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Mathematical Modeling and

Simulation

3.1 Introduction

Neurons are the building blocks of intelligence in all living beings, and they’re

responsible for complicated behaviors like recognition, memory, cognition, etc. In-

telligent responses can be observed locally in terms of local feedback circuits or

globally in terms of reflex and cognitive reactions. Local muscular contraction in

response to a pain trigger is an example of a local feedback response in which the

local feedback circuit attempts to avoid discomfort by retracting the trigger point.

Similarly, reaction or cognition can be demonstrated by catching or blocking a ball

thrown toward a subject. Information is sent to either the central nervous system

or the local feedback system, which recognizes it and responds appropriately. The

nervous system is responsible for acquiring such information and translating it into

appropriate responses, with neurons serving as the primary component responsible

for carrying the signal to the central/ peripheral nervous system and generating

local or global responses depending on the strength of the stimulus. The gen-

eral working mechanism of a robust neuronal network in facilitating intelligent

responses to incoming information has been argued and discussed for a long time

as a progressive learning method, where progressive learning is achieved as a func-

tion of inter-network and intra-network weighted connectivity and biases. Raman

y Cajal, equipped with Golgi’s staining technique and an achromatic microscope,

generated vastly detailed drawings of neural circuits, covering several species and

most important parts of the brain, in 1888 and advocated the neuron doctrine.

Cajal provides the fascinating theory of principles of dynamic polarization and
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the physiological characterization of neurons as information processing units in

his neuron doctrine. Cajal described the neuron structure into three parts: soma

(cell body), dendrites, and axons. Even though neuron doctrine clarifies the con-

cept of neuronal structures, their non-continuous connectivity with the neuronal

grid, and the electrical signaling hypothesis, the HH model of excitable neuron

membrane published in 1952 provides a mathematical representation of action po-

tential initiation and propagation and helps to understand processes associated

with neuronal signaling. AIC dynamics, such as sodium ion channel, potassium

ion channel, and leakage ion channel dynamics, have been thoroughly discussed,

adding knowledge of active membrane dynamics. The mathematical model pro-

posed by Alan Hodgkin and Andrew Huxley serves as the foundation for recent

advancements in modern membrane dynamics, such as Hyper-polarized current,

calcium ion signaling, and other recent advancements in contemporary membrane

dynamics. Several modified neural models (such as the FitzHugh-Nagumo model

and Rall’s cylinder model) were also established, allowing for efficient large-scale

simulation of populations of neurons and mathematical understanding of action

potential firing mechanisms. In contrast to the basic operating mechanism of

neurons and neuronal networks, the functional component of a single neuron has

received very little attention. Neurons are renowned for having identical mor-

phology, morphogenesis, complex dendritic arborization, and the ability to trigger

localized spikes, whereas in-silico models ignore the dendritic arbor’s distinctive

qualities, portraying dendrite fibers as passive cables exclusively responsible for

signal propagation. The dynamic characteristics of dendritic arbors, including lo-

calized spiking activity, structure-function relationships, inter-fiber coupling, and

their potential role in creating complex neuronal responses, has been confirmed

in-vitro. As a result, thorough research of the fundamental components of neu-

ron morphology is urgently required, as is determining the functional significance

of such faculties in defining neuronal system dynamics. The involvement of the

dendritic arbor and neuronal fibers has been investigated in this study. To com-

prehend the local dynamics of single fiber as well as bundled neural fiber systems,

a mathematical model derived from the infamous “cable equation” has been used.

Specific membrane properties from in-vitro and in-silico models are used to sim-

ulate local neuronal dynamics. The following sections of this chapter will go

through the cable model and observe how to use it to simulate different aspects

of the neural fiber.
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3.2 Approach

The problem in this chapter is to mathematically model and simulate active

and passive fiber dynamics highlighting electrophysiological and morphological

attributes of single nerve fiber and bundled nerve fiber systems. Equivalent elec-

trical circuits representing active and passive nerve membrane is used to derive the

current and voltage equations that are used to model and simulate neuronal fiber

dynamics corresponding to spike generation in active membrane, signal propaga-

tion, decremental conduction and inter-fiber interferance in passive membranes.

Active membrane model is simulated incorporating electrically equivalent voltage

dependent variable resistors for Na+ and K+ ions and similarly linear electri-

cal components (resistances and capacitances) in passive membrane as defined in

literature. Computation of overall electrical behavior is modeled by taking the

length, diameter, membrane surface area and internal volume of the fiber into

computational consideration for calculating the cumulative axial and transmem-

brane conductivity and membrane leakage parameters. Later in the chapter, the

concepts of signal propagation, decremntal conduction and transmembrane ionic

leakage has been extended to further analyse and simulate their roles in multifibre

systems.

3.2.1 Contribution

The proposed work has made a significant contribution to understanding of neuron

fiber dynamics and the role of electrophysiological and morphological factors in

shaping robust neuronal responses. The simulation model reveals new insights into

the effects of various morphology features on nerve signal propagation. Apart from

signal propagation dynamics, the cell-field interaction model in bundled nerve fiber

provides a detailed understanding of the potential role of bundled fiber coupling

in complex function formations like interference-free transmission and correlation

detection and tuning.

