
Chapter 4

Edge Detection in Primate Visual

Cortex

4.1 Introduction

Visual stimuli are initially processed in the primary visual region (V1) of the

cerebral cortex. Area V1 contains a detailed map of the eyes’ total field of vi-

sion. Rods, responsible for scotopic vision, and cone receptor cells, responsible

for color vision, trap and transmit light stimuli in the retina. The responses from

these photo-transducers are either funneled to the bipolar cells (BC) or are routed

through the horizontal cells. ON and OFF bipolar cells configurations transmit

transduced signals from the photoreceptor cells to the ganglion cells for signal in-

terpretation in learning and cognition. Hubel and Wiesel discovered the essential

attributes of the primary visual cortex by recording electrical activity in animal ex-

periments. They published landmark scientific articles on V1’s cellular responses,

anatomy, development, and connectivity, later used in the theory of simple and

complex cells, beginning in the 1950s. Simple filtering to improve edges and con-

tours is the primary operation that V1 conducts on visuals. It is believed that

simple cells carry out linear filtering, which is characterized as weighted sums of

an image’s intensity values, with the weights being decided by the receptive field

(RF) profile. Complex cells adds the rectified outputs of simple cells responses,

computing an image’s overall energy in a frequency and orientation band. The

primary activity V1 carries out on images before transmitting them to succeeding

layers of the visual cortex is assumed to be simple filtering to improve edges and

contours, which then allows for the performance of complicated operations like

cognition and learning. Interpretation of signal transduction in the visual cor-
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tex and translation of transduced signals for pattern extraction as a function of

the RF by individual neurons has not been explored beneath these computational

paradigms of complex neuronal networks.

4.1.1 Research Gap

Moreover, the role of individual neuron morphology, differential active ion dis-

tribution, and electrophysiology in shaping complex neuronal responses is still

unknown. There are undiscovered links between local neuron dynamics and their

role in influencing global responses due to the unavailability of precise measuring

devices. Previous literature treats dendrites as spatio-temporal acquisition and

weighted connectome-based learning units, and the cell body as a computational

unit responsible for non-linear integration of cumulative signals. However, the di-

versity in the morphology of neurons, their connectome specificity, and differential

distribution of active ion channels in dendritic arbor describes these versatile com-

putational units to be much more complex. Recent discoveries in the field have

revealed new dimensions in system neuroscience, linking complex function forma-

tion, cognition, and memory to neuronal morphology, local structural dynamics,

and temporal encoding, in conjunction with neuron connectome specificity and

non-linear activation function. Understanding the local processes associated with

the fundamental components of neurons and linking those elementary faculties

to local as well as global responses will aid in bridging the gap between existing

in-vivo discoveries and their potential role in structure-function relationships in

systems neuroscience.

4.1.2 Related Works

Ramon y Cajal [179] introduced significant literature and detailed morphological

structures in terms of dedicated circuits organized in the primate visual cortex

(PVC). A diverse set of neuronal morphologies arranged in multiple layers with

dedicated functionalities aimed at improving cognition, plasticity, and learning

tasks. These complex functionalities are suggested to be achieved by reorganiz-

ing connections [180], and growing and retracting dendritic inputs [181]. Hubel

and Wiesel proposed the basic floor plan of the mammalian retina [182–185], in

which localized neurons transduce light signals and encode them into orientation-

selective (OS) spiking responses in primary layers. In contrast, scale and location-

independent cognition occur in others. The primary V1 layers of the visual cortex
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compute these OS responses, which appear to be the foundation of mammalian

visual perception and cognition. Based on these preliminary studies, a relatively

small amount of work has been published to replicate localized behavior in the

areas of orientation selectivity [186, 187], scale and position-independent cogni-

tion [188, 189], and learning [188, 189]. The importance of neuronal anatomy and

physiology in functional computation in orientation selectivity and other complex

functionality has been highlighted in the literature. But connectome structure

[123, 190–192], the role of unique neuronal morphologies [193, 194], and the dynam-

ics of such morphologies due to localized active ion channels [137, 138, 141, 195]

remains poorly defined. Recent works [123, 191] confirm single-cell precision micro-

architecture in the mammalian visual cortex, while literature [137, 138, 195] de-

scribes dynamics of neuronal inputs (dendritic arbors) as being dependent on

localized active ion channels. Ganglion cells are believed to play a crucial role

in the orientation selectivity of edge information received by the PVC. But how

accurately is the edge information being perceived by the visual cortex, and how are

these patterns being generated at the sub-cellular level? The fundamental question

pertains to the link between the functional role of a diverse collection of a precisely

organized modular parasol and midget cell morphologies with sub-cellular active

ion channel distribution and direction as well as orientation selectivity. Missing

links between localized ion channels and dendritic morphologies attracts interest

in understanding the role of differential sub-cellular active ion distribution within

ganglion cell dendritic morphologies in shaping direction/orientation selectivity

[139, 142].

4.1.3 Aim

The goal of this chapter is to mathematically model and replicate the neuronal

dynamics of OS RGC by combining active and passive fiber neuronal dynamics,

that are proposed in the previous chapter. The RGC has been modeled to mimic

local dynamics resulting from the differential distribution of localized AICs in

the dendritic arbor, and it has been linked to the RGC’s orientation selectivity

response as a function of neuron morphology and localized active ion channel

distribution, as well as connectome specificity. The modeled responses of OS-

RGC networks have been compared to state-of-the-art neural network models for

edge detection. Another aim of this chapter is to simulate a neuronal network of

OS-RGC layer behavior in the striate cortex V1 layer of the PVC and the probable

application of such network in edge detection in an uncoupled as well as coupled

network.
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4.1.4 Contribution

The proposed framework of modeling and simulation of scotopic and color vision

model and its implication in edge-map estimation gives a clear understanding of

the local processes contributing to global responses.The model response suggests

the neuron morphology and physiology to play an important role in structure-

function relationship. Model design and simulation of orientation selective RGC

layer shows very consistent responses in terms of preferred orientation specificity

as discussed in Hubel and Weisel. Comparison of our model with state-of-art

literature shows accuracy of the proposed model proportionate to actual human

edge-estimation performances. On the other hand, integrating the coupled fiber

model with the scotopic vision model suggests bandwidth tuning and complex

function relation due to cell-field interaction.

4.2 Striate Cortex of the Primate Visual Cortex

The V1 layer of the visual cortex influences the first stage of information percep-

tion. The V1 layer has a very well-defined map of spatial information in vision

(the retinotopic map). A substantial percentage of V1 is mapped to the small,

central portion of the visual field in humans and animals with a fovea (cones and

rods in the retina), a method known as cortical magnification. V1 neurons may

have the smallest RF size (i.e., the highest resolution) of any visual cortex micro-

scopic region, possibly for the objective of accurate spatial encoding. Individual

V1 neurons in humans and animals with binocular vision have ocular dominance,

which means they tune to one of the two eyes. Neurons with comparable tuning

characteristics frequently form cortical columns in V1 and the primary sensory

cortex as a whole. For two tuning qualities, ocular dominance and Orientation,

David Hubel and Torsten Wiesel suggested the traditional ice-cube organization

model of cortical columns. However, this model is unable to account for the colour,

spatial frequency, and numerous other characteristics to which neurons are tuned.

