Contents		Page No.
Dedication		
Abstract		i-iv
Declaration	1	v
Certificate		vi
Acknowled	gements	vii-viii
List of Tab	les	xvii-xviii
List of Figu	ires	xix-xxiii
List of Abb	previations	xxiv-xxviii
Chapter 1	Introduction	1.1-1.25
1.1	Genus of banana	1.1
1.2	Global scenario of banana	1.1
1.3	Banana blossom	1.2
1.4	Biochemical and phytochemicals	1.3
	1.4.1 Nutrition and biochemical	1.3
	1.4.2 Phenolic compound	1.6
	1.4.3 Terpenoids	1.6
	1.4.4 Alkaloids	1.7
	1.4.5 Volatile compounds	1.7
	1.4.6 Antioxidants	1.7
1.5	Medicinal properties of bhimkol blossom	1.8
1.6	Antidiabetic activity	1.10
1.7	Extraction of Phytochemicals	1.10
	1.7.1 Conventional extraction	1.11
	1.7.2 Ultrasound assisted extraction	1.11
	1.7.3 Supercritical fluid extraction	1.11
1.8	Characterization and identification of compounds	1.12
	1.8.1 Spectroscopy	1.12
	1.8.2 Chromatography	1.12
1.9	Encapsulation of phytochemicals	1.13
1.10	Enrichment of phytochemicals of a food system	1.14
1.11	Hypothesis	1.14

Table of Contents

1.12	Gap of research	1.15
1.13	Objectives	1.16
	References	1.16
Chapter 2	To identify the phytochemical contents of bhimkol	2.1-2.32
	(Musa balbisiana) banana blossom and optimization of	
	their extraction using supercritical fluid extraction	
	(SCFE) and ultrasound assisted extraction (UAE)	
2.1	Introduction	2.1
2.2	Materials and methods	2.2
	2.2.1 Chemicals and reagents	2.2
	2.2.2 Plant material	2.2
	2.2.3 Methods for extraction of phytochemicals	2.3
	2.2.3.1 Conventional solid-liquid extraction	2.3
	2.2.3.2 Ultrasound-assisted extraction (UAE)	2.3
	2.2.3.3 Supercritical fluid extraction (SCFE)	2.4
	2.2.4 Extraction yield	2.7
	2.2.5 Determination of responses (TPC and antioxidant	2.7
	activity)	
	2.2.6 Determination of phytochemicals	2.8
	2.2.6.1 Phytochemicals estimation by the	2.8
	conventional method	
	2.2.6.1.1 Total flavonoid content (TFC)	2.8
	2.2.6.1.2 Tannin	2.8
	2.2.6.1.3 Phytate	2.9
	2.2.6.1.4 Cyanogenic glycosides	2.9
	2.2.6.1.5 Alkaloids	2.10
	2.2.6.2 HPLC analysis	2.10
	2.2.6.3Determination antioxidant activity in major	2.11
	phytochemical detected	
	2.2.7 Statistical analysis and optimization of extraction	2.11
2.3	Results and discussion	2.12
	2.3.1 Extraction yield	2.12

	2.3.2 Optimization and influence of extraction parameters	2.12
	on responses	
	2.3.2.1 Ultrasound-assisted extraction (UAE)	2.19
	2.3.2.2 Supercritical fluid extraction (SCFE)	2.19
	2.3.3 Comparison of extraction methods on the recovery	2.21
	of TPC and antioxidant activities	
	2.3.4 Phytochemical determination by conventional	2.23
	methods	
	2.3.5 Phytochemical determination by HPLC at optimized	2.24
	condition	
	2.3.6 Antioxidant activity of major phytochemicals	2.26
	detected by HPLC	
	2.3.7 Plausible reasons for different phytochemical values	2.27
2.4	Conclusion	2.28
	References	2.28
Chapter 3	To model nachos from bhimkol blossom by using an	3.1-3.29
	artificial intelligence approach	
3.1	Introduction	3.1
3.2	Materials and methods	3.2
	3.2.1 Raw materials and chemical reagents	3.2
	3.2.2 Nutritional and phytocomponent analysis	3.3
	3.2.2.1 Proximate and other phytocomponents	3.3
	3.2.2.2 Vitamins	3.3
	3.2.2.3 GC-MS analysis of volatile phytochemicals	3.4
	and fatty acids	
	3.2.3 Antioxidant activities	3.4
	3.2.3.1 2,2- diphenyl-1-picrylhydrazyl (DPPH) assay	3.4
	3.2.3.2 Ferric reducing ability of plasma (FRAP)	3.4
	assay	
	3.2.3.3 2,2'-azino-bis (3-ethylbenzothiazoline-6-	3.5
	sulfonic acid) (ABTS) assay	
	3.2.4 Antibacterial activities	3.5

