Dedicated to

My Beloved Parents Mr. Kalyan Chandra Das and Mrs. Jatila Das

DECLARATION

I hereby declare that the thesis entitled "**Development of a probiotic enriched bottle gourd** (*Lagenaria siceraria*) beverage from local cultivar of Assam and evaluation of its health benefits", submitted to the School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Food Engineering and Technology, is a record of a bonafide research work accomplished by me under the supervision of Professor Sankar Chandra Deka. Any texts, figures, theories, results or designs that are not of my own devising are appropriately referenced in order to give due credit to the original author(s). All the sources of assistance have been assigned due acknowledgement. I also declare that neither this work as a whole nor a part of it has been submitted to any other universities or institute for any degree, diploma, associateship, fellowship or any other similar title or recognition.

Date:

Place:

(Manas Jyoti Das)

Reg. No. TZ189895 of 2018

Prof. Sankar Chandra Deka, FRSC, FRSB Department of Food Engineering and Technology School of Engineering Tezpur University Email: sankar@tezu.ernet.in Phone: 03712-26-7100

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "**Development of a probiotic enriched bottle gourd** (*Lagenaria siceraria*) beverage from local cultivar of Assam and evaluation of its health benefits" submitted to the Department of Food Engineering and Technology, School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Tezpur University is a record of research carried out by Mr. Manas Jyoti Das under my supervision and guidance.

All the help received by him from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

(Prof. Sankar Chandra Deka)

Date: Place:

Acknowledgements

My thesis entitled "Development of a probiotic enriched bottle gourd (*Lagenaria siceraria*) beverage from local cultivar of Assam and evaluation of its health benefits" would not have been possible without the generous help and support of a good number of people.

First, I would like to express my sincere gratitude to my mentor and guide, Prof. Sankar Chandra Deka for enlightening me with the first glance of research, his guidance, patience, motivation, and continuous support towards research activities.

I will be ever thankful to Prof. Dhruba Kumar Bhattacharyya, The Vice-Chancellor, Tezpur University for providing me permission and necessary facilities to carry out and submit the research work.

I would like to thank the members of my Doctoral Committee, Prof. Manabendra Mandal, and Prof. Raj Kumar Duary, for their insightful comments and encouragement which incented me to widen my research from various perspectives.

I express my sincere thanks to all my DRC members, faculty and staff of the Department of Food Engineering and Technology for their constant support, valuable suggestions, and insights into my research. These suggestions and insights have helped me in many ways in articulating and developing the thesis.

I sincerely acknowledge Prof. Anand Ramtake, Prof. Suvendra Kumar Ray, Dr. Suman Dasgupta, Dept. of MBBT Tezpur University and Dr. Pranabesh Chattophadyay, Defence Research Laboratory, Tezpur for providing me the access to their laboratories and research facilities.

I am indebted to the Department of Biotechnology, Govt. of India, and Tezpur University for providing financial assistance in the form of externally funded projects and fellowships. I would like to thank Quality Control Laboratory, Tezpur University, SAIC, Tezpur University, Defence Research Laboratory, Tezpur, India for carrying out analysis of my samples.

I would specially like to thank Dr. Arup Jyoti Das, Dr. Debananda Gogoi, Dr. Dipanjan Banerjee, Dr. Sourav Chakraborty and Mr. Amartya Banerjee without whose precious support it would not be possible to conduct this research.

I thank my fellow research scholars and lab mates in particular, Lopa Mudra Sarma, Bhaskar Jyoti Kalita, Duyi Samyor, Pallab Borah, Kumar Kashyap Hazarika, Pitambar Baishya, Kuldip Gupta, Niraj Singh, Pankaj Gogoi, Raju Ram Boro, Rewrewa Narzary, Sanjib Gogoi, Barkhang Brahma, Singamayum Khurshida, Yesmin Ara Begum, KCS Mangang, Maibam Baby Devi, Urbashi Neog, Sangita Muchahary, Hemanta Chutiya, Payel Dhar, Tapasya Kumari, Kapil Deb Nath, Nun Haokip, Preeti Sarkar, GVS Bhagyaraj, Pritam Das, Taufiqul Islam, Pankaj Lochan Sarma, Kristi Kaberi Borah, Archana Sinha, Bidyut Sarania, Sanghita Das, Pollopalli Subramanyam, Pakter Niri, Ajay Kakoti, Parikshit Das, Vicky Sarma for the stimulating discussions and for all the fun we have had in the last few years.