The goal of this study is to develop models for interpreting visual data as it is

most likely perceived by a single layer of the primary visual cortex. Two distinct

neuron morphologies organized in precise repetitive micro-architecture have been

incorporated [191, 192, 196], as well as distinct cell physiology and dynamics of

each neuron with localized ion channels [180, 197, 198]. The model’s input is anal-

ogous to the response of BC (ON and OFF) to light intensity. The output of the

network is analyzed in terms of the firing rate of neurons to approximate an over-

49



Chapter 4. Edge Detection in Primate Visual Cortex

all understanding of visual representation in a single layer of the primary visual

cortex’s neuronal network, and this response is feed-forward to a single layer of

OS-RGC. The efficacy of edge detection performances reconstructed from four OS

layers of the RGC network has been compared using quantitative and qualitative

analysis of responses from the proposed architecture. The model is inspired by the

architecture of the PVC, and the process of transduction of light stimuli into neuro-

modulated signals mimic attributes of different cells associated with the modeled

network, such as the BC and the RGCs. Figure4-1 depicts the topology of the pri-

mates’ visual cortex, in which light stimulation is trapped by photoreceptor cells

(rod and cone cells) and transduced to localized spatio-temporal signals. Color

vision, responsible for frequency discrimination and scotopic vision, responsible for

night vision, has been considered to investigate their role in edge perception. The

transduced Spatio-temporal signals are subsequently relayed directly or indirectly

to the ON and OFF BC, which later form the basis of RFs. In the subsequent

sections, the model’s architecture, interconnections between distinct cells, neuron

morphology employed in the model, and connectome specificity of RGC neurons

with BC are discussed in detail.

Figure 4-1: As demonstrated in [1], the organisation of distinct cells from pho-
toreceptors to the RGC network, as well as the relevant sections, are taken into
account while modelling the suggested single layered network of visual cortex.
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4.3 Model Architecture

The primate retina is about 0.5 mm thick over most of its length, with three

layers of cell bodies and two layers containing synaptic interconnections between

neurons. The fovea, a specialized region of the primate retina near the optical

axis of the eye, is made up of a single layer of neurons, the photoreceptor cells.

Other neurons send input to the dendritic fields, and the axon, which can branch,

carries the neuron’s output to its destination. Some neurons lack an axon and

only influence synapses within the dendritic field through local interconnections.

The shape of a neuron’s dendritic field and axonal branches are both important

features in identifying different types of neurons. To classify and understand

retinal neurons, a variety of features and attributes are necessary, such as the

locations of cell bodies, dendrites, and axons; the size and shape of their cell

bodies and dendritic fields; and their interconnections with other neurons.

Retinal neurons are divided into five categories, each of which has several

sub-categories. The location of cell bodies, dendritic fields, and axon terminals

distinguish the major categories of retinal neurons. The cell bodies of photore-

ceptors are found in the layer’s outer nuclear layer. The photoreceptors’ synaptic

terminals make contact with the bipolar and horizontal cells’ dendritic fields in

the outer plexiform layer. The bipolar and horizontal cells’ cell bodies are found in

the inner nuclear layer. Horizontal cells’ dendrites and branching axon terminals

make connections with cells in the outer nuclear layer, and connectome specificity

with the type of BC with RGC forms the basis of RFs.

The proposed model takes into account topology in neuronal cell arrange-

ments and connectivity with BC. The proposed model has three major compo-

nents. Firstly the input layer, which is responsible for processing light stimuli and

translating them into Spatio-temporal signals that are in turn fed to the BC. Sec-

ondly, the connection-specific RGC network, which is responsible for orientation

estimation from the visual scene. Thirdly, the rate encoder, which is responsible

for the conversion of Spatio-temporal data into spatial information for descriptive

and inferential statistical purposes. The following sections delve into the specifics

of the three layers.
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4.3.1 The Input Layer

The first layer of the visual cortex is the input layer, which is responsible for

trapping light stimulation and converting spatial information into temporal data.

The photoreceptor cells are located at the beginning of the input units and are

responsible for transforming light stimuli into temporal electric signals for sensing

and processing by the visual cortex. The majority of the retina contains two types

of photoreceptor cells: rod photoreceptor cells for scotopic vision and cone cells

for color vision. Rod cell density is significantly higher than cone cell density and

is responsible for high-resolution information such as textures and fine features.

The proposed approach emphasizes on the modeling of signal representa-

tion in BC and their potential application in edge detection. The ON-bipolar cells

(ON-BC), which are sensitive to light intensities, are connected directly to photo-

receptors, or the OFF-bipolar cells (OFF-BC) via the horizontal cells, which are

sensitive to darkness intensities. To mimic the behavior of photoreceptor cells,

natural images in ‘jpeg,’ ‘png,’ and ‘tiff’ are used as visual stimulation, that are

fed to BC for the processing of visual information.

4.3.1.1 Photoreceptors

Light (visible electromagnetic radiation) is converted into responses by photo-

receptors, which is used to stimulate biological processes. Rods and cones cells

are the two types of photoreceptor cells found in mammals’ eyes. Cones require

much brighter light to produce a signal than rods, which are incredibly sensi-

tive and can be triggered by just one photon. The likelihood of their respective

photo-receptor proteins absorbing photons of different wavelengths determines the

different responses of the three types of cone cells (L, M, and S-cones). As a result

of cone cells’ wavelength dependence, color perception is more difficult in low-light

conditions, and humans have scotopic vision dominance during night vision. Rod

cells, on the other hand, are highly sensitive to light intensity and contrast and

can detect single photons, making them important in scotopic vision.

The proposed framework is based on biological vision processing. The

model’s input is either a gray-scale image with scene intensity information trans-

duced by photoreceptor cells in scotopic vision or a color image with ‘Red,’ ‘Green’

and ‘Blue’ frames to ‘L-cones,’ ‘M-cones’ and ‘S-cones’ respectively depicting the

spectral frequency dependence. These transduced signals from the rod and cone

cells are then fed to the BC layer, which mimics the behavior of suitable BC and
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serves as the foundation for RGC cell RFs and response generation.

4.3.1.2 Bipolar Cells

In the retina, BCs are located between photoreceptors and ganglion cells. They

act, directly or indirectly, to transmit signals from the photoreceptors to the gan-

glion cells. The BC receive the signals either directly from the photo-receptors

or via the horizontal cells and pass them on to the ganglion cells directly or indi-

rectly (via amacrine cells). BCs receive synaptic input from either rods or cones

or both rods and cones. Rod BC do not synapse directly onto ganglion cells.

Instead, rod BC synapse onto a Retina amacrine cell, which in turn excite cone

ON-BC (via gap junctions) and inhibit cone OFF-BC (via glycine-mediated in-

hibitory synapses). These cells overtake the cone pathway in order to send signals

to ganglion cells at scotopic (low) ambient light conditions. The mechanism for

producing the monochromatic surround of the same RF, on the other hand, is

being studied. It is suggested that the horizontal cell plays an important role in

the process, the exact sequence of receptors and molecules is unknown.

The model emphasizes two types of BCs, namely the ON-BC and the OFF-

BC responses to orientation selectivity. BCs are chosen based on their sensitivity

to light or darkness, which are then linked to photoreceptor cells in scotopic vision.

Gray intensity images are taken to mimic the contrast and intensity dependence

in the case of night vision.

A similar approach has been undertaken to mimic color vision in the retina.

In the case of color vision, ‘Red,’ ‘Green,’ and ‘Blue’ frames of the color image are

used to mimic their spectral frequency dependence.

