
Chapter 6

Multi layer SNN in Primates’

Visual Cortex

6.1 Introduction

The visual cortex is one of the complex biological networks responsible for learn-

ing. The visual cortex is continuously fed with natural scenes that later serve

as the basis of complex cognitive behavior. Different layers of the visual cortex

extract multitude of features from natural scenes. These visual features, collected

from different regions of the visual cortex, are routed to the successive layers of

ganglion cell networks to generate self-organizing maps responsible for short-term

and long-term memory, contour estimation, motion detection, etc. Feature ex-

traction in the visual cortex is computed as early as the striate cortex in the V1

region. These extracted features are then projected to the mutually exclusive

parvocellular and magnocellular regions for shaping complex cognitive behavior.

Previous state-of-the-art confirms the parvocellular regions being stimulated with

projected multi-scale features and magnocellular region being responsive toward

coarser features. The parvocellular region and magnocellular region are isolated

from each other and responsible for region-specific computation. The parvocellular

region stimulated with a multi-scale feature from the V1 region, is responsible for

content-based information processing responsible for the scene, object, and face

identification type behavior. On the other hand, the magnocellular region, deriv-

ing large-scale features, is responsible for boundary estimation, object tracking,

contour detection, depth, and motion perception.

Lots have been explored about the global behavior and responses of multi-
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layer neural networks. But the local dynamics of deterministic type-specific neu-

ron morphology shaping complex responses are yet to be explored. The role of

neuron morphology with localized AIC has not been getting much attention due

to the unavailability of sophisticated imaging and measuring techniques. On the

contrary, dendritic arbor triggering active AP has been discovered a few decades

back and since gained attention. Rigorous studies have been conducted to link

the computational power of neurons to the local dynamics.

Significant literature and detailed morphological structures were intro-

duced by Ramon y Cajal [292] in terms of dedicated circuits that are organized

in the primate visual cortex. A diverse collection of neuronal morphologies ar-

ranged in multiple layers with dedicated functionalities targeted toward enhanced

cognition, plasticity, and learning tasks and are achieved via reorganizing con-

nections [293], growth and retraction [294] of dendritic inputs. In 1962, Hubel

and Wiesel came forward with the fundamental floor plan of mammalian retina

[295, 296] where the localized neurons transduce light signals and encode them into

orientation-selective (OS) spiking responses in primary layers whereas scale and

location-independent cognition in others. These orientation-selective responses

are computed in the primary V1 layers of the visual cortex and seem to be the

basis of mammalian visual perception and cognition. The detailed investigation of

Hubel and Wiesel [295, 296] discusses the details of a precise organization of RF,

antagonistic connectivity of RGC with bipolar cells (BC) [186, 288] and axis of

orientation selectivity which were later confirmed in physiological experimentation

[123–125, 297]

Based on these initial investigations, a subtle amount of literature has been

put forward to replicate localized behavior concerning orientation selectivity [186,

291], edge detection, contour detection, scene segmentation, scale and position-

independent cognition and learning [298, 299] that reports findings similar to the

landmark works of Hubel and Wiesel. Literature pointed out the importance of

neuronal anatomy as well as physiology in functional computation in orientation

selectivity but very little has been understood about connectome structure [123–

125, 297], the role of unique neuronal morphologies [300, 301] and dynamics of such

morphology due to localized ion channels [137, 138, 141, 302]. Recent works [123,

124] confirms precise micro-architecture in mammalian visual cortex organized

with single-cell precision whereas literature [137, 138, 302] describes dynamics of

neuronal inputs (dendritic arbors) to be dependent on such localized AICs.

This work has been put forward to integrate designed morphologically de-

tailed RGCs to construct a Hubel and Wiesel type feed-forward network of the
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visual cortex. The model tries to emulate simple cell layers S1 and S2 that are re-

sponsible for extracting multiscale-oriented features. These features are forwarded

to the complex cell layers.

This chapter emphasizes to explore the role of distinct type-specific neu-

rons in feature extraction and their implication in biological neural networks.

Oriented features has been specifically targeted to investigate their probable role

in recognition and learning.