3.3 Cable Theory and The Cable Model

The application of classical cable theory to study signal propagation dates back

to the 1850s when it was used to mathematically model signal attenuation in

telegraph cables. The cable equation originates from Fourier’s heat conduction
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equation, and after focusing on analogies with the heat equation and the teleg-

rapher’s equation, Cole and Hodgkin [39, 148], developed the cable equation to

mathematically model theories and concepts of conduction in neuronal fiber. The

cable equation is a notable development in the field of computational neuroscience

for modeling and simulation of nerve structures. The cable equation provides use-

ful information for modeling the electrical and geometric properties of excitable

cells. The shape of a neuronal cell, in particular, and the extent of branching

in dendrites in general, are key components that contribute to passive responses

caused by injected current (from a natural synapse or artificial current source).

Simultaneously, the shape and size of the dendrites influence the change in ex-

citable neuronal responses. Cable characteristics are critical in order to mimic

complicated neuronal morphologies such as dendrites, soma, and axon.

The cable equation has been used by Goldstein [149], and Rall [47, 150]

to represent the change in action potential form and propagation velocity owing

to changes in cable geometry. Rall’s 3/2 rule and Rall’s equivalent cylinder is

one of the important findings of this model. In terms of geometric ratios, it also

represents the blocking condition for propagating action potential. Rinzel [151]

later used Rall’s equivalent cylinder to describe transient activity in the neural

dendritic tree. Rall’s 3/2 rule has been widely applied to dendritic bifurcation

modeling. Furthermore, the Agmon-Snir [152] extension of Rall’s cable theory,

and the Ramon [153] cable model combined with the voltage-clamped approach

has implications in modeling the axonal section and passive dendrites, accordingly.

For arbitrarily branched cable, the Abbot [154], and Guy Major [155] model offers

valuable perspective into efficient signal propagation/reconstruction and coupling

of dendritic branches with respect to the growth in their series resistance. Monai

[156] uses the cable equation to demonstrate the frequency dependence of a passive

shunt dendritic cylinder, and Sweilam [157] model finds its inference in modeling

the responses of the dendritic spine head, indicating the significance of the cable

equation remedy and its potential ramifications in modeling a diverse range of

neuronal morphologies.

Shown in Figure3-1a is the cable equivalent circuit of a neuron fiber where

‘ra∆x’ represents the axial resistance to signal flow inside the nerve fiber due to

axoplasm, and ‘cm∆x’ represents the membrane capacitance that characterizes the

neuron fiber’s thin lipid bilayer, ‘rm’ is the specific resistance of axoplasm, and

‘cm’ is the specific lipid membrane capacitance per unit length. The ‘black box’ in

Figure3-1a can be represented as a HH membrane in case of an active membrane

or a leakage conductance, as shown in Figure3-1b. The ‘black box’ represents the
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(a) (b)

Figure 3-1: Cable representation of a differential length of neuron fiber and
membrane representation of active and passive fiber (a) Cable model equivalent
circuit for a neuron fiber over a small length (∆x) of neuron fiber, (b) Black box
representation from Figure3-1a with A representing electical circuit equivalent of
a HH active membrane and B represents electical circuit equivalent of a passive
membrane model.

localized membrane behavior depending on localized ion channel dynamics. As

shown in Figure3-1b, ‘A’ is the electrical depiction of the active HH membrane,

whereas ‘B’ is the electrical circuit equivalent of a passive membrane. Electrical

parameters ‘gNa’, ‘gk’ and ‘gL’ in Figure3-1b are the conductances due to Na+ion

channels, K+ion channels and leakage ion channels respectively and ‘ENa’, ‘EK ’

and ‘EL’ are the equilibrium potential for Na+ions, K+ions and leakage ions

respectively.

3.3.1 Membrane Dynamics

Considering the cable circuit equivalent of a nerve fiber model for a infinitesimally

small length of the fiber, Kirchhoff’s circuit equation between two points ‘A’ and

‘B’, as shown in Figure3-1a can be summarized as

V (x+∆x)− V (x)

∆x
= −Iara (3.1)

Ia(x−∆x)− Ia(x)

∆x
= IT (3.2)
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For a diferential length of fiber as ∆x→ 0, equation 3.1 can be rewritten as

lim
∆x→0

V (x−∆x)− V (x)

∆x
= −Iara (3.3)

lim
∆x→0

Ia(x−∆x)− Ia(x)

∆x
= IT (3.4)

dV

dx
= −Iara (3.5)

dIa
dx

= IT (3.6)

where IT is the transmembrane current that flows perpendicular to the surface of

the nerve fiber and can be mathematically modeled as

IT = Ic + Iionic (3.7)

where ‘Ic’ denotes the current flowing across the capacitor and ‘Iionic’ is the ionic

current flowing across the membrane due to localize ion channel dynamics.

3.3.1.1 Active Membrane

As shown in Figure3-2, the active membrane can be modeled as an analogous

electrical circuit, sometimes known as the HH [38, 39] membrane model or the

conductance membrane model. In the HH model, the lipid bi-layer thickness sep-

arating the endoplasm from the exoplasm during axial ionic mobility works as a

capacitance, whereas three variable conductances in parallel portray the voltage-

controlled AICs corresponding to Na+, K+, and Cl− ions. The voltage-controlled

ion channels that enable and control ion exchange across the membrane are illus-

trated by the variable conductance ‘gNa’, ‘gK ’, and ‘gL’.

Figure 3-2: Active membrane dynamics of HH neuron.