ON-BC, which are directly connected to photo-receptor cells, respond to

the localized spatial light intensity with sustained depolarization and darkness

with sustained hyperpolarization, and vice versa for OFF BC [199–202]. Sustained

depolarization or hyperpolarizations produced by the BCs are modeled as temporal

rectangular current pulses with amplitudes proportional to spatial intensities. The

length of the temporal current pulses generated by the BCs is taken as 350 mSec

with an offset of 10 mSec and a pulse width of 240 mSec. Given the average

visual response sensitivity of primate vision, the time duration of the temporal

signal is taken as 350 mSec with a pulse width of 240 mSec. These current pulse

responses from BCs, as shown in Figure4-2 and Figure4-3 are fed as input to the

RGCs [186, 203]. Their effects on the post-synaptic neuron are modeled as linear
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in terms of spiking frequency. The magnitude of persistent depolarization and

hyperpolarization corresponding to light or darkness is scaled within the range of

−128 to 127 nA current by a factor of 8. The BCs transform the incoming signals

within the sensitivity range of the connected RGCs [204–206].

Figure 4-2: ON-BC response is encoded as square pulses (sustained depolar-
ization or hyperpolarization) due to light intensity transduction, fed to the post
synapse of the RGCs, and the corresponding spike rates.

Figure 4-3: OFF-BC response is encoded as square pulses (sustained depolar-
ization or hyperpolarization) due to light intensity transduction, fed to the post
synapse of the RGCs, and the corresponding spike rates.

Shown in Figure4-2 and Figure4-3 are the temporal responses generated

from the trapped stimuli fed to the ON-BC and OFF-BCs, respectively, corre-
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sponding to localized spatial stimuli to photoreceptors in the retina. ON-BCs are

sensitive to light stimuli and depolarize the membrane potential corresponding to

the amplitude of light and hyper-polarize the membrane potential corresponding

to the amplitude of darkness and vice versa in the case of OFF-BCs. Mathe-

matical simulations of BC responses are computationally expensive. Conversion

of localized spatial information into time-series BC response of 350 mSec length

with a quantization factor of 0.01 mSec and integrating electrophysiological and

electro-chemical attributes significantly affects the computational complexity of

the proposed methodology. To optimize the computational complexity of the pro-

posed model, BC responses are taken as square pulses of pulse width 240 mSec

with an offset of 10 mSec and total simulation signal length of 350 mSec and pulse

amplitude directly proportional to the intensity of the localized visual stimuli.

4.3.2 The Processing Layer

Spatio-temporal signals from the BCs are fed to the anatomically distinct RGC

cells arranged in modular, distinct repetitive patterns with the BCs. The RGC

cell with distinct connectome specificity processes the cumulative signals to extract

orientation-selective information. Connectome specificity of the proposed model,

as well as electrophysiological and electro-chemical attributes of the anatomically

distinct RGCs with localized AICs, have been presented in detail in the subsequent

sections.

4.3.2.1 Retinal Ganglion Cell Morphology

A retinal ganglion cell (RGC) is a type of neuron found near the inner surface

of the retina (the ganglion cell layer). It receives sensory input from photorecep-

tors through two types of intermediary neurons: BCs and retina amacrine cells.

Retina amacrine cells, particularly narrow field cells, are critical for forming func-

tional subunits within the ganglion cell layer and allowing ganglion cells to detect

a small dot moving a short distance. On the other hand, RGCs connected to BCs

are reported to be associated with orientation information, contour detection, and

other such pattern extraction processes utilized in recognition and learning. RGCs

jointly transfer image-forming and non-image-forming visual information from the

retina to numerous locations in the thalamus, hypothalamus, and mesencephalon,

or midbrain, in the form of AP. RGCs differ substantially in terms of size, connec-

tions, and responses to visual stimulation, but they all have a long axon that goes
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into the brain. These axons are responsible for the formation of the optic nerve,

optic chiasm, and optic tract. Despite the fact that much has been studied about

the different layers of the visual cortex over the last few decades in an attempt to

comprehend the identical properties of such layers, little has been studied about

individual neuron features and functionality, the importance of neuronal anatomy

and morphology corresponding to the RGC cells, and their role in local function

formation and global responses.

Two unique morphologies for RGCs have been designed and examined in

the proposed model to compare the differences in computing functionality. The

morphology of the neurons and their corresponding connection matrices are based

on the well-known ‘Sobel edge’ detector and directed gradient kernels. As demon-

strated in Figure4-4a and Figure4-4b, one cell has a less arborized morphology

with 4 dendritic terminals communicating with ON and OFF BCs synonymous to

RGC with a small RF, while the other has 6 dendritic terminals contributing to

neuronal computation depicting an RGC with the comparatively larger RF.

(a) (b)

Figure 4-4: Two distinct morphology of RGCs were used in the proposed work.
(a) Midget RGC with 4 dendritic terminals connecting to the ON and OFF-BCs,
(b) RGC with 6 dendritic terminals connecting to ON and OFF-BCs.

The red synaptic connections are connected to ON-BCs while the blue

terminals are attached to OFF-BCs of the corresponding photoreceptor cells, as

shown in Figure4-4a and Figure4-4b. Dendritic junctions, cell body, and post-

synaptic connections are rich in active ionic channel concentration at localized

regions [137–139, 141, 142] and are suspected of triggering non-linear membrane

dynamics due to the cumulative propagating signals. These non-linearities in lo-

calized regions of the RGC are modeled using the ‘bursting,’ ‘chattering,’ and

‘regular spiking’ type of membrane dynamics [204–207]. Izhikevich’s ‘bursting’

56



4.3. Model Architecture

Figure 4-5: Functional aspect of the neuron in Figure.4-4a.

or ‘chattering’ type of membrane dynamics are integrated because of its profi-

ciency in mimicking calcium dynamics and their relevance in primates’ visual

cortex. Combinations of types of active ion channels at specific locations control

the bandwidth of the connected RGC. Appropriate combinations of ‘chattering’

and ‘bursting’ membrane localization give the RGC high-pass filter or a band-pass

filter type of behavior by controlling the overall axial current delivered to the suc-

cessive nodes. The rest of the dendritic fiber is passive and is partitioned into

isopotential compartments to aid decremental conduction [208]. In Figure4-5, the

analogous neuron function of the RGC in Figure4-4a is presented. As stated in

[204–207], the parameters for spiking activity have been chosen. The propagation

delay caused by propagation through passive fibers is ignored, and the propagating

signal from distal dendritic fibers reaches the daughter branches, parent branches,

the junctions, and the soma coherently. As the sensed stimuli propagate through

the dendritic arbor to the cell body, the cumulative responses at the junction of

dendritic branching are renewed and re-encoded attributed to the prevalence of

localized AICs, and the process repeats itself until the propagating signal reaches

the cell body. At the cell body of the RGC neuron, the total responses due to

cumulative propagating current from the entire dendritic arbor are summed and

reprojected in terms of spiking frequency.

4.3.2.2 Connectome Specificity of RGCs with Bipolar Cells

Connectivity of BCs with the RGC network forms the basis of RFs and is suspected

to be the core of differential of gradient (DoG) function type responses in the
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primate’s primary visual cortex. The width of the dendritic spread of RGCs

corresponds to different sizes of RFs, with small RFs corresponding to RGC in

Figure4-4a and larger RFs due to RGC in Figure4-4b cell connectivity. Small and

large RFs due to different dendritic spread in Figure4-6a and Figure4-6b within

a neighbourhood of 3 × 3 grid BCs corresponding to Figure4-4 and connectivity

Figure4-7 and Figure4-8 has been shown in Figure4-6.

(a) (b)

Figure 4-6: RFs connectome specificity for 3 × 3 grid of RGC in Figure4-4 cell
connectivity. (a) RF due to RGG dendritic spread in Figure4-4a connectivity
corresponding to 4 selective orientation and (b) RF due to RGC dendritic spread
in Figure4-4b connectivity corresponding to 4 selective orientation.

RFs in the visual and somatosensory systems could be fundamentally cir-

cular or oval portions of the retina or skin. Visual and somatosensory RFs of

the thalamus, on the other hand, are circular and display center-surround antag-

onism, in which the initiation of a stimulus in one cutaneous or retinal region

triggers activating responses and in surrounding regions evokes inhibiting effects.

