 cells (Figure 4.39). Interestingly the proliferation rate of human PBMCs was increased
in dose dependent manner upon exposure to either phenolic fractions of LEX (Figure 4.40). This
observation corresponds to the cell viability of LEX phenolic fractions measured by MTT based
method (Figure 4.24). Thus from the findings we can conclude that the plant phenolic fractions
inhibiting overall cell proliferation in lung cancer cell lines in dose dependent manner and on the

other hand enhances cell proliferation in human PBMCs.
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Figure 4.39: Effect of LEX free and bound phenolics on cell proliferation of CFSE
labelled lung cancer cell lines incubated with 0-100ug/ml for 72 h; (a) LEX free
phenolics in A549 cells (b) LEX bound phenolics in A549 cells. The CFSE labelled cells
at 0 h were negative control. The reduction of CFSE fluorescence was measured by flow
cytometry at 72 h. Values were expressed as mean + sem; n=3. Error bars represent
standard deviation * Significantly different (p<0.001) against untreated control. °
Significantly different (p<0.01) against untreated control. © Significantly different
(p<0.05) against untreated control.
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Figure 4.40: Effect of LEX phenolics on cell proliferation of CFSE labelled PBMCs
incubated with 0-100pg/ml for 120 h; (a) LEX free phenolics in human PBMCs for 5
days (b) LEX bound phenolics in human PBMCs for 5 days. The CFSE labelled cells at 0
h were negative control. The reduction of CFSE fluorescence was measured by flow
cytometry at 120 h. Values were expressed as mean £+ sem; n=3. Error bars represent

standard deviation * Significantly different (p<0.001) against untreated control.
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4.19. The effect of Lex free phenolic and LEX bound phenolic fractions in clonogenic and

cell migration ability in lung cancer cell lines

Cell migration and colony formation is an essential cellular behavior of cancer cells that
plays a crucial role in disease aggressiveness and metastasis. Therefore, reducing this clonogenic
and migratory potential of cancer cells is essential for both successful lung cancer eradication
and disease prevention. This motivated to study the inhibitory effect LEX free phenolic and LEX

bound phenolic fractions in colony formation and cell migration in lung cancer cell lines.

The lung cancer cells, A549 and NCI-H23, the clonogenicity was significantly inhibited in
dose dependent manner as well as the rate of migration was subdued remarkably in dose
dependent manner (25 pg/ml, 50 pg/ml, 100 pg/ml) when exposed to LEX free phenolics for 48
hours (Figure 4.41). The clonogenicity of A549 cells were remarkably reduced to 35% and
migratory efficacy is inhibited up to 20% when treated with LEX free phenolics. Likewise, in
NCI-H23 cells, the clonogenicity is reduced to less than 5% and the rate of migration is
significantly inhibited when treated with LEX free phenolics. The LEX bound phenolics also
reduced the clonogenicity and migratory effect of A549 cell lines in done dependent manner
after 48 hours of exposure (Figure 4.42). The clonogenicity of A549 cells are inhibited up to
38% and migratory efficacy is reduced to 8% when exposed to LEX bound phenolics
respectively. The data suggest that LEX free and LEX bound phenolics have significantly

reduced cell migration without the confounding influence of cell proliferation.
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Figure 4.41: Effect of LEX free phenolics on (a) Clonogenic assay and cell migration in A549 cell
lines; (b) Clonogenic assay and cell migration in NCI-H23 cell lines. Values were expressed as mean
+ sem; n=3. Error bars represent standard deviation * Significantly different (p<0.001) against
untreated control. ° Significantly different (p<0.01) against untreated control. © Significantly different

(p<0.05) against untreated control
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4.20. OHRLCMS chromatogram results for LEX free phenolic compound

A composite mixture of known anticancer phytochemicals along with some unknown
molecular peaks present in the fraction that may have acted over anticancer efficacy against lung
cancer. The major compounds in free phenolic fraction include Resorcinol, Resperpine, Trolox,

Soyasaponin 1, 6-Gingerol, Xylitol, Rhamnetin, Robinetin, etc (Table 4.5).

