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5.1 Introduction

Previous studies have found ample evidences of robust computational capabilities

of neuron morphologies. Unique morphologies of neurons are tuned to specific

frequency of inputs extracting specific information. Specific morphologies in visual

cortex are connected with precise connectome specificity, shaping global response

in the primary visual cortex. But very little has been understood about the role of

electrophysiology and morphologies of dendritic arbour in shaping such complex

responses. The size of the RF and spatial resolution is suspected to dependent

on the dendritic spread. A midget ganglion cell, with a small dendritic spread is

capable of extracting fine local feature whereas a parasol cell with a larger RF

focuses on the coarser features. The electrophysiological basis of such behavior

remained unexplored till date. Most of the neural network studies focuses on the

mathematical interpretation of global behavior rather than local dynamics shaping

global responses and defines such networks as learning systems. Basic operations

such as edge detection, scene segmentation, multi-resolution feature extraction,

depth perception, and motion estimation etc. computed in the striate cortex of

primate vision are hypothesized as inherent behavior rather than an exhaustive
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learning process. A diverse collection of neuron morphology is believed to play a

key role in the process of these basic visual operations.

An attempt has been made in this work to bridge the link between parasol

cell and midget cell physiology, nonlinear dynamics and connectome specificity

to multi-resolution feature extraction in primary visual cortex. Multiple morpho-

logically detailed midget and parasol RGCs has been designed and modeled to

simulate their local behavior integrating active and passive membrane dynam-

ics. Peculiar arrangement of midget and parasol RGCs forming RGC layers has

been constructed as prescribed in the in-vivo experimentation to mimic the global

responses in these layers.

5.2 Related Works

Morphological segregation and classification of neuronal cells has been conducted

since the landmark work of Ramon y Chajal to discover functional significance

of unique neuron morphologies. Parasol cell and midget cell morphologies pro-

jecting information to magnocellular and parvocellular layers in visual cortex via

dedicated parallel pathways has long been established [248–250]. A major chal-

lenges in understanding the organization and function of parallel visual pathways

is to identify the structural and functional links between the component neu-

rons at successive stages in the path [102, 251–253]. Development in intracellular

recording [254–256] and staining methods [248, 257] has emerges to further under-

stand the structure-function relationship but limited to structurally and function-

ally uniform neuronal layers. Later intracellular recording with tracer injected to

magnocellular and parvocellular layers successfully linked functional attributes to

anatomical cell types in the retina based on morphology of RGC. Findings points

out that the midget ganglion cells with small dendritic spread, connected to red

and green cone cells responsible for extracting fine features, projects to parvocel-

lular layer [258, 259]. On the other hand parasol cells which are larger in size with

complex dendritic arbor and larger dendritic fields are responsible for contour de-

tection, object detection, boundary estimation and motion perception, projected

onto the magnocellular region [248, 249, 260, 261]. Literature confirms midget cells

to have higher spatial frequency, low contrast sensitivity, carrying color opponent

signals contrary to parasol cells low frequency selectivity and high contrast sen-

sitivity [262–267]. High frequency selectivity and color opponent signal with ON

and OFF connectivity with small dendritic spread confirms fine feature detection

in midget ganglion cells responsible for pattern recognition and identification. On
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the other hand, low spatial frequency selectivity along with contrast sensitivity

and larger RFs infers coarser features such as object boundary and contour like

features segregation for object detection, object tracking and motion estimation.

But structure-function relationship and role of types of non-linearities in shaping

complex neuronal responses is poorly understood.

5.2.1 Approach

The objective of this chapter is to mathematically model and replicate responses

of parasol and midget RGC neuro-dynamics. Considering different spatial spread

of dendritic arbour, their connection specificity along with active dendritic inte-

gration discussed in literature. Population responses of the modelled RGC mor-

phology mimicking local responses of midget and parasol RGC layers is explored.

Role of sympathetic as well as antagonistic connectivity of RGCs in computing

different feature space will also be investigated. Function-structure relationship

remained unexplored due to the sizes of midget and parasol cell structures and un-

availability of measuring devices to map such relationships to unique morphology.

Therefore, availability of a detailed computational model provides insight into the

micro and macro process associated in shaping function specific computation in

cellular levels.

5.2.2 Contribution

The model simulation responses gives a clear understanding of the role of different

sizes of RFs. The simulated model of the midgit and parasol RGC networks, which

is supported by the literature, strongly suggests their sensitivity to finer to coarser

feature extraction reliance. The response of the midget and parasol cell toward

finer and coarser features respectively and their projection onto parvocellular and

magnocellular regions give a good idea about the role of fine and coarse feature in

either object identification or motion estimation.