6.1.1 Contribution

The proposed model suggests the probable role of different RGC structures linked

to individual functional aspects that plays an important role in feature extraction,

object detection, and recognition. Preliminary test in face recognition has been

conducted by incorporating the morphologically detailed RGC neurons in the S1

and S2 layers of hmax model inspired by Hubel and Wiesel. The model performs

very well considering firing rate based encoding in individual neuron. The model

performance is expected to improve the learning capability when incorporated

with multiple RF sizes. The model also opens scope of future research in the

field incorporating spike-time dependent encoding and similar spike base encoding

techniques.

6.2 Hubel and Wiesel Type Network

Experiments performed on an anesthetized cat, macaque, and spider monkey

and simultaneous recordings from the layer between the Lateral Gyrus (LG) and

post-Lateral Gyrus (PSG) by Hubel and Wiesel explores details about functional

anatomy and physiology. It categorizes the research into distinct sections includ-

ing the RF organization, ocular dominance, and functional architecture. In the RF

organization, they grouped the majority of the cells into two major groups called

‘simple cells’ and ‘complex cells’ corresponding to their responses to stimuli. These

cells are organized into excitatory and inhibitory regions in their respective RFs

that shape their natural responses. These simple cells are responsive to oriented

features and resonate at maximum spiking frequency when the stimulated oriented

feature matches the preferred orientation of the cell. On the other hand, complex

cells don’t have any clear separation of the RF into excitatory and inhibitory

regions. These complex cells respond to broad slits and dark bars rather than
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normal slits and bars. This particular features in complex cells has been termed

as max-pooling type activity [298, 303].

6.2.1 Simple Cell Layer

Simple cells in the designed visual cortex network are replaced with designed

morphologically detailed RGCs discussed in the previous chapters. These RGCs

are arranged in precise repetitive patterns with single-cell precision. The con-

nectivity arrangement of the RGCs is configured to the connectome specificity of

the OS-RGC network responsible for oriented feature extraction as discussed in

[295, 296, 298]. Very similar to the feedforward network discussed in [298, 303],

orientation selectivity has been achieved by the connectivity configuration of the

RGC, RF size is controlled by the dendritic spread of the RGC, and bandwidth of

the RGC is controlled by the specific combination of localized AICs. Specificity of

the Hubel and Wiesel [295, 296] network has strictly adhered while designing the

simple cell layer as well as the complex cell layers. Details of the RGC morphology,

bandwidth selectivity, and RF sizes have been discussed in the section follows.

Simple cell layers in the designed model have been configured to extract

oriented features from the inputs. Oriented feature selectivity has been configured

using the connectome specificity of the OS-RGC network and has been discussed

in section 4.4. The first layer of simple cell is responsible for simple oriented

features at 0◦, 45◦, 90◦, and 135◦. The second layer of simple cell is responsible

for extracting complex features due to the intersection of oriented features.

6.2.1.1 RGC Morphology and Bandwidth

The model framework is designed incorporating Hubel and Wiesel type network

[295, 296] as the base. In vivo findings reported in the literature [125, 300, 301] has

also been integrated to the proposed framework to replicate local RGC dynamics

[137, 138, 142]. RGC with detailed morphology has been designed considering

dendrite arborization and dendritic spread of midget and parasol RGCs and briefed

in section 4.3.2.1, Figure4-4 and section 5.3.1, Figure5-1. Distal dendrites of the

RGC are responsible for collecting inputs from the connection site. Sub-cellular

distribution of localized AICs renews the overall incoming signals in terms of

active APs for feed-forward propagation. Passive fibers in the dendrites helps to

propagate the signal with attenuation proportional to the length of the passive

fiber. The nodes/ dendritic junctions act as summing nodes responsible for the
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temporal summation of the incoming signals. The type of local AIC distribution

controls the bandwidth selectivity. Tuning of the bandwidth has been achieved by

controlling the total amount of propagating current reaching the nodes/ dendritic

junctions.