I would like to acknowledge Mr. Jitu Mani Das, Assistant Librarian, Tezpur University for all his help during my thesis preparation.

I thank Mrs. Nijara Deka for her motherly care and assistance from the very beginning.

Finally, I thank my parents, my mahideu, my bhonti for all their support and the Almighty for giving me the strength and will to carry out the research work and write my thesis.

List of Tables

Table No.	Captions	Page No.
Table 3.1	Experimental design and data for response surface analysis.	22-23
Table 3.2	ANOVA tables of the fitted model for the response variables. 31	
Table 3.2.1	Cell Viability 31	
Table 3.2.2	TPC	32
Table 3.2.3	Terpenoids	33
Table 3.2.4	DPPH	34-35
Table 3.3	Optimized condition for the pasteurization technique.	43
Table 3.4	Statistical and model parameters of death and reaction order	44
	kinetics.	
Table 3.5	Physicochemical and functional properties of MW-US	45
	treated juice as compared to conventionally processed and	
	raw juice.	
Table 3.6	HPLC analysis of phenolic compounds of MW-US treated	46
	juice as compared to conventionally processed and raw juice.	
Table 3.7	Amino acids composition of MW-US treated juice as	47-48
	compared to conventionally processed and raw juice. (%,	
	w/w).	
Table 3.8	Water soluble vitamins in the MW-US treated juice as	48
	compared to conventionally processed and raw juice.	
Table 3.9	Fat soluble vitamins in the MW-US treated juice as compared	49
	to conventionally processed and raw juice.	
Table 3.10	DPPH free radical scavenging activity of MW-US treated juice as	50
	compared to conventionally processed and raw juice.	
Table 3.11	Total color change in the MW-US treated juice as compared	52
	to conventionally processed and raw juice.	
Table. 4.1	The relative organ weight of rats treated with a single dose of	79
	lyophilized Lagenaria siceraria juice for 14 days in acute oral	
	toxicity study	

Table. 4.2	Effect of lyophilized Lagenaria siceraria juice on	79-80	
	haematological parameters in acute oral toxicity study		
Table. 4.3	Effect of lyophilized Lagenaria siceraria juice on biochemical	80	
	parameters in acute oral toxicity study		
Table. 4.4	The effect of lyophilized Lagenaria siceraria juice on body 84		
	weight of rats (g) at different days during the sub-acute oral		
	toxicity study.		
Table. 4.5	The relative organ weight of rats treated with different doses	84	
	of the lyophilized Lagenaria siceraria juice for 28 days of sub-		
	acute oral toxicity study.		
Table. 4.6	Effect of the lyophilized Lagenaria siceraria juice on	85-86	
	haematological parameters in sub-acute oral toxicity study.		
Table. 4.7	Effect of the lyophilized Lagenaria siceraria juice on	86	
	biochemical parameters in subacute oral toxicity study		
Table 5.1	Similarity values of bottle gourd juice samples and quality	110	
	attributes in general		
Table 5.2	Ranking of juice samples and quality attributes in general	111	
Table 6.1	Growth characteristics at different pH, Nacl concentration and	129	
	temperature		
Table 6.2	Acid tolerance	130	
Table 6.3	Bile Tolerance	130	
Table 6.4	Susceptibility of LAB strains to different antibiotics	131	