5.3 Multi-resolution Model Architecture

Considering the existing in-vivo as well as in-silico literature, an attempt has

been made to replicate striate cortex RGC layer arrangements to get a vivid

understanding of the local processes associated with visual perception. Emphasis
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has been given to detailed morphology of midget and parasol RGCs that can be

found making connections with as low as bipolar cells (BC). These midget and

parasol RGCs extract complex features from the visual scene, projecting important

features to mutually exlusive pervocellular and magnocellular layers that later

helps in learning and shaping complex cognitive behavior.

In this work, exclusive morphologies representing midgit and parasol RGCs

has been modeled with dendritic arborization as well as active and passive mem-

brane dynamics to the cell. Modeled RGCs are arranged in precise repetitive

manner making connections with BC. Layers of RGC morphologies with analogous

biophysics are responsible for homogeneous feature extraction and feed-forwarded

to successive layers. Special attention has been given to orientation-selectivity

and segmentation type behavior in primates striate cortex [249, 252, 268, 269] and

their relevance to the type of connectivity with BCs and RGC morphology. Appro-

priateness of active integration at localized regions of RGC has also been explored

in this proposed framework. Details of the model implementation is discussed in

the subsequent subsections.

5.3.1 Midget and Parasol Cells

One of the major discovery about organization of retina was the several classes

of RGCs, precisely organised with single cell precision to collect information and

project onto specific layers. In mammalians, these cells are categorized into two

major classes known as midget ganglion cells with smaller dendritic spread and

parasol cells with complex dendritic arbor accommodating larger dendritic spread.

These cells are identified using staining procedure as well as high resolution imag-

ing describing their unique morphological and anatomical features. Midget cells

are described as cells with smaller cell bodies and small dendritic arbors contrary

to the parasol systems, having a comparatively larger cell body, complex dendritic

arborization with approximately 3 times the dendritic spread of a midget sys-

tem [265, 270–272]. In-depth study from single cell anatomy recordings portrays

a vivid description of the parasol and midget cell system with both the variant

having ON and OFF sub-variant antagonistic center/surround organization [273–

275]. Literature confirms the rise of midget and parasol cell systems from as low as

the bipolar layers making direct connections to the rod and cone photo receptors

[276–279]. With a small dendritic spread, the midget cell system connects to lim-

ited BCs within a region giving rise to smaller RFs contrary to the parasol system

where the dendritic spread stretches across multiple cells over larger regions con-
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structing larger RFs. Although the photo receptors form a single layer, multiple

connections with ganglion cells gives rise to interesting arrangements of multitude

of overlapping RFs [268, 280, 281]. Though the overall functional contribution

of such layers are well explored, the computational aspect of individual neuron

remained unmapped. Similar neuronal attributes with modification in dendrite

arborisation and connectome specifics significantly changing the overall behavior

of a network is pronounce. The macro association of functional behavior with

respect to the anatomical dynamics is not well understood/overlooked.

(a) Midget RGC morphol-
ogy 1.

(b) Midget RGC morphol-
ogy 2.

(c) Parasol RGC morphol-
ogy.

Figure 5-1: Morphologycally detailed midget and parasol RGCs used in the
simulation model.

Shown in Figure5-1 are the detailed morphology integrated to the proposed

multi-resolution feature extraction framework where Figure5-1a corresponds to a

midget RGC with very small RF with four distal dendritic inputs, Figure5-1b cor-

responds to another midget RGC with comparatively larger RF with three parent

dendrites and six daughter dendrites branching from the parent dendrites. Simi-

larly Figure5-1c has been constructed with multiple layers of dendritic arboriza-

tion, mimicking a simple parasol RGC. The distal dendritic tips are connected to

BCs that in turn processes the incoming signals to extract meaningful information

and features that are forwarded to the successive layers for learning and cognition.

An attempt has been made to model morphologically detailed RGCs rep-

resenting midget and parasol RGCs to explore their computational functionality in

the primary visual cortex. Detailed RGCs are designed considering their dendritic

arborization, passive fiber dynamics and localized non-linear integration due to

differential distribution of AIC. Modeled similar RGCs are connected to grids of

photo receptor cells via the BCs to form layers of midget and parasol RGC lay-

ers and explore their probable role in feature extraction. To mimic the dendritic
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spread of midget and parasol cells, grid sizes of 3× 3 and 5× 5, 7× 7 respectively

has been taken for system modeling.