6.2.1.2 Bipolar Connectivity, Receptive Fields and Receptive Field

Sizes

RGC connectivity with the BCs forms the base of RFs. RFs are the regions over

the retina that influences the firing frequency of the connected neuron. Temporal

signals from the BCs are fed to the RGCs and the RGCs respond correspond-

ingly. Details of the BC signal stimulation and intensity to Spatio-temporal signal

generation have been briefed in section 4.3.1.2. RGCs are connected to BCs with

connectome specificity discussed in section 4.3.2.2 and section 5.3.2 with single-cell

precision [123–125] and well-defined excitatory and inhibitory regions. Balanced

excitatory and inhibitory connectivity of RGCs with BCs defines the orientation

specificity of the RGC. The connected RGC starts resonating when the stimu-

lated feature matches the preferred orientation and vice versa. Feature orientation

specificity of the RF is defined by the axis following through the excitatory and

inhibitory connections. Connectome neighborhood results in the formation of RFs

of different sizes giving the RGCs multiscale feature extraction capabilities.

6.2.2 Complex Cell Layer

The complex cell layer used in the model is similar to complex cells discussed in

Hubel and Wiesel [295, 296]. Pooling functions are conducted by complex cells

within larger RF sizes than simple cells. Pooling operations are carried out in

the neighborhood of simple cell responses with multiple RF sizes, which provide

location-independent behavior within their RF, which is an intrinsic character-

istic of complex cells. Similarly, the effect of scale pooling is a broadening of

the frequency bandwidth from simple to complex units, which is consistent with

physiology.
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6.3 Modeling and Simulation

Shown in Figure6-1 is the visual cortex-inspired learning system, which has been

designed by adaptation of the well-acknowledged Hubel and Wiesel architecture

[295, 296]. At the top of the model is the Input which is the natural stimulus fed

to the visual cortex model which is being sensed by the retina. Spatial information

from the retina is fed to the BCs, where the signals are transduced and converted

to Spatio-temporal sequences depending on the exposure time of the input. The

process of spatial to Spatio-temporal signal conversion has been elaborated in

section 4.3.1.2 considering the response time of primates’ vision. OS-RGCs are

connected to BCs with connection specificity discussed in section 5.3.2 with single-

cell precision. Four OS-RGC layers are stacked over the BCs to extract oriented

features at 0◦, 45◦, 90◦ and 135◦ configured to extract oriented features at three

scales, primarily 3× 3, 5× 5 and 7× 7, and 2 opposite phases. The two opposite

phase-oriented features are computed by reversing the connectome polarity of the

connected RGCs which in turn gives the ON phase OS filter and OFF phase

OS filter responses of the simple cell layer S1.

Figure 6-1: Visual cortex inspired learning model

These simple cell responses from S1 layer are feed-forwarded to the com-

plex cell layer C1 where max-pooling operations are performed on oriented feature
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responses [298, 299]. Max-pool operation on the oriented features helps in broad-

ening the frequency bandwidth. Six RFs different than the ‘S1’ layer RFs sizes

have been used in the ‘C1’ layer. This pooling operation with sizes different than

the ‘S1’ RF gives location-independent behavior. These complex cell responses

from the ‘C1’ layer are again forwarded to simple cell layer ‘S2’, responsible for

complex oriented feature extraction. Simple cell layer ‘S2’ being fed with a broader

band-oriented feature, extracts complex features such as the intersection of two

or more oriented features and contours. From these oriented features at complex

cell layer ‘C2’, feature vectors are created. Since population response in terms of

spiking frequency has been considered, the population spiking histogram has been

taken as a feature vector at the two complex cell layers for the learning model.

Shown in Figure6-2 is a sample of input images being processed by the

proposed model inspired by the visual cortex. ‘S1 Layer’ and ‘S2 Layer’ are the

simple cell layers of OS-RGCs responsible for the extraction of oriented features

from the inputs whereas ‘C1 Layer’ and ‘C2 Layer’ are layers of complex cells

responsible for performing the max-pooling operation on the oriented responses.

As shown in Figure6-2, when inputs are fed to the visual cortex, spatial

information is converted to Spatio-temporal signals via the BCs and forwarded

to the first simple cell layer ‘S1 Layer’. The ‘S1 Layer’, being configured for

preferred oriented features, extracts orientation information in 4 orientation and