The transmembrane current (IT ) dynamics in Figure3-2, due to the
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voltage-controlled ion channels, can be mathematically described as

IT = Ic + INa + IK + IL (3.8)

where ‘Ic’ is the capacitive current due to electrostatic force across the membrane,

‘INa’ is the current due to Na+ ion mobility across the membrane, ‘IK ’ is the

current due toK+ ion mobility across the membrane and ‘IL’ is the leakage current

due to minority ions. Current due to Na+ ion channels are controlled via four

gates controlling the flow of Na+ ions, namely three ‘m’ gate and one ‘h’ gate,

whereas the K+ ionic exchange across the membrane is controlled via four ‘n’

gates and the equation 3.8 can be rewritten as

IT = cm
dV

dt
+ gNam

3h(V − ENa) + gKn
4(V − EK) + gL(V − EL) (3.9)

IT = cm
dV

dt
+GNa(V − ENa) +GK(V − EK) +GL(V − EL) (3.10)

where ‘cm’ is the membrane specific capacitance, ‘gNa’ is the maximum possible

Na+ conductance of the membrane, ‘gK ’ is the maximum possibleK+ conductance

of the membrane. The term ‘gNam
3h’ portrays total Na+ ion channels facilitating

ion transport and ‘gKn
4’ portrays total K+ ion channels facilitating ion transport

and the gating dynamics of AICs are given as

dm

dt
= αm (V ) (1−m)− βm (V )m (3.11)

dn

dt
= αn (V ) (1− n)− βn (V )n (3.12)

dm

dt
= αh (V ) (1− h)− βh (V )h (3.13)

αm (V ) = 0.1
V + 40

1− e−
V +40
10

, (3.14)

αn (V ) = 0.01
V + 55

1− e−
V +55
10

, (3.15)

αh (V ) = 0.07e−
V +65
20 , (3.16)

βm (V ) = 4e−
V +65
18 , (3.17)

βn (V ) = 0.125e−
V +65
80 , (3.18)

βh (V ) =
1

1 + e−
V +35
10

(3.19)

Shown in Figure3-3 are the active membrane dynamics showing evolution
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of APs during nerve stimulation. Shown in Figure3-3b, Figure3-3c and Figure3-3d

shows the limit cycle of voltage gated m, n and h gate during the evolution of the

AP.

(a) Action potential in an active mem-
brane for different injected current.

(b) Limit cycle of m gates due to dif-
ferent injected currents.

(c) Limit cycle of h gates due to differ-
ent injected currents.

(d) Limit cycle of n gates due to differ-
ent injected currents.

Figure 3-3: Action potential triggered by an HH type membrane due to injected
stimulus and corresponding limit cycle of the Na+ gates and K+ gates due to
membrane potential dynamics.

3.3.1.2 Passive Membrane

Shown in Figure3-4 is the passive cable representation of neuron fiber. The cur-

rent and voltage equation for the passive cable equation is the same as shown

in equation 3.3 and 3.5, whereas the major change in the membrane dynamics is

seen in a cable passive membrane is due to the local ionic channel dynamics. In

the case of a passive neuron fiber, localized ion channels governing the membrane

dynamics is due to localized leakage channels, as shown in Figure3-4.

Thus the local membrane dynamics in a passive fiber can be summarized

as

dV

dx
= −Iara (3.20)

dIa
dx

= IT (3.21)

IT = cm
dV

dt
+ gL(V − EL) (3.22)

Differentiating equation 3.21 with respect to ‘x’ and substituting with the value
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Figure 3-4: Passive cable representation of a differential length of neuron fiber.

of IT in equation 3.22 the passive membrane. Shown in Figure3-5 is the tran-

sient response of a passive membrane for different initial conditions. Considering

boundary conditions for a differential length of the equipotential fiber, the point

process for membrane dynamics is described as

d2V

dx2
= −ra

(
cm

dV

dt
+ gL(V − EL)

)
(3.23)

where the term d2V
dx2 describes the change in axially propagating potential

as a consequence of the charge holding capacity of the membrane and diffusion

of leakage ions across the nerve membrane. Equation 3.23 is the wave equation

having multiple solutions depending on its initial and boundary conditions. dV
dx

= 0

for an equipotential fiber, the equation (3.23) can be modeled to characterize the

transient behavior for a short cable section. In order to understand the potential

evolution along the length of the cable, equation 3.23 can be written as

d2V

dx2
= −ragL(V − EL) (3.24)

and the equivalent equation 3.24 is a wave equation with ragL as the dimensionless

length constant for the cable, and the solution of the wave equation is a ‘cosine’

function. Similar to the evolution of the membrane equation 3.23 along the length

of the fiber, the time evolution of the membrane equation 3.23 may be represented

using appropriate boundary conditions. Time evolution of signals propagating in

a neuronal fiber is of utmost interest in understanding of the basis of neuronal

computation. A closed termination and an open termination have solutions to the

cable equation, discussed in [150]. Shown in Figure3-5 is the transient response of a

passive membrane for different initial conditions. Considering boundary conditions
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for a differential length of the equipotential fiber, the point process for passive

membrane dynamics can be described as

Iinj + cm
dV

dt
+ gL(V − EL) = 0 (3.25)

where ‘Iinj’ is the forced input to the membrane. Shown in Figure3-5 is the

passive fiber transients considering ‘Iinj’ to be 0 and the membrane settles from

an initial membrane potential of 20mV , 10mV , 0mV and −10mV to its resting

state of membrane potential −65mV . When the passive membrane is stimulated

with a constant forced input current, the resting potential of the membrane shifts

either when the membrane is in a resting state or when the membrane settles from

some initial membrane potential to its resting condition, as shown in Figure3-5b

and Figure3-5c.