As a result, the identical stimulus elicits opposing reactions in those locations.

The effects of stimulus antagonism at several locations are a manifestation of a

phenomenon known as lateral inhibition. The ideal stimulation in lateral inhibi-

tion is not uniformly distributed across the RF but rather a discrete stimulation

with the contrast between center and surrounding locations.

0 1 0
0 -1,-1 0
0 1 0

0 0 0
1 -1,-1 1
0 0 0

0 0 1
0 -1,-1 0
1 0 0

1 0 0
0 -1,-1 0

0 1

Figure 4-7: Connectivity matrices for detection of four directional edges namely
vertical, horizontal, and two diagonal components from left hand side to the right
right hand side respectively for neuron model in Figure4-4a and RFs corresponding
to Figure4-6a.

In the proposed methodology, these RFs are constructed by connecting

RGC cells in modular patterns with RF formations as shown in Figure4-6a cor-

responding to RGC shown in Figure4-4a and Figure4-6b corresponding to RGC
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morphology shown in Figure4-4b. As described in [209], the connectivity of non-

sister dendrites of RGCs with ON or OFF BCs is convergent. Each RGC is

constructed in precise modular repeated structures, as seen in Figs. 4-7 and Fig-

ure4-8. Each neuron is distributed throughout a 3× 3 grid of BCs (both ON and

OFF), where 1 signifies connectivity with an ON-BC and −1 specifies connectivity
with an OFF-BC, which is then coupled to the equivalent pixel representation of

photoreceptor cells. Two −1′s in the center pixel of Figure4-7 indicate intercon-

nectivity of two dendritic branching in the central OFF-BC, while 0 indicates no

connectivity with the corresponding BCs.

1 1 1
0 0 0
-1 -1 -1

-1 0 1
-1 0 1
-1 0 1

0 1 1
-1 0 1
-1 -1 0

1 0 0
0 -1,-1 0

0 1

Figure 4-8: Connectivity matrices for detection of four directional edges namely
vertical, horizontal, and two diagonal components from left hand side to the right
right hand side respectively for neuron model in Figure4-4b and RFs corresponding
to Figure4-6b.

Similarly in case of the connectivity martix shown in Figure4-8, corre-

sponds to the connectity matrix of corresponding to the RGC morphology shown

in Figure4-4b cell, ‘1’ in the conectivity matrix signifies excitatory connectivity

of RGC with corresponding localized ON-BC, ‘-1’ in the conectivity matrix signi-

fies inhibitory connectivity of RGC with corresponding localized OFF-BC and ‘0’

represents no connectivity. Connectivity neighbourhood of RGC controls the size

of RFs that in turn controls the spatial resolution of the RGC. RGC modules are

connected in repetitive patterns over the BC layer to form RGC network layer.

4.3.2.3 Modeled Functions of Dendritic fibers, Junctions, and Soma

The amplitude of the ON/OFF BC response, which in turn transduces the strength

of light stimuli into a change in membrane potential and spike encoding in those

localized regions, is required for excitation and hyper-polarization in localized ac-

tive regions of the dendrites near the post-synaptic terminal. Izhikevich membrane

model [2, 205, 206] is integrated for mimicking calcium dynamics such as ‘regular

spiking’, ‘bursting’ and ‘chattering’ type of spiking activity and is computationally

simple. Because of its capability to mimic a wide range of spiking dynamics and

computational simplicity, the membrane dynamics in these regions are modeled

using the ’Izhikevich’ spiking neuron model. The membrane dynamics regulating
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the spiking activity in localized active ion channels are given as:

C
dv

dt
= k ((v − vr) (v − vt)− u+ I) , if v ≥ vt (4.1)

du

dt
= a [b (v − vr)− u] , v ← c, u← u+ d (4.2)

where ‘v’ stands for ”membrane potential,” ‘I’ for ”neuronal stimuli,” ‘u’ for ”re-

covery current,” ‘vr’ for ”resting membrane potential,” and ‘vt’ for ”threshold

potential.” The parameters a, b, c, d, k, C regulates different spiking activities and

has been discussed in details in [2, 3]. In the proposed work spiking parameters

corresponding to bursting and chattering activity has been used to mimic dynam-

ics due to calcium ion channels in the visual cortex and other cerebellar region

and the parameter values for the Izhikevich membrane model has been given in

Table.4.1.

Table 4.1: Izhikevich propagation and bursting membrane parameters taken from
[2, 3].

Izhikevich Bursting Chattering Propagation Value
Parameter Parameter Parameter Parameter
a 0.01 0.03 Cm 1µF
b 5 -2
c -56 -50 Rlon 2Ω
d 130 100
C 150nF 100nF ϵL -65mV
k 1.2 0.7
vr -65mV -60 GL 10−6S
vt -35mV -30

Signal propagation, on the other hand, is characterized using the passive

fiber model, as detailed in previous work, which essentially acts as a low pass

filter, resulting in decremental conduction throughout the channel and can be

mathematically expressed as

IinTotal = It + Iout (4.3)

IinTotal =
(Vout − Vin)

Rlon

(4.4)

It + Cm
dVout

dt
+GL (Vout − EL) = 0 (4.5)

where IinTotal is the net propagating current directed toward the junction/point

of measurement, It is the transmembrane current due to membrane dynamics,

Iout is the overall current delivered, Vin is the AP generated by the localized
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active region, propagating membrane potential at the junction or measurement

point, where the initial membrane potential is equal to the resting membrane

potential, is denoted by the symbol Vout, and Cm is the bulk capacitance for

the isopotential compartment, Rlon is the axial resistance acting against axial

propagation of propagating current, GL is the leakage conductance due to leakage

ion channels in the membrane and EL is the equilibrium potential of leakage

channels. The intersection of the dendritic bifurcation and the ‘soma’ are taken

as a summing node considering Kirchhoff’s current law, where current from the

two branches propagates and accumulates gradually. Because of the presence of

localized AICs near the junctions in terms of an AP, this cumulative current will

trigger a combined effect, and the process will repeat itself until the current reaches

the ‘soma’ to trigger the overall response due to the cumulative input stimulus

attached to the distal dendritic ends. The distal terminals of neurons are coupled

to the inputs in specific patterns, as shown in the connectivity matrix Figure4-7

and Figure4-8. Some of the responses of the simpler neuron morphology shown

in Figure4-4a at different locations of localized AICs, namely near the synapses,

near the junctions, and at the ‘soma’ respectively due to different stimulus matrices

shown in Figure4-9 are shown in Figure4-10, Figure.4-11, Figure4-12, Figure4-13.

Matrix 1
-45 67 -56
-56 71 -66
-52 69 -78

Matrix 2
67 -56 -45
-56 71 -66
-78 -52 69

Matrix 3
-45 -56 -52
67 71 69
-56 -66 -78

Matrix 4
-45 -56 67
-66 71 -56
69 -52 -78

Figure 4-9: Different orientation 3× 3 photoreceptor stimulus matrix connected
to the neuron in Figure4-4a via BCs in configuration of vertical edge selective
connectivity matrix shown in Figure4-7 to simulate spiking activity at different
ion concentrated localized locations of the neuron shown in Figure4-10, Figure4-
11, Figure4-12 and Figure4-13.