OHRLCMS chromatogram of methanolic extract of LEX free phenolic compound are

shown in Figure 4.43.
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Table 4.5: Anticancer activity of bioactive compounds found in LEX polyphenols.

Compound Plant source Inhibition of Cancer
Resorcinol Myristica fatua Houtt Lung, Liver, Pancreas
Resperpine Rauwolfia vomitoria Lung, Ovary, Breast

Trolox Rutaceae tamily Breast, Ovary, Colon

Soyasaponin 1

Glycine max

Lung, Colon, Osteosarcoma

6-Gingerol Zingiberaceae family Lung, Leukemia, Breast
Xylitol Betulaceae family Lung, Oral, Pancreas,
Rhamnetin Syzygium aromaticum Lung, Breast, Liver
Robinetin Acacia mearnsii Colon, Breast, Liver
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Figure 4.43: OHRLCMS chromatogram of methanolic extract of LEX free phenolic
compound
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4.21. Toxicity of LEX free phenolics in Balb/C mice.

The treatment of LEX free phenolics to Balb/C mice did not cause any toxicity and
mortality. The plant phenolics did not alter the test results of hepatotoxicity, nephtotoxicity and
hematological parameters as shown in Table 4.6, Table 4.7 and Table 4.8.
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Table 4.6: Balb /C mice test result for hepatotoxicity parameters

Total . Total Unconj. Direct
Albumin AST ALT ALKP Glucose
Protein Bilirubin Bilirubin Bilirubin
(@/dL) (g/dL) (U/L) (U/L) (U/L) (mg/dL) (mg/dL) (mg/dL) (mg/dL)
5.67+ 2.88 + 129.50 + | 32.50+ | 133.17 125.00 +
Control 0.19 0.11 40.19 1029 | 21.12 0.85+£0.24 | 0.05+0.04 | 0.81+0.20 9.57
Lex FP
II(ll(/)l(() 6.22 + 3.28 + 109.50 + | 38.83 + | 132.67 L18£027 | 0.01£0.03 | 1.17+027 100.33 +
g7ie 0.41 0.27 23.75 6.15 | 2778 | . : ¥ : : 13.41
body.
wt)
Table 4.7: Balb /C mice test result for nephrotoxicity parameters.
Creatinin Sodium Potassium
BUN (mg/dL) (mg/dL) (mmol/L) (mmol/L)
Control 14.92 £ 3.57 0.10 £ 0.02 157.17 £ 1.47 6.82 £+ 0.63
Lex FP
(100 mg/kg 16.47 + 1.38 0.07 + 0.02 160.83 +2.40 6.35 + 0.66
body. wt)

Table 4.8: Balb/C mice test result of hematological parameters

Parameters (Unit)
WBC(m/mm’)
Lymphocytes (%)
Monocytes (%)
Neutrophils (%)
Eosinophils (%)
Basophils (%)
Total RBC(m/mm”)
MCYV (1))

HCt(%)

MCH (pg)
MCHC(g/dl)
RDW

Hb(g/dl)
MPYV (fl)
PCH(%)

Control
5.85+1.65
82.42+3.74
2.53+0.16
10.68+2.94
3.5+1.38
0.3+0.09
9.02+0.30
49.13+1.21
44.32+1.87
15.38+0.33
31.3+0.39
12.78+0.44

13.87+0.52
7+0.26
0.80+0.16
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Lex FP

4.89+0.52
78.6+5.71
1.98+0.50
12.8+3.07
5.8543.71
0.72+1.02
9.15+0.58
50.3+1.02

46.02+2.84

15.43+0.61

30.98+1.10

13.35+0.42

14.25+0.82

7.17+0.52
0.76+0.08




4.22. Effect of LEX free phenolics against A549 induced cancer in athymic nude mice.

In the present study we have done a pilot study in athymic nude mice to understand the
antitumor activity of LEX free phenolics against A549 induced carcinoma. Interestingly the
findings suggest that the tumour burden in phenolic treated groups was 29% and the
tumourigenicity was significantly inhibited up to 71% with respect to the control. We have
observed that antitumor activity of LEX free phenolic fraction is significantly higher than the
CAN free phenolic fractions. Survival/mortality rate is to be kept in mind before doing the

experiments for significance of the results.
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Figure 4.44: Effect of LEX free phenolics on (a) athymic nude mice against A549
induced carcinoma. (b) Bar graph represents the % tumour burden and inhibition.
Values were expressed as mean + sem; Error bars represent standard deviation. b