5.3.2 Connectivity, Receptive Fields Sizes and Resolution

As discussed in the literature, midget and parasol cell connectivity can be seen

rising from as low as BCs with ON and OFF type sub-variants. Connectivity of

midget and parasol cells with BCs form mosaic patterns giving rise to interesting

regular arrangements. These arrangements spreads across small regions to larger

neighbourhood giving rise to multitude of overlapping RFs within the same layer

as shown in Figure5-2 and similar RFs for multiple orientation selectivity as shown

in Figure5-2a and Figure5-2b might intermingle to form much complex overlaping

RFs. These connections may vary solely from ON/OFF BCs as well as combina-

tions of ON-OFF BCs. Such connectivity patterns forms the basis of RFs. These

RGC RFs’ size varies depending on the dendritic spread over the neighbourhood of

the BCs. The overall response of a neuron might vary significantly corresponding

to the RGC’s dendritic spread or the type of connectivity with BC.

(a) Overlapping RFs of different sizes for
orientation selective RGC connections for
edge detection at an orientation selectivity
of 45◦.

(b) Overlapping RFs of different sizes for
orientation selective RGC connections for
edge detection at an orientation selectiv-
ity of 135◦.

Figure 5-2: Overlaping RF formation due to orientation selectivity type config-
uration.

Ovals in different colors in Figure5-2 are the connectivity pattern represen-

tation of neurons corresponding to sympathetic/ antagonist connections with BCs
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corresponding to RF formation depicted by oval shapes of different sizes. Different

sizes of RFs shows dendritic spread of parasol or midget cells within the neigh-

bourhood of BCs. Ovals of same sizes with light and dark color representation

suggests connectivity with same parasol/midget cells with antagonist or protago-

nist BC connectivity. Larger the size of the cell, larger is its dendritic spread and

larger is the RF and vice versa. But resolution of RGC operation is confined to

the dendritic spread of a cell. Smaller the dendritic spread of a neuronal cell, the

associated cell processes information within the local region and thus higher is the

spatial resolution of the cell whereas large the dendritic spread, the cell processes

information within the larger neighbourhood considers the overall response due to

the neighbourhood stimulus and lower is spatial resolution.

The connectivity of RGC in the designed model is associated with the BC.

Exclusive connections of RGCs with ON bipolar or OFF BC as well as combinato-

rial connections of ON and OFF BCs with RGC has been explored in the proposed

frame work. Connectivity of RGC’s with BCs are represented by matrices, repre-

senting the neighborhood of interest. A non-zero value in the connectivity matrix

represent connectivity of RGC with BC at corresponding spatial location, whereas

a zero value in the connectivity matrix represents no connectivity as shown in Fig-

ure5-3.

Apart from zero and non-zero values in the RGC connectivity configura-

tions, ‘1’ and ‘-1’ values has been assigned to represent the type of connectivity

with sub-variant of BC as shown in Figure5-3. A value of ‘1’ in the connectivity

matrix suggests an excitatory connection with a ON BC whereas a value of ‘-1’

suggests an inhibitory connectivity with BCs. Figure5-3a, Figure5-3b and Figure5-

3c shows connectivity matrix corresponding to midget and parasol RGC to BC

along with RF interpretation due to their connectivity. Sizes of RFs can be visu-

alised from the pictorial representation of the modeled system where connectivity

configuration in Figure5-3a displays a small RF where as RFs in Figure5-3b and

Figure5-3c are comparatively moderate and large sizes respectively corresponding

to dendritic spread within a bipolar neighborhood of 3× 3 and 5× 5 cells. In case

of a smaller RF, the connected RGC collects and processes information within

a small neighborhood empowering the RGC to extract information at a higher

resolution. Contrasting to smaller RFs, a RGC connected to larger RF as shown

in Figure5-3c, extracts feature from a wider neighborhood resulting in overall in-

formation from the neighborhood, thereby reducing the spatial resolution. The

RF neighbourhood can be much larger than the interpretation shown in Figure5-3

and the model implementation has been incorporated to understand the effect of
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dendritic spread on spatial resolution considering the computational complexity

of the system.

(a) Midget RGC on-phase connectivity over a 3× 3 grid for single cell size RF.

(b) Midget RGC on-phase connectivity over a 3×3 grid for a moderate size RF spreading
over three BCs.

(c) Parasol RGC on-phase connectivity over a 5× 5 grid for a comparatively larger RF
spreading over BCs.

Figure 5-3: Connectivity matrices corresponding to midget and parasol cell
connections with BCs forming RFs shown in Figure5-2 of different sizes respective
to their dendritic spread.

5.3.3 Orientation-Selectivity, Dendritic Spread & Spike

Triggers

The modelled RGCs corresponding to midget and parasol cells has been integrated

to the Orientation selective RGC layer model discussed in the previous chapter.