List of Figures

Figures No.	Captions	Page No.
Figure 3.1	Microwave and ultrasound processing of Lagenaria	20
	siceraria juice	
Figure 3.2	Effect of interaction of (u) Microwave power and	37-38
	microwave temperature, (v) Microwave power and	
	ultrasound amplitude percentage, (w) Microwave	
	power and ultrasound exposure time, (x) Microwave	
	temperature and ultrasound amplitude percentage, (y)	
	Microwave temperature and ultrasound exposure time,	
	(z) Ultrasound amplitude percentage and ultrasound	
	exposure time on cell viability.	
Figure 3.3	Effect of interaction of (u) Microwave power and	39
	microwave temperature, (v) Microwave power and	
	ultrasound amplitude percentage, (w) Microwave	
	power and ultrasound exposure time, (x) Microwave	
	temperature and ultrasound amplitude percentage, (y)	
	Microwave temperature and ultrasound exposure time,	
	(z) Ultrasound amplitude percentage and ultrasound	
	exposure time on total phenolic contents of the juice	
Figure 3.4	Effect of interaction of (u) Microwave power and	40-41
	microwave temperature, (v) Microwave power and	
	ultrasound amplitude percentage, (w) Microwave	
	power and ultrasound exposure time, (x) Microwave	
	temperature and ultrasound amplitude percentage, (y)	
	Microwave temperature and ultrasound exposure time,	
	(z) Ultrasound amplitude percentage and ultrasound	
	exposure time on total terpenoid contents of the juice	
Figure 3.5	Effect of interaction of (u) Microwave power and	42
	microwave temperature, (v) Microwave power and	

xvi

ultrasound amplitude percentage, (w) Microwave

power and ultrasound exposure time, (x) Microwave temperature and ultrasound amplitude percentage, (y) Microwave temperature and ultrasound exposure time, (z) Ultrasound amplitude percentage and ultrasound exposure time on DPPH free radical scavenging activity of the juice

- Figure 3.6 Comparison between experimental and predicted values 44 for (a) cell viability (b) TPC (c) DPPH and (d) terpenoids
- Figure 3.7Antioxidant activity of MW-US processed juice, values51are mean \pm S.D. of triplicate determination
- Figure 3.8Storage study of MW-US processed juice (in terms of
DPPH free radical scavenging activity), values are mean
 \pm S.D. of triplicate determination.53
- Figure 3.9 Storage study of MW-US processed juice (in terms of 53 pH values), values are mean ± S.D. of triplicate determination
- Figure.4.1 Certificate from Animal Ethical Committee, Committee 65 for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) and approved by Institutional animal Ethical Committee of Defence Research Laboratory, Tezpur, Assam India.
- Figure. 4.2Male wistar rats (*Rattus norvegicus*)66Figure. 4.3Male wistar rats (*Rattus norvegicus*) for anti-diabetic72study.study.50
- Figure. 4.4 The blood glucose levels checked from the tail vein of 73 Male wistar rats (*Rattus norvegicus*)
- Figure. 4.5 (a) Effect of different concentration of lyophilized 75-76 *Lagenaria siceraria juice* on % inhibition of haemolysis of erythrocytes incubated in hypotonic solution. (b)
 Picture representing haemolysis after incubated with lyophilized *Lagenaria siceraria* juice (0-100 µg/ml)

w.r.t. positive control (Triton X-100) (n=3). Reading at 535 nm

- Figure. 4.6 Results of cell viability assay of (a) LS (*Lagenaria siceraria*) in HPBMCs in 0-100 μ g/ml for 24 h measured by MTT based method. The viability is calculated as % of control and finally expressed as Mean±SD (n=3). Histopaq buffer was used for separation of PBMCs. Human PBMC were viable at a tested dose 5 μ g, 10 μ g, 25 μ g, 50 μ g and 100 μ g per ml of solution for lyophilized *Lagenaria siceraria* juice incubated for 24 h.
- Figure. 4.7 Results of cell viability assay of lyophilized *Lagenaria* siceraria juice in THP-1 in 0-100 μg/ml for 24 h measured by MTT based method. The viability is calculated as % of control and finally expressed as Mean±SD (n=3).
- Figure. 4.8(a) Wistar rats' organs preserved in a fixation medium
of 10% buffered formalin for histopathological study.
 - (b) The organ paraffin blocks.
 - (c) The microtome cut organ paraffin section (arrow showing section of kidney).
 - (d) The organ sections stained with haematoxylin and eosin, and processed for light microscope
- Figure. 4.9 Histopathological examination of Liver and Kidney of control and treated rats of the acute oral toxicity study
 (a). Control group liver section showing central vein
 (b). Liver section of lyophilized *Lagenaria siceraria* juice treated group showing central vein
 (c). Control group liver section showing portal vein
 (d). Liver section of lyophilized *Lagenaria siceraria* juice treated group showing portal vein
 - (e). Control group kidney section