(a) Passive membrane transients for a
cable of differential length while settling
from different membrane potential to
resting potential.

(b) Passive membrane transients for a
cable of differential length while settling
from different membrane potential to
resting potential with current injected
into the cable.

(c) Passive membrane transients for a
cable of differential length at resting po-
tential when stimulated with the exter-
nal current.

Figure 3-5: Passive membrane transients from the cable model.

The point process description of the passive membrane model, shown in

equation 3.25, can mimic membrane transients due to propagating current at that

point. As a result, equation 3.25 can be modified to be able to calculate the

propagating current to imitate the propagating action potential dynamics along

with the passive nerve fiber. Considering current flow in a passive membrane, if
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IAP is the current at the inlet of the fiber, Iaxial is the propagating current to the

outlet of the fiber, and IT is the transmembrane current due to membrane leakage,

applying conservation of energy, the current equation can be rewritten as

IAP = Iaxial + IT (3.26)

With a longer cable, the only barrier to current flow is axial resistance, and current

flow may be calculated as a function of the potential difference between the two

sites of interest due to the linear behavior of the passive cable, with little leakage

due to membrane leakage conductance. By replacing the cable parameters with

lumped parameters, the equivalent circuit for a cable of uniform diameter D and

length L can be characterized as shown in Figure3-6.

Figure 3-6: Equivalent discritized passive cable model representation.

The equivalent discretized passive model characteristic equation from Fig-

ure3-6 can be written as

Vout − Vin

RLon

+ Cm
dVout

dt
+GL (Vout − EL) = 0 (3.27)

where bulk membrane parameters in equation 3.27 for an uniform cable of length

‘L’, diameter ’D’, specific axial resistance ra and specific membrane parameters

cm, gL can be expressed as

RLon = 4raL
πD2

GL = gLπDL

Cm = cmπDL
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Figure3-7a shows propagation response surface plot at different locations of

the passive fiber propagating throughout the length of the cable, whereas Figure3-

7b simulates propagation response for discretized passive cables showing signal

spread due to electrostatics of membrane capacitance. Figure3-7a suggests that

due to axial resistance against volume conduction in the uniform fiber, signal

propagation along the neural fibre is accommodated with an attenuation factor,

and the attenuation factor affects propagation more in a longer fiber.

(a) (b)

Figure 3-7: Propagation response in fibers along the different lengths of the
fiber (a) A surface plot from simulation model propagation response along the
different lengths of the fiber of fiber diameter 5µm showing more propagation
attenuation in fiber as the length of the fiber increases, (b) Propagation response
plot for propagating action potential at different lengths of a passive fiber showing
attenuation at different points along the length of the fiber. The response also
shows an increase in signal spread due to increased electrostatic interaction due
to membrane capacitance.

Figure3-7b shows the response of a signal propagating in a uniform fiber

with a different diameter & constant length. Uniform fibers with smaller sizes

show more attenuation than uniform fibers with higher diameters, according to

simulation results in Figure3-7 and Figure3-8. Higher signal attenuation in uni-

form fibers with small diameters could be attributed to a reduction in ion mobility

in a restricted region compared to uniform fibers with larger diameters.

Shown in Figure3-8 are the simulation responses of the signal propagating

in nerve fiber of equal length and different diameters. Figure3-8a is a surface plot

of signal propagation along with a fiber of various diameters. Figure3-8b shows

the detailed time evolution of a signal propagating in equal length nerve fibers of

varying diameters. The surface plot obtained from the simulation suggests that
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(a) (b)

Figure 3-8: Propagation response for fibers with different diameters. (a) A sur-
face plot from simulation model propagation response along the different lengths
of the fiber of fiber diameter 5µm showing more propagation attenuation in fiber
as the length of the fiber increases and (b) Propagation response plot for propa-
gating action potential at different lengths of a passive fiber showing attenuation
at different points along the length of the fiber. The response also shows an in-
crease in signal spread due to increased electrostatic interaction due to membrane
capacitance.

attenuation is much more critical in a nerve cable with a small diameter than in

a nerve fiber with a larger diameter. In larger diameter passive nerve fibers less

attenuation may be due to increased ionic mobility capacity compared to smaller

diameter nerve fibers.

3.3.2 Tapered and Flared Passive Fibers

An alteration in the shape of the dendritic arbor and its analogous electrical circuit

could alter the overall response to a wide variety of input signals, from propagation

delay to back-propagation in dendritic junctions. These effects have a substantial

impact on the type of computation conducted by a cluster of dendrites on incom-

ing signals, which may result in operations such as coherence detection, signal

convolution, filtering, and so on. Dendrites at the distal end are narrow and serve

primarily as input signal accumulators, whereas dendrites with larger diameters

serve as filters. Aside from the mathematical formulation and comprehension of

signal propagation in uniform passive nerve fiber, findings about fiber’s diameter

uniformity is limited. The majority of mathematical methodologies in use assume

that the fiber diameter is coherent along its length. As a result, an attempt has

been made to mathematically model and replicate flared/tapered passive neuron
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fibers in order to comprehend their likely effects.