Figure4-10, Figure4-11, Figure4-12, and Figure4-13 show a variety of fas-

cinating outcomes, beginning with post-inhibitory rebound, post inhibitory burst-

ing, and intrinsic bursting type activity at various sites of the cell. The extreme

right panels in Figure4-10, Figure4-11, Figure4-12, and Figure4-13 represent the

neuron’s overall response, which is then translated to spike rates to quantitatively

assess the output response of the layer of neurons. The extreme left matrix ‘Ma-

trix 1’ in Figure4-9 represents a horizontal gradient fed to a horizontal orientation-

sensitive edge configuration, resulting in high regular spiking activity, whereas the

same neuron’s response to a diagonal gradient results in post inhibitory rebound
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Figure 4-10: Spiking activity due to input matrix 1 near the synapse, at the
junctions with localized ion clannels and the soma respectively.

spiking activity with an overall decrease in the number of spikes. The second

final test matrix ‘Matrix4’, which corresponds to a vertical gradient in Figure4-

9, however, also leads to post inhibitory spiking activity due to misaligned edge

orientation, as demonstrated in realistic OS ganglion cells [210, 211]. The spiking

rate is taken into account for encoding and visualizing the response of the mod-

eled neuron network, regardless of regular spiking activity or inhibitory rebound

activity, and has been discussed in 4.6.

4.3.3 The Rate Encoder

After the cumulative information in the spatial neighborhood is processed and

encoded into a temporal signal in terms of spiking activity by the processing RGC,

the firing rate calculator converts the cumulative temporal data back into spatial

information. Conversion of temporal to spatial information in the proposed model

helps to quantify the response generated and gives a vague perception of probable

data projection and representation in a single layer of the V1 neuronal network.
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Figure 4-11: Spiking activity due to input Matrix 2 near the synapse, at the
junctions with localized ion clannels and the soma respectively.

Quantification of the temporal data back to spatial information is done using

Fx(i, j) =

∑n−1
k=0 Fx(i, j) + 1|Vm(i,j)(t)>Vthreshold

t
(4.6)

where i, j represents the localized neuron, Vm(i,j) (t) represents the temporal volt-

age response of the neuron cell body, Vthreshold is the minimum membrane potential

for a spike to trigger and t is the total time duration of the temporal response.

Fx(i, j) is the localized spatial information and gives the spiking rate of partic-

ular localized cell of interest in terms of spikes/sec. Total spatial information

represents the overall response of the single layer of neuron.

4.4 Orientation Selectivity & Edge Map Extrac-

tion

The process of Orientation Selective feature extraction has been explored in the

human visual cortex in terms of scotopic and color vision. The scotopic vision con-

figuration is like color vision except for gray-scale and RGB image input. Figure
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Figure 4-12: Spiking activity due to input Matrix 3 near the synapse, at the
junctions with localized ion clannels and the soma respectively.

4-15a depicts a sample input patch supplied to the model for a better understand-

ing of the model dynamics. Corresponding responses for 0◦ and 90◦ selective RGC

cell are shown Figure4-15b and Figure4-15c respectively. The figures clearly il-

lustrate the local responses at distal dendrites, junctions, and soma. The RGC

starts resonating at high frequencies when the input patch matches the preferred

Orientation. The spiking frequency of the RGC significantly decreases on getting

stimulation with non-preferred orientation [187, 212–214].

Similar responses for preferred and non-preferred activity are mimicked

by the designed Orientation Selective RGC in Figure4-15b and Figure4-15c. The

Orientation Selective RGC performance has been verified with multiple oriented

feature neighborhoods. The consistent behavior of RGC has been obtained for

preferred as well as non-preferred orientations as reported in the literature.

Natural test images are fed as input to the proposed model, and population

responses of identical Orientation Selective modular RGC are collected. The RGC

population layer with particular Orientation Selectivity is responsible for the ex-

traction of preferred orientation features. Multiple stacks of oriented feature maps

are obtained by configuring the RGC population at 0◦, 45◦, 90◦ and 135◦ specificity
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4.4. Orientation Selectivity & Edge Map Extraction

Table 4.2: Orientation selective ON RGC layer response at 0◦, 45◦, 90◦ and 135◦

orientation and OFF RGC layer response at 0◦, 45◦, 90◦ and 135◦ orientation in
scotopic vision corresponding to sample images in Figure4-16a.

ON︷ ︸︸ ︷
0◦ 45◦ 90◦ 135◦

OFF︷ ︸︸ ︷
0◦ 45◦ 90◦ 135◦

Table 4.3: Orientation selective ON RGC layer response at 0◦, 45◦, 90◦ and 135◦

orientation and OFF RGC layer response at 0◦, 45◦, 90◦ and 135◦ orientation in
scotopic vision corresponding to sample images in Figure4-16b.

ON︷ ︸︸ ︷
0◦ 45◦ 90◦ 135◦

OFF︷ ︸︸ ︷
0◦ 45◦ 90◦ 135◦
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Figure 4-13: Spiking activity due to input Matrix 4 near the synapse, at the
junctions with localized ion clannels and the soma respectively.

with ON and OFF phases. The obtained Orientation Selective RGC responses for

ON and OFF phases of Figure4-16a and Figure4-16b are shown in Table. 4.2 and

Table. 4.3 respectively. The complete edge-map responses in Figure. 4-17 are

computed by max-pooling of different Orientation Selective RGC layers. The ori-

entation responses for the scotopic vision are computed with the gray-scale image,

whereas the ’red,’ ’green,’ and ’blue’ channels are utilized for color vision. Four

ON phase Orientation Selective and four OFF phase Orientation Selective RGC

layers are dedicated for scotopic vision. Similar operations are performed in color

vision individually on the three layers for Orientation Selectivity, and the final

edge-map is generated. Figure 16 are the scotopic population responses of Orien-

tation selective ON and OFF RGC network layers with orientation specificity of

0◦, 45◦, 90◦ and 135◦ respectively. The spiking frequency is used to quantify the

temporal responses into spatial feature space using equation 4.6.

Shown in Table.4.2 and Table.4.3 are the scotopic population response of

OS ON and OFF RGC network layers with orientation specificity of 0◦, 45◦, 90◦

and 135◦ respectively in terms of spiking frequency and shown in Figure4-17 are

the complete edge-map generated by max-pooling from the ON and OFF RGC

population responses.
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4.4. Orientation Selectivity & Edge Map Extraction

Figure 4-14: BC (ON in light green and OFF in dark green semi-sphear) con-
netivity of orientation selective RGC in human primary visual cortex showing
oriented feature extraction and edge estimation.
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(a) (b)

(c)

Figure 4-15: RFs connectome specificity for RGC in Figure4-4 cell connectivity.
(a) Sample vertical gradient input patch to 0◦ and 90◦ Orientation Selective RGC
cells, (b) Response at different locations of the 0◦ Orientation Selective RGC cell
corresponding to the input sample data shown in Figure4-15a fed to the photore-
ceptor cell, and (c) Response at different locations of the 90◦ Orientation Selective
RGC cell corresponding to the input sample data shown in Figure4-15a fed to the
photoreceptor cell.

(a) Sample image 81066.jpg (b) Sample image 69000.jpg

Figure 4-16: Sample input image from BSDS database for ON and OFF RGC
oriented edges.
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4.4. Orientation Selectivity & Edge Map Extraction

(a) Sample edge map for image in Figure.
4-16a

(b) Sample edge map for image in Figure4-
16b

Figure 4-17: Sample edge reconstructed images from ON and OFF RGC oriented
edges (scotopic vision) for the sample images in Figure4-16.

4.4.1 Simulation Results for Scotopic & Color Vision

The proposed model has been simulated using ‘Python 3.6’ interpreter. The ‘open

CV’ and ‘scikit’ packages are exploited for basic image operations, and differential

equations are solved using ‘scipy.integrate’.