Orientation selective RGC model is particularly associated with orientation spe-

cific feature extraction that in turn shapes edge and texture extraction. These

features are closely associated with pattern classification, object recognition and

identification behaviors in primates. Similar RGC morphology with localized non-

linear integration at junctions and nodes has been used (refer 4.3.2.1). Contrary

to single RF size in the Orientation selective RGC layer model, the work discussed

in this chapter concentrates on different RF sizes to understand the consequences

of larger RFs on oriented feature extraction. A BC neighborhood of 3 × 3 grid
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for midget and 5× 5, 7× 7 grids for parasol RGC dendritic spread has been used.

Connectivity matrix for midget RGC within a 3 × 3 grid of BC is as shown in

Figure5-3b that are directly or indirectly stimulated by the photoreceptors. In

midget RGC layer model, dendritic spread of one cell has been taken to mimic

a midget RGC neighbourhood. Input to the model are grayscale natural images

in ‘png’, ‘tiff’ and ‘jpeg’ formats where each pixel represents stimulus to single

photoreceptor cell. Configuration and behaviour of the BCs are discussed in de-

tail in the section 4.3.1.2. When the midget network is stimulated with inputs,

the RGCs associated to the network extracts oriented features with ±45◦ error

which has been seen in simulation results discussed in section 4.4.1 and orienta-

tion histogram comparisons in 4.5.4. Respective spike triggers for the RGC has

been shown in Figure5-4.

(a) Spike trigger for midget RGC layer configure at 0◦ orientation selectivity.

(b) Spike trigger for midget RGC layer configure at 45◦ orientation selectivity.

(c) Spike trigger for midget RGC layer configure at 90◦ orientation selectivity.

(d) Spike trigger for midget RGC layer configure at 135◦ orientation selectivity.

Figure 5-4: Spike trigger for midget RGC layer with dendritic spread over 3× 3
spatial grids for different orientation selectivity configurations.

Spike triggers for the midget RGC network also shows the orientation

selectivity error and the results from a complete oriented edge map as well as

spike trigger shows similar redundancy. The error in orientation selectivity of the

midget RGC network is primarily due to the nature of oriented information as well

as size of the RF. Smaller is the RF higher is the sensitivity of connected RGC

that in turn results in higher orientation-specific feature detection error.

The above simulation has been repeated with exactly same inputs and

BC configuration but replacing the midget RGC morphology with a parasol RGC

shown in Figure5-1c and connection specificity shown in Figure5-3c. The electro-

physiology of the parasol RGC is exactly similar to the midget RGC with localized

AICs in specific regions such as distal dendritic tip, dendritic junction and the cell
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body but the dendritic spread of the parasol RGC spreads over a bipolar grid of

5 × 5. Stimulating the configuration with inputs generates responses with spike

triggers as shown in Figure5-5. On the other hand, repeating the same experi-

mentation with a dendritic spread of 7 × 7 bipolar grid, spike triggers yield are

shown in Figure5-6.

(a) Spike trigger for parasol RGC layer configure at 0◦ orientation selectivity.

(b) Spike trigger for parasol RGC layer configure at 45◦ orientation selectivity.

(c) Spike trigger for parasol RGC layer configure at 90◦ orientation selectivity.

(d) Spike trigger for parasol RGC layer configure at 135◦ orientation selectivity.

Figure 5-5: Spike trigger for parasol RGC layer with dendritic spread over 5× 5
spatial grids for different orientation selectivity configurations.

(a) Spike trigger for parasol RGC layer configure at 0◦ orientation selectivity.

(b) Spike trigger for parasol RGC layer configure at 45◦ orientation selectivity.

(c) Spike trigger for parasol RGC layer configure at 90◦ orientation selectivity.

(d) Spike trigger for parasol RGC layer configure at 135◦ orientation selectivity.

Figure 5-6: Spike trigger for parasol RGC layer with dendritic spread over 7× 7
spatial grids for different orientation selectivity configurations.

Comparing the spike triggers in Figure5-4, Figure5-5 and Figure5-6 specific

to orientation selectivity, it can be seen that the accuracy of orientation selectivity

improves significantly. Considering the spike triggers it can be inferred that the

RGC becomes more selective to coarser oriented features with an increase in den-

dritic spread whereas the midget RGCs are susceptible to fine features as well as

coarse features. Further to validate the accuracy improvement of larger RF over
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smaller RF, an oriented feature histogram for the three RFs 3× 3, 5× 5 and 7× 7

corresponding to midget RGC and parasol RGC has been compared and shown in

Figure5-7. To compute the orientation specificity of the midget and parasol RGCs

HOG features from the input image have been calculated and extracting the phase

angle information at every point of the input image. The phase angle map due

to gradient change is then convoluted with the RGC-specific binary information

extracted by the orientation-selective RGC layer. The process of convoluting the

orientation-selective RGC responses to the total phase map gives the phase angles

at the locations of extracted oriented features. The phase angle information in

the convoluted response is represented as a polar histogram to describe orientation

selectivity specificity. Detail of the process is shown in Figure4-21 in section 4.5.3.