Significantly different (p<0.01) against untreated control.
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Based on the our findings, the free and bound phenolic fractions extracted from the leaves
of Etlingera linguiformis (CAN) of the Zingiberaceae family and Smilax ovalifolia (LEX) of the
Smilacaceae family exhibit strong anti-proliferative and pro-apoptotic activity against human
lung cancer cell lines A549, NCI-H522, and NCI-H23. The two plants have long histories of
traditional usage in folk medicine and lifestyle. We have observed substantial anti-proliferative
potentials against a lung cancer cell lines after 72 hours of treatment with an increasing dosage of
a chosen phenolic fraction of CAN and LEX. Whereas, both of the extracted phenolic fractions
were non-toxic to human PBMCs. It is possible that the chosen plant fraction preferentially
inhibits the proliferative potentials of lung cancer cells. Targeted detection of tumour cells is
crucial for increasing the cytotoxic drug's therapeutic efficiency while lessening the drug's

damaging effects on nearby healthy tissues.

The lung cancer cells were undergoing apoptosis or necrosis typically exhibits a set of
recognizable morphological hallmarks that can be used to positively identify the process. These
hallmarks include a membrane rupture, reduction in cell and nuclear volume, chromatin
condensation, DNA fragmentation, formation of membrane-bound vesicles and lipid
accumulation that can be triggered by a number of different intracellular pathways. After
exposure to our phenolic fractions, lung cancer cells showed conventional changes in
morphologies while control cells had not undergone any morphological changes over the
duration of the experiment. Microscopic and flowcytometric analysis of phenolics fraction

treated cells confirms the lung cancer cell death either by apoptosis or autophagy.

We have found that the phenolic fraction of CAN and LEX induced a dose-dependent
increase in intracellular ROS level and MMP in comparison to control in lung cancer cell lines
used in the study. Hence we can correlate the cellular stress induced after exposure of the
phenolics fraction might lead to ROS and MMP-mediated cell death either by apoptotic or
autophagic pathways. Interestingly, oxidative stress induced by the plant phenolic fraction leads
to lipid accumulation in lung cancer cells which directly correlates to and autophagic cell death.
The clonogenicity and cell migratory property of the lung cancer cell lines were significantly
inhibited after exposure of the phenolic fractions suggesting the effectiveness of the selected
plant phenolics used in the study. In comparison of known drug, Cisplatin, we have observed
significant arrest in cell cycle of lung cancer cells after exposure to free and bound phenolics of

CAN and LEX for 48 hours.
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The study of hepatological, nephrological and hematological parameters suggest that the
free phenolics of CAN and LEX were not toxic to Balb/C mice. The tumor burden and size is
strongly inhibited in A549 induced cancer in athymic nude mice after treating with the free

phenolic fractions.

Collectively, our findings support the conclusion that phenolic fractions isolated from the
leaves of Etlingera linguiformis (CAN) and Smilax ovalifolia (LEX) inhibit human lung cancer
cell proliferation by causing cell. A major breakthrough in the novel drug discovery of
therapeutic and preventative aspects of cancer management could be made through the
identification, isolation, and investigation of active molecules present in the leaves of Etlingera
linguiformis (CAN) and Smilax ovalifolia (LEX) for their anticancer efficacy. It is crucial for
elucidating the precise molecular mechanisms, which could lead to a breakthrough in the novel
drug discovery of therapeutic and preventive aspects of cancer management. Therefore, it is
necessary to investigate the untapped potential of plants of ethnobotanical relevance in the battle

against cancer-like disorders, a topic that has remained obscure for several years.
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