3 scales, namely 0◦, 45◦, 90◦, 135◦ and RF sizes of 3 × 3, 5 × 5 and 7 × 7 cell

neighborhood, for ON and OFF phases. The On and OFF phase-oriented features

are complementary to each other and the same has been computed for each RF

size and the responses are forwarded to the ‘C1 Layer’. In Figure6-2, ‘H’, ‘V’,

‘D1’ and ‘D2’ at the left are the ON phase-oriented features and at the right

are the OFF phase-oriented features for a RF size of 3 × 3 RGC neighborhood

for the ‘Input’ shown. In the ‘C1 Layer’, max-pooling operation is performed

with 6 different RF sizes, namely ‘RF1’, ‘RF2’, ‘RF3’, ‘RF4’, ‘RF5’ and ‘RF6’

corresponding to 5×5, 7×7, 9×9, 11×11, 13×13 and 15×15 RGC neighborhood

respectively for the two phases. Responses from ‘C1 Layer’ are feed-forwarded

to the second simple cell layer ‘S2 Layer’ where oriented features are extracted.

Successive operations of oriented feature extraction results in contour detection

and complex feature detection such as a combination of oriented features. In

the proposed framework shown in Figure6-2, ‘HH’, ‘HV’, ‘HD1’ and ‘HD2’ are

some of the complex oriented features extracted that are combinations of two

oriented features, 0◦-0◦(‘HH’), 0◦-90◦(‘HV’), 0◦-45◦(‘HD1’) and 0◦-135◦(‘HD2’).

These complex features are forwarded to the second complex cell layer ‘C2 Layer’,
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Figure 6-2: Sample response to an input image at S1, C1 and S2 layers for
different RF size of ‘S1’ and ‘S2’ layer and three pooling operations in of the
complex cell layer C1 and C2 with RF sizes of 5, 7, 9, 11, 13, 15 RGC neighborhood
is shown for the designed network.
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where max-pooling operations are being performed for 6 RF sizes.

6.4 Population Feature

As shown in Figure6-1 and Fig6-2, ‘Input’ has been fed to the network, where 4

oriented features are extracted in the ‘S1’ layer at 3 different RF sizes of 2 opposite

phases which are forwarded to ‘C1’ layer. These oriented features are max-pooled

with 6 RF sizes and feed-forwarded to the successive simple cell layer ‘S2’ and then

to the ‘C2’ layer to extract the max activation information. This max-activation

information of the neuron population in the ‘C2’ layer is used as feature space

for performance estimation in face recognition. Since the spiking frequency of

the neuron population has been emphasized and shows very promising results in

edge map reconstruction, a neuron population spiking histogram has been used for

the identification of faces. Population spiking histogram has been extracted from

each RF response of the ‘C2’ layer and later used for identification of face. For

identification of faces, ‘C2’ layers features are computed and population spiking

histograms are extracted and compared against the already existing histogram

features of the learned faces. Euclidean distance between the corresponding RF

histogram features is calculated, which is found to be minimum in most of the

matching cases whereas the Euclidean distance measure for dissimilar faces is

larger.

6.5 Result and Discussion

To investigate the feasibility of the proposed model in learning and object recog-

nition, it has been integrated into the hmax model discussed in [298, 299] with

minor changes in the number of filters. The hmax model is inspired from Hubel

and Wiesel [295, 296] RF architecture. The presented approach replaces the sim-

ple cell layers ‘S1’ and ‘S2’ in the hmax model to extract directional features,

which are then fed to populations of complex cell layers C1 and C2’s responsible

for pooling maximum activation information. In the hmax model, the ‘S1’ unit

has 2 phases, 4 orientations, and 17 sizes of RFs. However, due to the compu-

tational complexity of the proposed model, the ‘S1’ unit is accommodated with

2 phases, 4 orientations, and 3 sizes of RFs. The model’s two phases are due

to the morphological connectivity matrices discussed in section 4.3.2.2, but with

the polarity of the connections reversed. The ‘S1’ layer discussed in the hmax
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model implements a Gabor filter responsible for the extraction of local directional

feature information, and parameters such as θ, γ, σ, ϕ, and λ control RF proper-

ties such as orientation, aspect ratio, effective width, phase, and wavelength. The

proposed morphologically defined neuron model, very similar to the hmax model,

works as a local directional texture information extractor from the input image.