Shown in Figure3-9 is a 2D model of neuron fiber with a diameter D. For a

differential length ‘∆x’ of the cable, the equivalent electrical circuit is shown with

‘cm’, ‘gL’ and ‘ra’ as membrane’s specific capacitance, specific leakage conductance

and specific axial resistance respectively. ‘V (x)’ and ‘V (x+∆x)’ are the membrane

potentials at A and B respectively seperated by a length of ‘∆x’, ‘Ia(x+∆x)’ and

‘Ia(x)’ are the axial current entering the node and leaving the node A respectively,

‘IT ’ is the transmembrane current.

A B

A B

Figure 3-9: 2D equivalent of a cable fiber model.

3.3.2.1 Uniform 2D cable

When considering uniform passive 2D cable and comparing it to Figure3-9, the

voltage and current equivalent equation for a differential length of uniform passive

2D fiber is given as
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dV

dx
= −4Iara

πD
(3.28)

dIa
dx

= ITπD (3.29)

Cm
dV

dt
+GL (V − EL) = IT (3.30)

The equation 3.28, 3.29 and 3.30 are the equivalent equation where ‘RLon’,

‘GL’ and ‘Cm’are the aggregated parameters that are dependent functions of fiber

length (‘L’) and diameter (‘D’). In the case of a passive fiber, ‘Rlon’, ‘GL’, and

‘Cm’ are all considered linear.

Rlon (L,D) = 4raL
πD2

GL (L,D) = gLπDL

Cm (L,D) = cmπDL

where ‘ra’, ‘gL’, and ‘cm’ are characteristic parameters, ‘L’ is the length between

the point of initiation and any point on the cable where the voltage transient

is to be measured, and ‘D’ is the fiber diameter. The instantaneous membrane

potential can be considered as equipotential if the propagating velocity is much

greater than the differential length ‘∆x’, and the equation 3.30 can be summarized

using the discretized cable equation and can be rewritten as

Cm
dV

dt
+GL (V − EL) = Iprop (3.31)

such that Iprop =
Vin−Vout

RLon
is the propagating current.

3.3.3 Tapered/flared 2D Cable

Comparing a tapered passive fiber with Figure3-9, for an infinitesimally small

length of tapered passive fiber, Kirchhoff’s circuit equation for the model are

similar to equation 3.28, equation 3.29 and equation 3.30. Differentiating equation

3.28 with respect to ‘x’ we have

d2V

dx2
= −4ra

πD

(
dIa
dx
− 2Ia

D

dD

dx

)
(3.32)
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Replacing the expressions for dIa
dx

from equation 3.29 in equation 3.32 the

equation can be rewritten as

1

Rlon

d2V

dx2
= ITπD

(
1− 2

D

dD

dx

)
(3.33)

where 1
Rlon

d2V
dx2 is equal to the propagating current in the discretized cable model,

and ‘ITπD’ is the transmembrane current per unit length of membrane surface

area. Thus the characteristic equation for the time evolution of signal propagating

in a passive nerve membrane can be written as

Cm
dv

dt
+ (V − EL)GL = Iprop

(
1− 2

D

dD

dx

)
(3.34)

such that Iprop =
Vin−Vout

RLon
is the propagating current.

The signal propagation responses of a tapered/flared fiber are shown in

Figure3-10, with the term dD
dx

in equation 3.34 as a tapering ratio along the length

of the fiber. Figure3-10a and Figure3-10b shows the simulation responses for a

flared fiber (diameter of the fiber increases along its length) and taper fiber (di-

ameter of the fiber decreases along its length) respectively. The characteristics

of signal propagation in a homogeneous cable are coherent with the propagation

losses along the length of the fiber in the tapered fiber model, whereas the ta-

per cable model generates some very interesting responses. Figure3-10a shows

the propagation response of fibers with different flaring ratios, ranging from 0.1

to 6, where a flaring ratio ≈ 0 suggests a nearly uniform fiber. In a cable with

a higher flaring ratio, the model predicts less signal attenuation than in a cable

with a uniform diameter. Less signal attenuation in a flared fiber could be due

to an increase in volume conduction and, as a result, a reduction in overall ax-

ial conduction resistance, which is entirely reasonable. When it comes to volume

conduction, propagation attenuation is a function of ionic mobility and is propor-

tional to the axial conductivity. Ionic mobility increases significantly as resistance

decreases, and resistance changes are inversely proportional to the square of the

fiber diameter, resulting in increased ionic mobility in fibers with larger diameters

than fibers with smaller diameters.

Furthermore, Figure3-10b shows the propagation response of a ta-

pered fiber with a tapering rate ranging from 0.1 to 6 and tapering rate =

−flaring rate, which signifies that a tapering rate is a decrease in diameter along

the length of the cable whereas a flaring rate is an increase in diameter along the

length of the cable. As can be deduced from the preceding discussion, the ta-
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(a) (b)

Figure 3-10: Propagation response for tapered and flared fibers. (a)Simulation
model propagation response along the different lengths of the fiber of initial fiber
diameter 5µm with different flaring ratio showing more propagation attenuation
in fiber as the length of the fiber increases, (b) Propagation response plot for
propagating action potential at different lengths of a passive fiber with different
tapering ratio showing attenuation at different points along the length of the fiber.

pering fiber is the polar opposite of the flaring fiber, in which the axial resistance

increases along the length of the fiber and significantly attenuates the propagating

signal along the length of the fiber. Under certain consequences, it is also been

seen that the propagating signal is being reflected back, as in Figure3-10b with a

tapering ratio dD
dx

= −5 and dD
dx

= −6. Such phenomena is because of the fiber’s

diameter shrinking, causing the signal to bounce back due to a discontinuity in

the cable fiber. Discontinuity or mismatch in the cable fiber causes changes in

the boundary condition, and the overall response is a reflection of the propagating

signal at the discontinuity due to the law of conservation of electric charge.