(a) Oriented edge histogram at 0◦ and
180◦.

(b) Oriented edge histogram at 45◦ and
225◦.

(c) Oriented edge histogram at 90◦ and
270◦.

(d) Oriented edge histogram at 135◦ and
315◦.

Figure 5-7: Orientation selectivity histogram showing specificity of different
RGCs within grid sizes of 3× 3 neighbourhood for midget RGC and 5× 5, 7× 7
neighbourhood of parasol RGCs.

Shown in Figure5-7a, Figure5-7b, Figure5-7c and Figure5-7d are the ori-

ented edges and texture histogram extracted by orientation-selective RGCs. The
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(a) Sample input im-
age from BSDS500.

(b) Edge map for 3×
3 grid RF.

(c) Edge map for 5×
5 grid RF.

(d) Edge map for 7×
7 grid RF.

Figure 5-8: Edge map reconstructed from input image in Figure5-8a by the
orientation selective RGC network corresponding to different RF sizes.

histogram shows the bandwidth of orientation selectivity is much wider in midget

RGCs as compared to parasol RGCs. As the RF sizes increase, the orientation-

selective RGCs are much more precisely tuned to their respective oriented features

compared to their smaller counterparts. Their bandwidth behavior corresponding

to RF suggests multi-resolution nature where smaller RFs are susceptible to fine

as well as coarse features whereas larger RFs are sensitive toward coarser features.

5.3.4 Simulation Results

The described model is implemented using the interpreter ’Python 3.6’. Basic

image manipulations are performed with the ‘open CV’ and ‘scikit’ libraries, and

system of differential equations are computed with ‘scipy.integrate’ module. Nat-

ural images in ‘tif’, ‘png’ and ‘jpg’ are fed as inputs to the model. These natural

images are collected from the Berkeley segmentation database (BSDS500) consist-

ing of natural images. When these inputs are fed to the designed model, orienta-

tion selective RGC layers extracts oriented features corresponding to 0◦, 45◦, 90◦

and 135◦ orientation features in two opposite phases. Multiple stack of oriented

feature at ON-phase and OFF-phase are collected and max pool operation has

been performed at every spatial location to reconstruct the complete edge map.

Shown in Figure5-8a is the sample input and corresponding responses of

orientation selective RGC network with RF sizes of 3×3 Figure5-8b, 5×5 Figure5-
8c and 7 × 7 Figure5-8d grids. Responses of midget and parasol RGC network

corresponding to a RF is constructed from the two complementary phase 0◦, 45◦,

90◦ and 135◦ orientation selective responses and shown in Figure5-8b whereas
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larger RF within a grid size of 5 × 5 and 7 × 7 are shown in Figure5-8c and

Figure5-8d respectively. The ON phase and OFF phase responses of the sample

inputs are also shown in Table.5.1. Comparison of 3 × 3, 5 × 5 and 7 × 7 RF

responses shows clear indications of smaller RF networks being susceptible to fine

as well as coarser features whereas the larger RF networks being inclined more

toward much coarser features.

Table 5.1: Orientation selective ON RGC layer response at 0◦, 45◦, 90◦ and 135◦

orientation and OFF RGC layer response at 0◦, 45◦, 90◦ and 135◦ orientation in
scotopic vision corresponding to sample images in Figure5-8 respectively.

ON phase OFF phase︷ ︸︸ ︷ ︷ ︸︸ ︷

3
×

3
5
×

5
7
×

7

Response of midget and parasol RGC networks shows consistency with

respect to their selectivity of oriented features as seen in Table.5.1. Orientation

selective midget RGCs connected within a RF size of 3 × 3 grid picks up fine

textures of the tree, forests and mountains whereas RGCs connected to larger field

of 5× 5 and 7× 7 extracts boundaries of the objects within the scene. Detection

oriented elements in the larger RF generated edge map are significantly lower as

compared to the larger RF counterpart which is due to their sensitivity toward

coarser features. On the other hand smaller RFs are sensitive to fine features as

well as coarse feature and results in larger detection element density. Detected

element density of RFs are also susceptible to amount of oriented feature contents

in the input. More finer/coarser feature in input results in more oriented features

and vice versa. In case of inputs with mostly homogeneous regions results in sharp