The connectivity matrix controls orientation in the proposed model, the spread of

neurons controls the aspect ratio, wavelength tuning is controlled by the type of

localized ion channels at a specific site, and phase is controlled by the polarity of

connectivity matrices. The sensitivity of neuron morphology, on the other hand,

can be controlled by varying the amount of input current from BCs. In the pro-

posed model, the neuron’s bandwidth is controlled by a combination of spiking

activity at the junctions and the neuron’s cell body. Bursting and chattering type

of neuron spiking activity have been considered for optimal model behavior and

considering types of spiking activity seen in the visual cortex. In the hmax model,

the ‘C1’ neuron layer is responsible pooling the maximum activation of neurons

within a specific RF.

Table 6.1: Retrival performance of the hmax model after incorporating the pro-
posed morphologically detailed RGC neuron model in the S1 and S2 layer.

Face Id Average Retrival Rate(in %)

Charles Bronson 1 81.667
Charles Bronson 2 83.333
Colin Prescot 68.333
Dino de Laurentiis 73.333
Emma Thompson 66.667
Francis Ricciardone 71.667
Fuji Cho 63.333
Gloria Macapaga Arroyo 1 63.333
Gloria Macapaga Arroyo 2 71.667
Gwyneth Paltrow 68.333

Because complex cell units are insensitive to the location of the stimulus

within their respective RFs, the RFs of ‘C1’ cells are normally larger than those

of simple cells ‘S1’ and ‘S2’. As a result, 6 RFs (5, 7, 9, 11, 13, 15) are considered

for ‘C1’ cell pooling operations. The pooled activity of ‘C1’ cells is re-projected

in 4 directional orientations with 2 opposite phases capable of capturing more

complex patterns such as contours and combinations of orientation information in

the subsequent simple cell layer ‘S2’, which in turn are later fed to the ’C2’ complex

cells. The model’s ‘C2’ cells incorporated in the model are functionally similar to

‘C1’ complex cells and responsible for max-pooling operations. Initial learning and

recognition model incorporating simple detailed morphological and connectomic
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structure of neuron to hmax model [298, 299] has been implemented on the face

database provided with the official computational hmax model (found in https://

maxlab.neuro.georgetown.edu/hmax.html#updated). Facial features from the

face database were learned in the ‘C2’ layer in terms of population histogram, and

testing and validation were performed on 6 shifted or tilted face images, position-

independent face images for each subject, and overall recognition and retrieval

accuracy is calculated from the best 4 retrieved images. The model’s average face

detection and retrieval accuracy are 71.166%, which appears very interesting given

that only three RF sizes are incorporated in the ‘S1’ layer and six in the ‘C1’ layer,

and it is expected to perform better by increasing the number of RF-dependent

filters in the ‘S1’ and ‘S2’ regions. The hmax model, on the other hand, performs

better, with a face identification benchmark of 90.4%, which could be attributed

to the amount of direction information extracted. Table.6.1 shows the proposed

model’s face detection and retrieval accuracy for each subject.

6.6 Summary

The visual cortex is a sophisticated information processor that can process vi-

sual input and extract relevant information in parallel to generate accurate and

useful information. Such a robust system is outfitted with a variety of RGN mor-

phologies, each with its connectome specificity and dendritic spread organized in

modular patterns and segregated into multiple layers. At least 50 different types

of RGCs with distinct morphologies can be found, including midgets and para-

sol cells. The proposed model hypothesizes the role of various RGC structures

linked to individual functional aspects in extracting features, object detection,

and recognition. A preliminary test to understand its role in face recognition is

performed by incorporating Hubel and Weisel inspired morphologically detailed

RGC neurons in the S1 and S2 layers of the hmax model. Given the number of

filters included in the model, the model performs well in terms of face recognition

and retrieval. The proposed model’s object recognition performance is expected

to improve as the range of RF widths that can focus on a wide range of spatial

frequencies for multi-scale feature extraction expands. These robust networks are

capable of extracting not only multi-scale features, shapes, and edge information,

but also global information such as depth estimation, motion detection, gaze sta-

bilization, and so on. Combining such local features with global features may

result in error-free detection of shapes, edges, and objects, among other things.

Multi-scale local feature detectors, in conjunction with multi-scale global feature
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extractors, may play a significant role in learning feature optimization for object

identification, possibly in terms of self-organization neural nets via dendritic spine

extension and retraction. Thus, a thorough examination of the significance of

morphology and its related inter-layer and intra-layer connectivity could lead to

a new understanding of the dynamic change in dendritic morphology and arbor

growth during learning.
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