In the case of cable with steady change such as dD
dx
≈ 0 along the length of

the fiber, the signal propagates steadily along the length of the fiber with steady

attenuation to the propagating signal. Since the change in diameter of the fiber is

≈ 0 along the length, for a small section of fiber Zs ≈ ZL, where Zs is the source

impedance, and ZL is the load impedance. The reflection coefficient for the fiber

is given as

Γ =
ZL − Zs

ZL + Zs

(3.35)

In the case of a very low tapering ratio, the coefficient of reflection, Γ ≈ 0 and

ZL ≈ Zs and the reflection coefficient Γ ≈ 0, whereas when the tapering rate

changes dramatically dD
dx

>> 1, the diameter of the fiber abruptly changes and

the load impedance ZL increases abruptly affecting the reflection coefficient thus

resulting in signal reflection at the periphery of abrupt diameter change.
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3.4 Cell-field Interaction and Inter-fiber Inter-

ference

Signal processing in neuronal fibers is just the tip of the iceberg. The neuronal

learning systems and behaviors such as cognition, memory, and local function for-

mation rely on a variety of neuronal attributes, including neuronal connectome

specificity, complex neuronal morphologies, and localized ionic distribution. The

cell-field interaction phenomenon and its possible role in the neural systems are

two such attributes that have caught our attention. As a result of the development

of methods such as EEG, MEG, as well as fMRI, which can capture local activities

in the brain [158–160], neuronal electric local potential plays an important role in

the mapping and study of neuronal network activity. Many studies on local field

potentials (LFP)[161, 162], as well as cell-field interactions, have been conducted

over the last few decades and successfully inter-linked LFPs to the causal function

of AP. Either local interactions between synapses due to neurotransmitter mobility

or ionic perturbations due to signal propagation in bundles of nerve fibers cause

LFPs. Local field potential theories [163] are widely accepted because they are the

effects of transmembrane currents [164, 165] and induction of an electric field (IEF)

due to neuronal activity, and they have a strong relationship with network dynam-

ics related to more complex functional responses such as cognition, memory, motor

control, etc. [166, 167]. To demonstrate the significance of the transmembrane

current and cell-field interaction, [168] investigates the effects, whereas software

models such as “Electric Field Effects in Neural Networks” (ELFENN) in [169]

are also proposed to model the ephaptic effects. In this proposed work, a cable

approach is being used to model and simulate the phenomena of cell-field interac-

tion. Extracellular to intracellular heterogeneity has been considered to determine

the magnitude of effects on signal propagation in nearby fibers.

3.4.1 Bundled Nerve Fiber and Cable Model

A compartmental (passive) cable approach was used to model the local effects of a

propagating signal in nearby fibers, with the membrane resistance controlling ionic

channel leakage, the axial resistance controlling signal attenuation axially, and the

extracellular cytoplasmic resistance between two fibers controlling the extracellular

cytoplasmic resistance. The equivalent cable circuit depicted in Figure3-11 has

been used to derive equivalent equations describing local membrane dynamics.
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Figure 3-11: 2-fiber bundle and its equivalent cable representation.

Figure3-11 shows two cables that are perfectly parallel to one another,

separated by ectoplasm, with axial resistances per unit length Ra1, Ra2 due to

endoplasm and Re as extracellular resistance per unit length. The specific capac-

itance due to membrane thickness and membrane resistance due to leakage ion

channels per unit length is Cm1, Cm2 and Ri1, Ri2, respectively, for a passive fiber.

The equivalent voltage and current equations over an infinitesimally small length

of the fiber can be written as

dVi1

dx
= −Ii1Ri1,

dVi2

dx
= −Ii2Ri2,

dVe

dx
= IeRe (3.36)

dIi1
dx

= IT1,
dIi2
dx

= IT2,
dIe
dx

= −(IT1 + IT2) (3.37)

Using Ve as the outside potential, Vi1 and Vi2 as the inside potentials for

the two fibers, Ie is the extracellular current due to diffused ions from the nearby

fiber and ionic redistribution due to the induced electric field, Ii1 and Ii2 are

propagating current inside the nerve fiber due to mobile ions, IT1 and IT2 are
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transmembrane current due to leakage ions across the membrane.

d2Vm1

dx2
+Ra1IT1 +ReIT2 + Iinj1 = 0 (3.38)

d2Vm2

dx2
+ReIT1 +Ra2IT2 + Iinj2 = 0 (3.39)

where ‘Iinj1 ’ and ‘Iinj2 ’ are currents that are injected when a fiber has

synaptic connection or dendritic spines with synaptic contacts, ‘Re’ in case of

equation 3.38 is inter-fiber resistance from fiber-1 to fiber-2 and in case of equation

3.39 is the resistance from fiber-2 to fiber-1. Taking the fiber compartment to be

isopotential over very small length of neuron fiber, the system of coupled equations