bandwidth tuning whereas inputs with multiple objects and non-homogeneous

regions results in broader oriented bandwidth. Similar responses can be seen in

some of the input responses presented in Figure5-9.
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Figure 5-9: Edge map constructed from orientation selective midget and parasol
RGC layers corresponding to three different RF sizes showing multi-resolution
behavior with midget RGCs replicating high resolution texture as well as boundary
estimation and larger RFs extracting coarser boundary maps.
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In case of input image shown in Figure5-9(a), the natural image contains

multiple ‘zebra’ with a blurred background and fine grass textures. The midget

RGC network with 3×3 RF, being sensitive to fine as well as coarse features, picks
up fine features of grass as well as shadows of ‘zebras’ along with coarse black and

white strips and boundaries of the zebra. But looking into the responses of parasol

cell with 5× 5 and 7× 7 RF sizes, they fails to detect fine textures of grass but at

the same time it extracts accurate information about the stripes, their boundaries

and traces of their shadows. Similar responses can be seen in Figure5-9(b) and

(c) responses.

5.4 Segmentation & Boundary Estimation

Framework

Primate visual cortex consists of collections of unique RGC morphology arranged

in patterns to extract meaningful information from the input. Small neurons with

moderate dendritic arborization spreading over small regions called as the midget

cells, projects to the parvocellular region via parallel pathways. On the other hand

neurons with larger dendritic field and arborization connects to bipolar region over

a larger spatial neighborhood projects the extracted information to the magno-

cellular region. These two regions are isolated from each other and suspected to

play important role in visual functions. Parvocellular region contains information

corresponding to smaller RFs processed by midget RGCs such as fine textures,

complex edge information and features that plays an important role in pattern

recognition and identification. Contrary to the parvocellular region, the magno-

cellular region contains information from parasol cell forming larger RFs such as

object boundary and contours that plays an important role in object detection,

object tracking and motion estimation. Connectome specificity of RGCs with an-

tagonist BC configuration reveals the high pass filtering nature. Midget cells with

complementary BC results in edge and texture feature extraction whereas parasol

cell under similar consideration extracts coarser edges. But apart from RGCs con-

nections with complementary BCs, connectivity with only ON-BCs or only OFF

bipolar has also been reported and functional significance of such connectivity

configuration is yet to be explored.
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5.4.1 Model Architecture

The morphology of parasol cells and midget cells that project information to the

magnocellular and parvocellular layers of the visual cortex via specialized parallel

pathways have long been known [102, 265, 280]. Identifying the anatomical and

functional relationships between the component neurons at consecutive points in

the path is a crucial problem in understanding the organization and function of

parallel visual pathways [282, 283]. Our model employs unique parasol RGCs

connected to sympathetic BCs and nonlinear neural electrophysiology in driving

scene segmentation functionalities. Natural images in ‘tiff,’ ‘png,’ and ‘jpg’ for-

mats are fed to the model, converted to spatiotemporal square pulses by BCs. A

temporal signal with an offset of 10 ms, pulse width of 240 ms, and total temporal

length of 350 ms is generated by BCs considering the average response time of

primates’ vision. The amplitude of the temporal signal is scaled proportionally to

the amplitude of signal intensity within the RGC sensitivity range of 1024 nA to

1016 nA. These spatiotemporal signals are fed to the scene segmentation network

that generates a segmentation map of the visual stimuli sent to the magnocellu-

lar layer. The OS-RGC layer in the magnocellular region then extracts the edge

boundary from the segmented image. Details of the RGC morphology and connec-

tome specificity with the BC, as well as boundary estimation in the visual cortex,

is discussed in the section 5.4.2 and section 5.4.3 follows.

5.4.2 The Morphology

The proposed framework emphasizes the computational role of unique neuron

morphology, particularly parasol RGC, in shaping visual scene segmentation and

object boundary estimation. A moderate RF size has been taken [271, 284, 285]

to optimize the computational complexity of the model and the morphology is

shown in Figure5-10. RGC morphology in Figure5-10a is used for the scene seg-

mentation model, and RGC morphology in Figure5-10b is used for the boundary

estimation model where the junctions, cell body synapses, and dendritic fibers are

color encoded. The similar color at the synapses suggests the connection of RGC

solely with ON-BCs. Junction and soma are modeled as summing nodes that

perform temporal summation and re-encoding of cumulative incoming signals.

Re-encoding at localized AIC [137, 141] has been modeled using the Izhikevichs’
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(a) Designed parasol RGC morphology
used for scene segmentation.

(b) Designed parasol RGC morphology
used for boundary estimation.