The selected parameters to implement Izhekivich’s membrane dynamics

and passive signal propagation are presented in Table 4.1. The inputs to the ob-

tained model are images in ‘tif,’ ‘png’ and ‘jpg’ format. These inputs have been

collected from the Berkley segmentation database (BSDS500) [215]. Nearly sixty

inputs are fed to the proposed model, but the responses corresponding to six typ-

ical input images are presented in this work. The selected image dataset that

comes with edge ground truth is considered as a reference for performance esti-

mation using ’Piotr’s Matlab Toolbox’ [216]. The photoreceptor receiving natural

images as stimulus yields Orientation Selective maps. The final edge map estima-

tion is obtained using Maxpool operation on four Selective Orientation maps of

two different phases as shown in Figure4-18. The ‘matplotlib’ package has been

used for the plotting of image responses and cell dynamics temporal signals. The

‘Scotopic edge’ and ‘Color edge’ responses of Figure4-18 incorporate the scotopic

and color vision model of the human primary visual cortex. The presented model

successfully mimics the behavior of RGC responses to rod and cone inputs. The

RGC response to cone cell input maps the relative spectral component along with

the rate of absorption, whereas the rod cell fails to map the relative spectral com-

ponents. A careful visual comparison of ‘Color’ and ‘Scotopic edge’ responses

corresponding to Figure4-18(a) input reveals the relative spectra discrimination

capability of cone cells. The color vision response successfully detects the contour

69



Chapter 4. Edge Detection in Primate Visual Cortex

a b c d
In
p
u
t
Im

ag
e

S
co
to
p
ic

E
d
ge

C
ol
or

E
d
ge

Figure 4-18: Edge detection response of the scotopic vision model and color
vision model to some input images
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Figure 4-19: Visualizations of matches and errors of scotopic vision and color
vision compared to BSDS ground truth edges. Edges are thickened to two pixels
for better visibility; the color coding is green=true positive, blue=false positive,
red=false negative.
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between the aeroplane and sky, whereas the scotopic vision fails to map the rela-

tive change in spectral component. The rod inputs to the RGC cell successfully

map the rate of absorption that enables night vision [217]. But the homogeneity

of absorption at the contour made the scotopic vision fails to detect the edge gra-

dient. Similar responses are visible corresponding to the Figure4-18(b) input as

well. The scotopic vision tracks the darker edges and textures in Figure4-18(b)

near the beak and wings, whereas color vision fails.

The accuracy of the model is further assessed by match and error of re-

sponses. The visualization of edge match and errors of scotopic and color vision

model is shown in Fig 4-19. The blue and red edges indicate false-positive and

false-negative edges, respectively. The green edges confirm the matching of the

ground truth edge with the model detected edge. The performance of the proposed

modelled is effectively demonstrated by comparing it with existing state-of-the-art

neural-network model [218–225]. The selected performance parameters are OIS

and ODS. The response of the proposed model shows a good true positive profile

and false-negative profile compared to the state-of-the-art model [223]. The models

reported in [218, 220–222] are compared with the proposed model. The compared

performance parameters are presented in Table 4.4. The proposed model success-

fully mimics human visual perception and capability, although its performance is

comparable. To create the edge picture from an edge probability map, a threshold

is required. To set this threshold, there are two options. The first method, known

as optimal dataset scale (ODS), uses a constant threshold over the whole dataset

of photographs. The second method, known as optimal image scale (OIS), chooses

the best threshold from Richer Convolutional Features for Edge Detection for each

image [226]. The OIS scores obtained through the model reach the human edge

perception reference of 80% [218, 219]. However, the decline in the optimal image

scale F-score ODSF and optimal dataset scale F-score OISF scores is due to more

number of false positives and its inability to suppress non-maxima.

The low performance of the model in terms of false-positive is due to the

size of the used RF. The small RF midget RGC identifies even the fine textures

as edges. These edge maps, along with fine textures, when fed to the ‘Piotr’s

Matlab Toolbox’ [216] result in compensated OISF and ODSF scores. This can be

minimized by incorporating parasol cells with a larger RF. Successful suppression

of non-maxima can be achieved with large RFs. But the proposed work is limited

to midget RGCs.
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Table 4.4: Performance comparison of the proposed framework with existing state-
of-the-art-models on BSDS500 database

Reference Methods ODS OIS
[218] RCF 0.806 0.823
[221] DeepContour 0.757 0.776
[219] Human 0.803 0.803
[219] BDCN 0.779 0.792
[219] BDCN-w/o SEM 0.778 0.791
[220] DeepEdge 0.753 0.772
[222] HED 0.788 0.808
[223] SE 0.75 0.77
[224] Multicue 0.72 -
[225] CEDN 0.788 0.804

This work Scotopic Vision 0.717 0.771
This work Color Vision 0.668 0.815

4.5 Coupled Orientation Selectivity & Band-

width Tuning

With the introduction of techniques like EEG, MEG, fMRI, [158–160], capable of

capturing local activities in the brain, neuronal electric local potential has been

explored in depth and suspected to play a vital role in mapping and researching

neural network activity. Over the past few decades, research on LFPs and cell-

field interactions has successfully connected LFPs to phenomena [161, 162] that

are connected to APs’ causal function. LFPs can be attributable to activities and

interactions within a constellation of synapses induced by the mobility of neuro-

transmitters or ionic disturbances caused by the generated electric field accompa-

nied by signal transmission in bundled nerve fibers. The presented work explores

the influence of mutual interaction caused by induced electric fields of propagating

signals in a system of bundled neural fibers, in addition to synaptic interactions.

Because they are the results of transmembrane currents [164, 165] and the induced

electric field [168] caused by neuronal activity, and because they highly correlate

with associative network dynamics relating to more complex functional responses

[166, 167], such as cognition, memory, motor control, theories relating to LFPs due

to local neuronal fiber dynamics are widely accepted [163]. Neuron models, such

as in [227], discuss the impacts of transmembrane current and cell-field interac-

tion [168], which had previously been overlooked and has significant implications

in terms of local dynamics, whilst software models, such as ELFENN in [169],

were also developed to mimic the ephaptic effects.
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The complexity lies in understanding the spatial spread of cell-field inter-

action, in addition to the effects and applicability of LFPs. Recent understanding

of the process defines the effects as generally local within a range of 200− 400µm

[228, 229], whereas earlier literature describes the spread of LFPs as both lateral

and vertical and ranges from 600µm to 5mm [230–232]. When investigating the

vertical spread of LPF, high coherence correlations are found [233], but another lit-

erature [234] discusses it as a probable cause due to volume conduction. According

to researches conducted in the auditory cortex (A1) [235] and the retinal surface

(V1) [228, 229], there is accurate and consistent mapping of sensory receptors that

enables LFPs to spread not only spatially but also vertically. Looking more closely

at the relationship between LFPs and transmembrane current as communicated in

[164, 165], active membrane directly influences transmembrane current caused by

rapid inflow/outflow of ions, which affects the local charge density, which in turn

influences the local field potential. Aside from the active membrane, the ectoplas-

mic conductance, which acts as a current sink, also has a significant influence on

the strength of the local field potential. Relatively low ectoplasmic conductance

results in enhanced LFPs and vice versa, which is most likely due to its current

sink characteristics, [236]. Experiments on squid giant axon [173], crab motorneu-

ron [174], frog sciatic nerve [176], and algal strand [175] revealed that stimulating

a single fiber from a bundle of nerve fibers could depolarize other fibers caused by

the effects of transmembrane current and ionic perturbation within the proximity.