3.38 and 3.39 can be written as

[
Cm1RA1 Cm2Re12

Cm1Re21 Cm2RA2

][
dVm1

dt
dVm2

dt

]
= −

[
RA1 Re21

Re12 RA2

][
Iion1

Iion2

]
+

[
Iinj1

Iinj2

]
(3.40)

where RA1 = Ra1 + Re and RA2 = Ra2 + Re are the cumulative axial

resistance due to cytoplasm and Re12, Re21 are the cross-coupled resistances of

one fiber to the other and the equation is of the form

AX = BY + ϕ (3.41)

where A, B are the coupling matrices and ϕ is the forced inputs to the

coupled fiber system and the solutions for dVx

dt
can be given as

X = A−1BY + A−1ϕ (3.42)

The propagating current from the site of generation to the site of recording

can be estimated by including diffusion losses and axial flow losses in the event

of interference caused by fiber coupling further away from the site of action po-

tential generation. An equivalent fiber of diameter D and length l for particular

fiber compartment of specific membrane capacitance cm, axial resistance ra and

membrane resistance rleak can be represented in terms of bulk axial resistances

RAx in series with parallel configuration of membrane capacitance Cx and leakage
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membrane resistance Rleak and inter-fiber resistance Rexy which are selected from

the ranges of biological values discussed in [170] [11] and described as

RAx =
4ral

πD2

Rexy =
4relxy
πD2

Cx = cmπDl

Rleak =
rleak
πDl

The inter-dendritic conductance and resistances in radially invariant and

and collective branch convergence dendritic bundled fiber [171, 172], and the inter-

dendritic spacing in dendritic bundled fiber is radially invariant [171]. As stated

in [170], the effects of extracellular conductivity and generated electric field were

previously disregarded. To better understand the impacts of signal transmission

in inhomogeneous cytoplasmic conductivity media, the effects of signal propaga-

tion in such media have been attempted to be incorporated into a multi-fiber

interaction model. In equation 3.43, RAx is the axial resistance for fiber-x against

signal propagation due to ionic mobility in confined space inside the fiber, Rexy is

resistance against ion mobility outside fiber directed from fiber-x towards fiber-y

due to diffusion of leakage ions as well as ionic reconfiguration due to induced

electric field within the vicinity, Cx is the total capacitance over the length of the

fiber interaction region, and Rleak is the leakage resistance over the same, due to

volume conductivity of mobile ions and induced electric field. This simple model

can be easily converted to an n-fiber model under identical consideration, and the

analogous equation can be expressed as


Cm1RA1 Cm2Re12 . . . CmnRe1n

Cm1Re21 Cm2RA2 . . . CmnRe2n

...
...

. . .
...

Cm1Ren1 Cm2Ren2 . . . CmnRAn




dVm1

dt
dVm2

dt
...

dVmn

dt

 =


RA1 Re21 . . . Ren1

Re12 RA2 . . . Ren2

...
...

. . .
...

Re1n Re2n . . . RAn




Iionic1

Iionic2
...

Iionicn

+


Iinj1

Iinj2
...

Iinjn

 (3.43)

41



Chapter 3. Mathematical Modeling and Simulation

The respective coupling resistances taken into account for the simulation of

the 2-fiber interference model with the same diameter under various circumstances

are presented in Figure3-12 and corresponding responses in Figure3-13. The two

fibers in the coupling matrix B2 have the same diameter of 4.2µm, and perfectly

aligned in parallel over a short length of 5µm, with identical axial resistances.

When fibers are interference-free, their inter-fiber resistances are equivalent and

resemble those of a reciprocal network. Contrarily, when the coupling matrix B4

is taken into account, the axial resistances remain constant and the fibers have the

same diameter, but the inter-fiber resistances increase when the fibers are packed

closely. This increase in resistance is brought about by a reduction in the spatial

mobility of ions. Small hyper- or depolarized deflections in one fiber relative to

corresponding transients in the other are caused by the high resistance between

the two fibers, which causes the majority of mobile ions to disperse fast and very

few ions to interact.

B1 =

[
15 7
4 15

]
B2 =

[
15 4
4 15

]
B3 =

[
15 4
7 15

]
B4 =

[
15 150
170 15

]

Figure 3-12: Some unique coupling matrices for a 2-fiber interaction model to
simulate interference effects.

Figure 3-13: 2-fiber bundle transient response caused by various coupling matri-
ces shown in Figure.3-12. Transients caused by coupling matrix B1, B2, B3, and
B4 for a two-fiber interaction system, demonstrating coupling parameters capable
of hyper-polarizing, depolarizing, and interference-free response in nearby fiber as
one fiber settles to resting potential 65 mV from an initial membrane potential
0 mV .

Under similar circumstances, when the two fibers of same diameter are

aligned with slight orientation mismatch as given in matrices B1 and B3 results in

inter-fiber interaction. In coupling matrix, B1, inter-fiber resistance from fiber-2 to

fiber-1 is high as compared to the inter-fiber resistance from fiber-1 to fiber-2 lead-

ing to ionic mobility directed from fiber-1 to fiber-2 resulting in an instantaneous

dip in membrane potential of fiber-2 due to increased ionic gradient outside of

membrane with respect to the inside of the fiber and vice-versa in case of coupling

matrix B3.
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B1 =

 15 3 0
11 15 11
0 11 15

B2 =

 15 3 0
3 15 3
0 3 15



B3 =

 15 12 0
7 15 4
0 13 15

B4 =

 15 0.002 0
0.004 15 0.005

0 0.0025 15


Figure 3-14: Different coupling matrices for the 3-fiber model in mode 2 to
simulate interference effects.