Figure 5-10: Parasol RGC morphologies used in striate cortex and magnocellular
layer.

membrane model and is given as

C
dv

dt
= k ((v − vr) (v − vt)− u+ I) , if v ≥ vt (5.1)

du

dt
= a [b (v − vr)− u] , v ← c, u← u+ d (5.2)

where v is the membrane potential with I as the stimuli to the neurons, u as the

recovery current, vr as the resting membrane potential and vt as the threshold

potential. Different spiking activity such as regular spiking, chattering, intrin-

sic bursting are controlled by parameters a, b, c, d, k, C. Use of Izhikevichs’

membrane model [286, 287] in our proposed model is because of its low com-

putational complexity and its robustness in mimicing mammelian neurodynamics.

The boundary estimation model employs a combination of ‘bursting’ and ‘chatter-

ing’ membrane dynamics whereas the segmentation model employs only ‘bursting’

membrane model.

The passive dendritic branches in the RGC morphology facilitates decre-

mental conduction of propagating signal. Decremental conduction in passive fiber

has been modeled using equations

IinTotal = It + Iout (5.3)

IinTotal = (Vout−Vin)
Rlon

(5.4)

It + Cm
dVout

dt
+GL (Vout − EL) = 0 (5.5)

from the modeling work. Vin is the action potential generated by the localized

active region, Vout is the membrane potential at the junction with initial membrane
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(a) Gradient nor-
malization at 0◦.

(b) Gradient nor-
malization at 45◦.

(c) Gradient nor-
malization at 90◦.

(d) Gradient nor-
malization at 135◦.

Figure 5-11: Parasol RGC connectivity with ON-BCs for normalizing gradient
change along specific orientations.

potential equals to resting membrane potential, Cm is the equivalent capacitance

of fiber, Rlon is the axial resistance, GL is the membrane leakage conductance EL

is the equilibrium potential due to the leakage ion channels, IinTotal is the total

propagating current toward the nodes/ soma, It is the transmembrane current due

to membrane dynamics, Iout is the total delivered current.

5.4.3 Connectome Specificity

Connectome specificity refers to the connectivity of parasol RGC with BCs in the

context of the proposed framework. Shown in Figure5-10a are the excitatory type

connectivity patterns of RGC morphology Figure5-10a with ON BC which are con-

nected in oriented patterns [186, 288–291]. A value of 1 in the connectivity matrix

shown in Figure5-11 corresponds to excitatory connectivity with the ON-BC; the

value of 2 in the connectivity matrix suggests two distal dendrites connected to the

ON-BC from opposite parent dendrites and value of 0 in the connectivity matrix

suggests no connectivity. Scene segmentation type RGC morphologies connected

in oriented pattern normalize the small gradient change corresponding to fine fea-

tures and encode them in terms of their spiking frequency. Four orientation bands

that optimize the small local gradient change corresponding to a specific orienta-

tion are then passed through the max-pool operator to generate the segmentation

type response.

Segmentation type images are then fed to the boundary detection network

to extract the boundary information. With the minor gradient corresponding

to fine features removed, when the segmented response is passed through the

OS-RGC network, the network tracks the primary gradient corresponding to the

boundary of objects. The boundary estimation network employs the parasol RGC

shown in Figure5-10b with excitatory as well as inhibitory connectivity with spe-

cific oriented patterns shown in Figure5-12.

100



5.4. Segmentation & Boundary Estimation Framework

(a) Orientation se-
lectivity at 0◦.

(b) Orientation se-
lectivity at 45◦.

(c) Orientation se-
lectivity at 90◦.

(d) Orientation se-
lectivity at 135◦.

Figure 5-12: Connectivity matrix for boundary detection type RGC shown in
Figure5-10b with segmentation type response with orientation specificity to 0◦,
45◦, 90◦ and 135◦.

A value of 1 in the connectivity matrix suggests excitatory connectivity

with RGC, a value of −1 in the connectivity matrix suggests inhibitory connectiv-

ity, and 0 suggests no connectivity. These connectivity patterns detect gradient

variation corresponding to 1s and −1s and start firing at a high frequency when

the gradient is very high.

5.4.4 Simulation Results

The suggested model was simulated using the Python 3.6 interpreter, with pack-

ages like ‘openCV’ and ‘scikit’ for basic image operations and the ‘scipy.integrate’

package for solving differential equations. For plotting reaction images and other

plot generations, the ‘matplotlib’ package was utilized in a similar way. Natural

images in the ‘tif,’ ‘png,’ and ‘jpg’ formats were used as input to the suggested

model, which is employed to stimulate photoreceptor cells, and image data were

collected from the Berkeley segmentation database (BSDS500). Shown in Figure5-

13 and Figure5-14 are some of the input images fed to the proposed model and

their corresponding segmented responses and boundary and contour estimation

responses generated by the model.