	3.2.4.1 Preparation of bacterial culture	3.5
	3.2.4.2 Disc diffusion method	3.5
	3.2.5 Formulation of nachos by optimal mixture design	3.5
	3.2.6 Process of making nachos	3.7
	3.2.7 Sensory analysis of nachos	3.8
	3.2.8 Texture analysis	3.8
	3.2.9 ANN model	3.9
	3.2.10 Particle swarm optimization	3.10
	3.2.11 Principal component analysis	3.11
3.3	Results and discussions	3.11
	3.3.1 Nutritional and phytocomponents	3.11
	3.3.1.1 Proximate and phytocomponents	3.11
	3.3.1.2 Vitamins	3.12
	3.3.1.3 GC-MS analysis of volatile phytochemicals	3.13
	and fatty acids	
	3.3.2 Antioxidant activities	3.17
	3.3.3 Antibacterial activities	3.18
	3.3.4 Sensory analysis of Nachos	3.19
	3.3.5 Optimization by ANN-PSO	3.21
	3.3.6 Principal component analysis of nachos	3.23
	3.3.7 Antioxidant activities of nachos	3.25
3.4	Conclusion	3.25
	References	3.25
Chapter 4	To purify and characterize the major phytochemicals	4.1-4.13
	from bhimkol blossom	
4.1	Introduction	4.1
4.2	Materials and methods	4.1
	4.2.1 Chemicals and reagents	4.1
	4.2.2 Isolation and purification of quercetin	4.1
	4.2.2.1 Extraction of phytochemicals	4.2
	4.2.2.2 Collection of preparative from column	4.2
	chromatography	

	4.2.2.3 Isolation and purification of phytochemical	4.3
	rich fraction from RP-HPLC	
	4.2.3 Characterization of isolated phytochemical rich	4.4
	fraction	
	4.2.3.1 FTIR	4.4
	4.2.3.2 NMR	4.4
	4.2.3.3 GC-MS	4.4
4.3	Results and discussions	4.5
	4.3.1 Collection of preparative from bhimkol blossom	4.5
	extract (BBE)	
	4.3.2 Isolation and purification of quercetin rich fraction	4.5
	from HPLC	
	4.3.3 Characterization of isolated quercetin rich fraction	4.7
	4.3.3.1 NMR	4.7
	4.3.3.2 FTIR	4.8
	4.3.3.3 GC-MS characterization of volatile	4.9
	compounds	
4.4	Conclusions	4.11
	References	4.11
Chapter 5	To study encapsulation of purified phytochemicals and	5.1-5.23
	its <i>in vitro</i> bioavailability	
5.1	Introduction	5.1
5.2	Materials and methods	5.2
	5.2.1 Chemicals and reagents	5.2
	5.2.2 Sample preparation	5.2
	5.2.3 Encapsulation	5.2
	5.2.4 Optimization of encapsulation	5.2
	5.2.5 Physicochemical characterizations of microbeads	5.5
	5.2.5.1 Encapsulation efficiency and loading capacity	5.5
	5.2.5.2 Release profiles of quercetin from	5.6
	microbeads	
	5.2.5.3 Estimation of release efficiency and mean	5.6