Figure3-14 shows different coupling matrices for a 3-fiber system of neu-

ronal fiber arranged linearly such that the fiber-1 has no direct interaction with

fiber-3. The matrix B2 and B4 shows a configuration for interference-free coupling

such that the system of coupled fiber are reciprocal in nature in the case of the

matrix B2 whereas the matrix B4 suggests the three fibers being well separated

such that the inter-fiber cytoplasm acts as a current sink and prevents active inter-

action between the three fibers. In contrast, the matrix B2 and B3 are calculated

considering orientation mismatch in fiber-2 that shows expected transients due to

the induced electric field during signal propagation, but at the same time, response

in Figure3-15 infer that the induced electric field could influence the membrane po-

tential of another fiber which is indirectly associated to the system. In the 3-fiber

model shown in Figure3-15, similar depolarizing as well as hyper-polarizing effects

[173] [174] [175] [176] can be seen. Apart from depolarizing and hyper-polarizing

effects, synchronous sub-threshold oscillations in Figure3-17 is also generated due

to inter-fiber interference with particular coupling parameters as discussed in [177]

[178].
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Figure 3-15: 3-fiber bundle transients due to different coupling matrices given
in Figure3-14. Transients due to coupling matrix B1, B2, B3 and B4 for a 3-
fiber interaction system showing coupling parameters capable of hyperpolarizing,
depolarizing and interference free response in nearby fiber while one fiber settles
to resting potential of −65 mV from an initial membrane potential of 0 mV .

Figure3-16 shows different coupling matrices for 3-fiber mode-1 system of

neuronal fiber arrangements. The matrixB1 shows a configuration for interference-
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free coupling such that the system of coupled fiber forms a reciprocal network, and

the system is free from interference due to signal propagation, as can be seen in

Figure3-17. In the case of matrix B3, three fibers with different diameter 4.2µm,

4.4µm and 5.8µm have been used with each fiber aligned with some orientation

mismatch. Fine inter-fiber separation facilitating good ionic mobility and at the

same time doesn’t allow quick dispersion of ions. When this system is triggered,

the induced electric field between the three fibers traps some charges within their

intersecting region of interaction and produces damped oscillations as the trapped

charges start swaying within the overlapping field and delaying the overall settling

time of the system.

B1 =

 15 7 7
7 15 7
7 7 15

B2 =

 15 4 4
10 15 11
11 5 15

B3 =

 15 6 9
7 14 5
5 12 8


Figure 3-16: Different coupling matrices for the 3-fiber model are arranged in a
triangular pattern to simulate interference effects.
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Figure 3-17: 3-fiber bundle transients due to different coupling matrices given in
Figure3-16. Transients due to coupling matrix B1, B2 and B3 for 3-fiber transients
showing coupling parameters capable of transmission without signal interference
on the other fibers while one fiber settles to resting potential of −65 mV from an
initial membrane potential of 0 mV in 3 fiber arrange in a triangular pattern.

3.5 Summary and Future Remarks

The linear and nonlinear characteristics of a nerve fiber are described by the pas-

sive and active models of nerve membrane. The active and passive models derived

from the cable model could be easily applied to both linear and nonlinear systems.

By cascading such systems in series or parallel as per requirement, several of the

most complicated structures of neuronal assemblies, as well as dendritic arbors

with localized active channels, can be simulated. The passive membrane model

can be used to investigate filtering properties such as noise suppression, low pass
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filtering, bandwidth tuning, and signal propagation characteristics such as prop-

agation delays, as well as their roles in signal processing in neurons, which could

be very useful in efficient modeling of complex neuronal architectures. Signal

attenuation and propagation delay may play a role in neuronal assembly func-

tion formation. Aside from signal attenuation and delay, successful information

transmission with minimal loss is desired for accurate signal interpretation. As a

result, a thorough understanding of the transmission process and its dependence

on the shape and length of the fiber is required. The tapered fiber model and

simulation shows that a flared fiber transmits signals more efficiently and with

less attenuation than a tapered and uniform counterpart, which could be one of

the most likely scenarios as signal permeates from dendrites to the cell body. A

flared fiber model, on the other hand, suggests higher attenuation and limits the

amount of current propagating through the fiber; such a system might be plau-

sible in the case of inter-neuron communication to limit the amount of current

delivered to subsequent neurons in order to protect neurons from damage caused

by high currents. Furthermore, the tapered fiber model can be used to simulate

neuron fiber injury, which causes signal reflection along with the fiber, possibly

leading to neuron fiber damage due to over current transmission caused by signal

reflection and standing waves in the injured fiber. On a similar note, cell-field

interaction might very well play a key role in defining the importance of neuron

fiber interaction in the formation of complex structure-function relationships cor-

responding to neuronal structure arrangement in precise information, as discussed

in the literature. As discussed in literature [173] [174] [176] [175], simulations from

the inter-fiber interference model in a bundled fiber system without myelin show

interference results. The model also shows that, depending on the coupling speci-

fications, stimulating a fiber within a bundled fiber system can depolarize as well

as hyper-polarize other fibers. The model shows that interference-free transport

is also possible if the fibers are spaced far enough apart or if the bundled fiber

system is reciprocal, which can be described using fiber coupling parameters. The

proposed model is heavily influenced by morphogenesis and the effects of local

or non-local collective signals on local signal processing. It can also be used to

understand the underlying biological mechanism of pattern recognition, classifica-

tion, and learning as possible functions of fiber coupling specifications as well as

morphological parameters, which could lead to an increased learning activity.
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