Studies [177, 178] discuss in-field DC shift, theta oscillations, phase precision fir-

ing, and reciprocal excitability effects due to LFPs in similar experimental studies

focused on grid cells and ganglion cells, respectively. Another literature [237],

primarily focused on the mammalian olfactory system highlights axon interac-

tion as relatively insignificant due to the presence of thick myelin, which provides

electrical isolation, and relatively large extracellular space, which provides quick

dispersion of transmembrane current with negligible field potential. Neurons in

the mammalian olfactory system lack myelin and could be a crucial predictor of

olfactory codes. Innumerable pieces of literature recommend that ephaptic cou-

pling of neuronal fibers could be fundamental and plays a very important role

in the stabilization of such a robust, complex system, [238–240], ensuring effec-

tive information processing and transmission with negligible error. The richness

of ephaptic interactions draws our attention toward a careful assessment of the

mechanisms involved in transmembrane current and cell-field interactions. The

proposed work incorporates the effects of transmembrane current, cell-field inter-

action, and morphologically dependent electrical attributes into the cable model

and is relatively simple compared to the existing state-of-the-art models discussed

in [168, 169, 227, 239, 241–243]. A (passive) compartmental cable equivalent neu-
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ron approach has been implemented to mathematically model the transmission of

signals and the effects of transmembrane current in a bundled fiber system devoid

of myelin sheath [237], as well as its overall effects on local field potential and

inter-fiber interference while accounting for inter-cellular and intra-cellular cyto-

plasmic in-homogeneity. On the contrary, if the local attributes corresponding

to the localized region (geometric as well as electrical properties) are known in

advance, such a model can be easily extended to study the effects of local field

potential in bundled fiber systems as well as complex neuronal networks. The

proposed simulation is performed using biological parameters from [244–247] and

the geometrical dependence of the coupling parameters is inspired by works from

[168, 170–172, 237].

4.5.1 Implemenation of fiber coupling in primary visual

cortex

The proposed coupling model has been implemented in detail in a single layer of

primates’ visual cortex models discussed in Section 4.3. RGC with six dendritic

inputs with connectome specificity inspired by ‘Sobel filter’ controlling the orien-

tation selectivity, dendritic spread controlling the spatial scale, and the neuron’s

bandwidth is controlled by a combination of active membrane dynamics due to

localized AIC. Each of the input distal dendrites has been connected to a bipolar

cell RF, Figure4-6, that is in turn connected to photo-receptor cells, thereby trans-

ducing the light stimuli trapped by the photoreceptor cells and converting them

into Spatio-temporal signals, Figure4-2 and Figure4-3. Detailed organization and

architecture of the PVC are shown in Figure4-4b. Spiking activity due to local-

ized active membrane dynamics has been modeled using the Izhekivich ‘bursting’

and ‘chattering’ type spiking activity, and propagation parameters are taken and

shown in Table.4.1. Input to the coupled model is ‘tiff,’ ‘png’ or ‘jpg’ image files

which are converted to Spatio-temporal square pulse signals of 200 mSec with an

offset of 10 mSec and pulse width of 150 mSec. Dendritic spread of the modeled

system of RGC takes Spatio-temporal signal within a grid size of 3 × 3 BCs and

connectome specificity shown in Figure4-8. Modeling inter-fiber coupling arrange-

ment is as shown in Figure4-20 with coupling matrix for fiber n7 with a 3 × 3

BCs neighbor is shown in Table.4.6. As shown in Figure4-20, for a connectivity

matrix within a 3× 3 BCs neighborhood surrounding information in n13 (in right

bottom corner), dependent fiber connections of the RGC are n7, n12, and n17 with

ON-BC whereas connectivity n9, n14, and n19 are corresponding to connectivity

with OFF-BCs. In order to simulate the fiber dynamics in fiber connected to n7,
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the coupled model takes a neighborhood of 3 × 3 grid surrounding the fiber of

interest n7 (in right top corner), where mutual coupling parameter dependence for

the connectivity n1, n2, n3, n6, n7, n8, n11, n12 and n13 are as shown in Table.4.6.

To simulate the effects of the coupling matrix shown in Table.4.6, similar coupling

computations are performed in individual fibers, and the cumulative response for

the RGC neuron of interest has been computed for each spatial location of the

natural scene fed as input to the layer of RGC neurons.

4.5.2 RGC Dendritic Input Coupling:

RGC coupling and its effects on neuronal computation are still unknown, and the

field has been unexplored due to the computational complexity of the system of

coupled equations. In this work, an attempt has been made to integrate bundled

fiber coupling to better understand the role of neuron fiber coupling in neuronal

computations. While computing the cumulative response of morphologically de-

tailed RGCs with localized AICs, a neighborhood of 3 × 3 BC neighborhood has

been considered where the connectome specificity of the RGC is dependent on the

connectivity matrix shown in Figure4-8.

Figure 4-20: Coupled fiber connectivity neighborhood (top right) concerning
central fiber of interest at n7 for connectome specificity for detection of verticle
edges shown in connectivity matrix(bottom right) superimposed over the red block
for computing overall orientation response at n13.

Apart from connectome specificity, for computation of coupled bundled

fiber system an example neighborhood is shown in Figure4-20, where a 5× 5 BC

neighborhood has been considered to compute the response of the OS-RGC at n13

and a 3× 3 neighborhood is represented with the ‘box in red’ in Figure4-20 which

suggests inputs connected to n7, n12, n17 and n9, n14, n19 configured for vertical

edge selectivity. At each location of these inputs, coupled responses are computed.
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If the coupled response of input dendrite connected to BC n7 is considered, a 3×3

BC neighborhood has been considered for the coupled input response in dendritic

input at n7, represented with the ‘black box’ surrounding n7 top right corner of

Figure4-20 and depending on temporal dynamics at the surrounding fibers, the

coupled response at the central fiber is computed using equation (3.43) and dis-

cussed in details in Section 3.4.1. The corresponding coupling parameter between

the 9 fibers within the neighborhood of n7 is coupled with coupling parameters

given in Table.4.6. Similarly, coupled responses for every dendritic input for the

RGC are computed.

A positively coupled system in the coupled model suggests that the neigh-

boring fiber contributes positively to the central BC fiber proportional to the

amount of depolarization or hyperpolarization experienced in the nearby fibers,

and the overall response of the central fiber is a dependent temporal response

corresponding to the central BC intensity along with a weighted sum of the neigh-

boring cell responses. Under such configuration, similar spatial information in the

neighborhood results in an amplified overall response in the central fiber, whereas

dissimilar information within the neighborhood results in a proportionately sup-

pressed response in the central fiber. Such an approach has been adopted to

compute the overall response of individual RGC cells to replicate the orientation-

selectivity behavior of the RGC network and compared against a histogram of

oriented gradients(HOG) features to analyze the accuracy of orientation selectiv-

ity of the proposed model with the uncoupled counterpart.

HOG feature extraction and comparison with the orientation selectivity

shows the degree of accuracy of the proposed orientation selectivity scheme. HOG

is a feature descriptor that is used in computer vision and image processing to

recognize objects. The technique counts the number of times a gradient orientation

appears in a limited region of an image which is comparable to edge orientation

histograms, scale-invariant feature transform descriptors, and shape contexts but

computed on a dense grid of evenly spaced cells and employs overlapping local

contrast normalization for increased accuracy. The core idea behind the HOG

descriptor is that the distribution of intensity gradients or edge directions can be

used to characterize the appearance and shape of local objects within an image.