	release time of quercetin	
	5.2.5.4 In vitro bioavailability study of microbeads	5.7
	5.2.5.5 FTIR and XRD spectra of microbeads	5.8
	5.2.6 Morphology of microbeads	5.8
	5.2.6.1 Scanning electron microscopy	5.8
	5.2.6.2 Particle size distribution of microbeads	5.8
	5.2.6.3 Molecular interataction of microbead forming	5.8
	complex	
	5.2.6.4 Storage study of microbeads	5.8
5.3	Results and discussions	5.9
	5.3.1 Optimization of encapsulation	5.9
	5.3.2 Characterization of microbeads	5.11
	5.3.2.1 Release profiles of quercetin from	5.12
	microbeads	
	5.3.2.2 In vitro bioavailability study of microbeads	5.13
	5.3.2.3 FTIR and XRD characterization of	5.14
	microbeads	
	5.3.3 Morphology of microbeads	5.16
	5.3.4 Particle size distribution	5.17
	5.3.5 Molecular interataction of microbead forming	5.18
	complex	
	5.3.6 Storage study of microbeads	5.19
5.4	Conclusions	5.19
	References	5.20
Chapter 6	To develop phytochemical enriched food product by	6.1-6.19
	incorporation of encapsulated phytochemical	
	compounds and its properties	
6.1	Introduction	6.1
6.2	Materials and methods	6.2
	6.2.1 Chemicals and reagents	6.2
	6.2.2 Sample preparation	6.2
	6.2.3 Cytotoxicity assessment by MTT assay	6.2

	6.2.4 <i>In vivo</i> acute toxicity study	6.2
	6.2.4.1 Oral administration of BBE	6.2
	6.2.4.2 Biochemical, histopathology, and	6.3
	hematological study	
	6.2.5 Preparation of ready to cook soup mix (RTC-SM)	6.4
	6.2.6 Incorporation of microbeads containing isolated	6.5
	quercetin rich fraction (BBQM) in bhimkol blossom	
	powder (BBP) RTC-SM	
	6.2.7 Effect of BBQM incorporation in sensory	6.5
	parameters of BBP RTC-SM soup	
	6.2.8 Sensory analysis	6.5
	6.2.9 Product component analysis	6.5
	6.2.10 Determination of the antioxidant activity of RTC-	6.5
	SM	
6.3	Results and discussions	6.6
	6.3.1 Cytotoxicity assessment by MTT assay	6.6
	6.3.2 In vivo acute toxicity study	6.7
	6.3.3 Incorporation of BBQM in BBP RTC-SM	6.10
	6.3.4 Effect of BBQM incorporation in sensory	6.11
	parameters of BBP RTC-SM soup	
	6.3.5 Product component analysis	6.13
	6.3.6 Antioxidant activity of RTC-SM	6.16
6.4	Conclusion	6.17
	References	6.17
Chapter 7	To study antidiabetic properties of phytochemical	7.1-7.19
	extract of bhimkol blossom	
7.1	Introduction	7.1
7.2	Materials and methods	7.2
	7.2.1 Raw materials and chemical reagents	7.2
	7.2.2 Preparation of BB extract	7.2
	7.2.3 In vitro enzyme inhibition activities	7.3
	7.2.3.1 a-Amylase inhibition activity	7.3

	7.2.3.2 a-Glucosidase inhibition activity	7.4
	7.2.3.3 DPP-IV inhibition activity	7.4
	7.2.4 Glucose uptake by L6 Cells	7.5
	7.2.5 Selection of Wister rats	7.5
	7.2.6 <i>In vivo</i> antidiabetic study	7.6
	7.2.6.1 Induction of diabetes in Wister rats	7.6
	7.2.6.2 Oral administration of BBE	7.6
	7.2.6.3 Investigation of the effect of BBE dose in	7.6
	Wister rats	
	7.2.7 Statistical analysis	7.7
7.3	Results and discussions	7.7
	7.3.1 In vitro enzyme inhibition activities	7.7
	7.3.2 Glucose uptake by L6 Cells	7.9
	7.3.3 <i>In vivo</i> antidiabetic study	7.9
	7.3.3.1 Effect of BBE on blood glucose of diabetic	7.9
	rats	
	7.3.3.2 Effect of BBE on body weights of diabetic	7.11
	and non-diabetic rats	
	7.3.3.3 Glucose tolerance test (GTT) and insulin	7.12
	tolerance test (ITT)	
7.4	Conclusions	7.14
	References	7.15
Chapter 8	Conclusions	8.1-8.8
8.1	Conclusions	8.1
8.2	Future scope of the present investigation	8.7
8.3	Research publications	8.7
	8.3.1 Journal publications	8.7
	8.3.2 Under-process / to be communicated	8.7
8.5	Training/ workshop attended	8.8