Shown in Figure5-13 and Figure5-14 (a), (b), (c), (d), (e) and (f) are the

input images fed to the BCs that are being encoded into segmented images recon-

structed calculating the spiking frequency of the neurons. The RGCs connected to

the ON and OFF-BCs encodes the different values corresponding to a neighbor-

hood into spiking frequency depending on illumination strength and homogeneity

and in-homogeneity of the region. ON RGC network and OFF RGC networks are

complementary to each other both concentration on features in the brighter and

darker illumination respectively. Max-pool operation from the two layers gives us

the complete ‘Segmented Layer’ image encoded by the RGC network. These re-
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Figure 5-13: Parasol RGC network connected to ON-BC network and OFF-
BC network showing segmentation type behavior. Boundary and contour map
reconstruction type behavior due to orientation selectivity type network connected
to parasol RGC layers with sympathetic connectivity with ON and OFF-BC layer
that are being projected onto magnocellular region.
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sponses are then fed to OS parasol RGC network that gives the ‘Boundary mapper’

responses corresponding to the boundary and contour estimation.
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Figure 5-14: Parasol RGC network connected to ON-BC network and OFF-
BC network showing segmentation type behavior. Boundary and contour map
reconstruction type behavior due to orientation selectivity type network connected
to parasol RGC layers with sympathetic connectivity with ON and OFF-BC layer
that are being projected onto magnocellular region.

As can be seen from the ‘Segmented Layer’ response of Figure5-13, Fig-

ure5-14 (b) (c) and (d), the model successfully maps most of the boundary regions

of the object, whereas responses corresponding to Figure5-13, Figure5-14 (a) (e)

and (f) show some texture extraction which is due to the RF size of parasol RGCs

in the segmentation layer. Increasing the RF size of the segmentation layer will

remove most of the local gradient change making the boundary region more promi-

nent. Thus need for a larger RF projecting to the magnocellular region for better

normalization of fine textures seems necessary. However, due to the computa-

tional complexity of the model, larger RFs are not being considered and remain

to be interset of our future works. Table .4.1 lists the model parameters for mod-

elling the passive membranes’ low pass features as well as Izhikevich’s membrane

dynamics [286, 287]. Izhikevich’s membrane model has been included to imitate

the behavior of a human’s visual cortex due to its capacity to emulate Ca2+ ion

channel dynamics.
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5.5 Summary and Future Remarks

The proposed model gives a clear understanding of the type of feature extracted

by parasol RGC networks contrasting to a midget RGC network under a similar

model configuration. The model shows midget RGCs susceptibility to fine fea-

tures whereas parasol RGC networks specificity toward coarser features. Midget

and parasol cells form the basis of RF sizes depending on cells’ dendritic spread

and arborization. When midget and parasol cells are organized with configu-

ration specific to orientation selective RGC layers, show multiresolution feature

extraction responses. Midget RGC networks can extract fine features from the

scene whereas parasol RGCs with increasing dendritic spread imitates their coarser

counterparts. Such features from fine to coarser scales are projected onto the par-

vocellular region for efficient identification and learning from visual scenes. This

work gives a clear understanding of the need for multiple classes of RGCs depend-

ing on their dendritic spread within the human visual cortex. The proposed model

with parasol RGCs, when connected with only ON-BCs or OFF-BCs with minor

connectivity modifications, gives an insight into the conversion of natural scenes

in the primary visual cortex layer that later helps form object boundaries and

contour. Even though the exact specificity of RGCs connection with other inter

neurons is not yet well explored for boundary and contour estimation due to the

unavailability of measuring devices, the proposed methodology has been built with

reference to in-silico experimentation with connections specifically to either ON or

OFF-BCs. These parasol RGC networks connected to BCs processes information

corresponding to the size of RF. Connecting the network solely to the ON-type

of BCs gives rise to segmentation-type behavior with a relatively moderate RF.

The OS-RGC layer connected to segmentation-type responses gives rise to object

boundary and contour detection, which is one of the significant features projected

onto the magnocellular region of the visual cortex by parasol RGCs. Thus the

proposed model gives insight into object boundary estimation, which later helps

in complex function formation such as object tracking, object motion, and depth

estimation. The proposed multi-resolution can be further implemented in multiple

stacks of simple and complex cell learning networks in the parvocellular region to

replicate similar responses in primates’ visual cortex giving a better perspective

of scale and shift invariant learning process. On the other hand, the boundary es-

timation framework can be used to replicate the magnocellular responses shaping

complex function formation such as motion and depth perception in primates.
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