4.5.3 Orienation Selectivity Bandwidth Representation

Figure4-21 shows a sample image from BSDS [215] image database used in the

proposed uncoupled model for OS edge detection and histogram bandwidth rep-
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Figure 4-21: Sample process of detection of uncoupled OS edge extraction in an
image from BSDS database and convoluting with the HOG angle image to extract
histogram of extracted edge orientation angles.

resentation for orientation-selectivity. The sample image has been fed to the OS

ON-BC RGC network and OFF-BC RGC network to compute OS edge informa-

tion at 0◦/180◦, 45◦/225◦, 90◦/270◦ and 135◦/315◦ as shown. Along with the OS

edge information, HOG angles of the gradient have been computed, and the color

bar near the HOG angle response shows the ranges of gradient angles captured

by the HOG feature extractor that ranges from 0◦ to 359.99◦. This gradient angle

information from the HOG angle response is convoluted with the binary OS edge

responses of the ON and OFF RGC network to acquire information about gradi-

ent angle information at the precise OS edge regions to visualize the bandwidth of

orientation-selectivity of the uncoupled network of RGC as shown in the extreme

right plots in Figure4-21. A similar process has been repeated to construct the

orientation-selectivity in the case of the coupled RGC network and compare the

bandwidth tuning in the coupled network.

4.5.4 Simulation Results

The proposed model has been simulated using ‘Python 3.6’ interpreter. The ‘open

CV’ and ‘scikit’ packages are exploited for basic image operations, and differential

equations are solved using ‘scipy.integrate’.
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The parameter in Table.4.5 ra, re are the intracellular and extracellular re-

sistance of cytoplasm, whereas cm, rleak are membrane capacitance and membrane

leakage resistances respectively. The intracellular cytoplasmic resistance is con-

sidered higher as compared to the extracellular counterpart[168, 170] considering

low ionic mobility due to confined space inside the neuronal fiber and higher ionic

mobility in extracellular space. Apart from the mobility of ions, conduction in ex-

tracellular as well as intracellular cytoplasm takes place due to volume conduction,

whereas the membrane parameters such as membrane capacitances and membrane

resistances contribute due to surface diffusion or accumulation of ions. Cell-field

interaction due to signal propagation in nearby fiber reorganizes ionic distribution

and membrane potential dynamics of the nearby fiber[168, 170]. The induced field

is spherical, with the strength of the field decreasing radially outward. Interaction

of electric field with other fiber takes place due to electrically-induced transmem-

brane current and is dependent on morphological as well as electrical attributes

of neuronal cell[168, 170]. Morphological consideration such as size, shape, the

Orientation of fiber concerning the induced electric field, and inter-fiber spacing

has been taken into consideration while computing coupling parameters, whereas

electrical properties such as membrane leakage resistances and membrane capaci-

tances are taken from [2, 3, 205].

Table 4.5: Neuron attributes considered for generation of coupling matrices.

ra re cm rleak
166Ω− cm 63Ω− cm 1µF/cm2 40KΩ− cm2

volume conduction volume conduction surface conduction surface conduction
4ral
πD2

4relxy
πD2

xy
cmπDl rleak

πDl

To replicate similar coupled bundled fiber behavior in an RGC network,

a 3 × 3 bipolar neighborhood has been considered. For a 3 × 3 BC connectivity

neighborhood arrangement shown in Figure4-20, inter-fiber coupling parameters

are calculated and designed as shown in Table.4.6 such that the fiber bundle associ-

ated with the central BC of 3×3 neighborhood is positively coupled corresponding

to the neighboring fibers. In the Table.4.6, the row and column names nx corre-

sponds to fiber-x and the value corresponding to the nx row and ny column is the

inter-fiber resistance between the fiber-x and fiber-y. For nx row and ny column

with x = y corresponds to the axial resistance of the fiber-x (diagonal components

of the Table.4.6 with value 15).

In the proposed work, to compute the orientation selectivity efficacy, HOG

features from the original image have been computed along with the OS response
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Table 4.6: Coupling matrix for the coupled fiber system considered for fiber cou-
pling neighborhood with respect to the fiber of interest at n7.

n1 n2 n3 n6 n7 n8 n11 n12 n13

n1 15 20 0 20 3 0 0 0 0
n2 20 15 20 20 3 20 0 0 0
n3 0 20 15 0 3 20 0 0 0
n6 20 20 0 15 3 0 9 9 0
n7 18 18 18 18 15 18 18 18 18
n8 0 20 20 0 3 15 0 20 20
n11 0 0 0 20 3 20 20 15 0
n12 0 0 0 20 3 20 20 15 20
n13 0 0 0 0 3 20 0 20 15

Figure 4-22: Normalized histogram selectivity of the coupled RGC network and
uncoupled RGC network computed at 0◦/180◦ from test images.

of the RGC model. Pixel-wises multiplication of the HOG features and OS re-

sponses are computed to find the edge orientation information of the detected

oriented edges. Similar computations are made to extract edge orientation infor-

mation extracted by the coupled RGC layer as well as the uncoupled RGC network

layer and represented in terms of a histogram of edge orientations. When com-

paring the HOG feature in a coupled RGC network to its uncoupled counterpart

in Figure4-22, Figure4-23, Figure4-24 and Figure4-25, the coupled network shows

lower histogram density with edge orientation detection band tuned to preferred

orientation, which is attributable to enhanced selectivity to orientation informa-

tion. Comparing the histogram density spread of the coupled RGC network to the

uncoupled counterpart, the spread appears to concentrate within an orientation

selectivity range of ±45◦ in the coupled system, whereas the uncoupled counter-
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Figure 4-23: Normalized histogram selectivity of the coupled RGC network and
uncoupled RGC network computed at 45◦/225◦ from test images.

Figure 4-24: Normalized histogram selectivity of the coupled RGC network and
uncoupled RGC network computed at 90◦/270◦ from test images.

part has an orientation selectivity range of ±90◦ which might further be improved

with appropriate coupling parameter corresponding to orientation selectivity. The

model has been tested and analyzed using the Berkeley Segmentation Data Set

500 (BSDS500)[215] and found consistent in terms of edge orientation tuning and

edge detectability.
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Figure 4-25: Normalized histogram selectivity of the coupled RGC network and
uncoupled RGC network computed at 135◦/315◦ from test images.

4.6 Summary and Future Remarks

This chapter bridges the gap between the dynamics of local neuron morphol-

ogy and global responses. The presented model successfully linked the human

visual cortex edge perception to morphologically detailed midget ganglion cells.

The model replicates local neuronal dynamics as well as edge perception. The

suggested model’s advantage lies in its similarity to human vision and ability to

approximate human vision performance in both night and colour vision. The hu-

man scotopic and colour vision models provide a good estimate of true edges.

Although the model’s ODS performance suffers slightly due to small RFs, it can

be enhanced with larger RFs. The use of a larger RF increases computational

complexity, which will be discussed in the subsequent sections. The uncoupled

model, on the other hand, provides information about the perfect coupling of neu-

ronal fibers in bundled fiber systems for interference-free signal transmission, as

well as the most likely configuration for inter-fiber interference. In addition, the

bundled fiber interaction model proposes complex coherent signal processing in

coupled bundled fiber systems, resulting in controlled amplification or suppression

of propagating signals corresponding to neighboring local signals and their asso-

ciated coupled interaction. The proposed model is based on morphogenesis and

the effect of local or non-local aggregated signals on local signal processing. The

proposed model is tested using an OS coupled RGC network, which is compared

to its uncoupled counterpart. The Histogram of Oriented Gradient data is used to

compute the orientation selectivity performance responses, and a comparison of
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the two networks shows that the coupled network have more orientation selectiv-

ity tuning. The proposed work used to model and simulate local signal dynamics

in a bundled fiber system of an OS-RGC network due to cell-field interaction,

as well as gain insight into the potential importance of dendritic fiber coupling

in orientation selectivity bandwidth adjustment. A similar model focusing on a

resilient network could aid researchers in better understanding of both local and

global signal processing in the visual cortex and other relevant networks.
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