77

78

81

82

(f). Lyophilized *Lagenaria siceraria* juice treated group kidney section

Figure. 4.10 Histopathological examination of Liver and Kidney of 87 control and lyophilized Lagenaria siceraria juice treated rats (1000mg/kg) of the sub-acute oral toxicity study (a). Control group liver section showing central vein 88 Figure. 4.11 Inhibition of α -amylase enzyme activity Figure. 4.12 Inhibition of α -Glucosidase enzyme activity 89 Inhibition of DPP4 enzyme by different concentration 89 Figure. 4.13 of Lagenaria siceraria juice Figure. 4.14 Insulin mediated 2NBDG uptake was enhanced in LS 90 (Lagenaria siceraria) juice treated (L6) cells at 10µg/ml concentration' 2NBDG =D-Glucose, 2-deoxy-2-((7-nitro-2,1,3benzoxadiazol-4-yl) amino)-I=Insulin, P=Palmitate, L= Lyophillized Lagenaria siceraria juice Figure. 4.15 Animal weight change during the anti-diabetic study 91 Figure. 4.16 Fasting blood glucose 92 93 Figure. 4.17 **Oral Glucose Tolerance Test** Figure. 4.18 Intraperitoneal Insulin Tolerance Test 93 94 Figure. 4.19 Histopathology of pancreas (a). Control displaying group normal histomorphology of the pancreas (arrow showing normal islets of Langerhans cells. (b). Diabetic control group (arrow showing abnormality in the islets of Langerhans cells). (c). Group treated with insulin (arrow showing abnormality in the islets of Langerhans cells with presence of vacuoles). (d). Group treated with lyophilized Lagenaria

siceraria juice (arrow showing abnormality in

the islets of Langerhans cells with presence of vacuoles).

Figure. 4.20 Real Time PCR analysis showing TNFa mRNA level in 95 THP-1 macrophage pre-treated with or without Lagenaria siceraria juice in varied concentration, in presence or absence of LPS (100ng/ml) for 4 h. Figure. 4.21 Real Time PCR analysis showing IL-1β mRNA level in 96 THP-1 macrophage pre-treated with or without Lagenaria siceraria juice in varied concentration, in presence or absence of LPS (100ng/ml) for 4 h. Figure. 4.22 96 Luciferase activity measured for NF-kB gene on LPS induced inflammation in THP-1 macrophage with or without Lagenaria siceraria juice varied in concentration Figure 5.1 The BGJ samples viz., sample 1 (raw), sample 2 108 (conventionally treated) and sample 3 (microwaveultrasound based combined treated) Figure 5.2 The sensory scores of the bottle gourd juice samples 109 under different quality attributes Figure 5.3 The sensory scores for different QA of bottle gourd 110 juice in general Figure. 6.1 Extraction of soluble dietary fibre from Lagenaria 123 siceraria pomace (a). Lagenaria siceraria pomace (b). Lagenaria siceraria pomace dried and grounded powder (c). Lagenaria siceraria pomace soluble dietary fibre Figure. 6.2 Electropherogram data of Lactobacillus plantarum 126 (Page1) Figure. 6.3 Electropherogram data of Lactobacillus plantarum 127 (Page2)

Figure. 6.4	Electropherogram data of Limosilactobacillus	128
	fermentum	
Figure. 6.5	Antibiosis activity of the LAB strains against E. coli	132
	MTCC 40, S. aureus MTCC 3160 and A. niger MTCC	
	281.	
	LP= Lactobacillus plantarum	
	LF= Limosilactobacillus fermentum	
Figure. 6.6	Growth of bacteria in MRS media in time interval	133
Figure.6.7	Growth of bacteria in carbohydrate free MRS media	133
	with 2% Lagenaria siceraria soluble dietary fiber	
Figure.6.8	Change in viable cell counts of probiotic bacteria (log	134
	c.f.u. /ml) present in the probiotic juices with time.	
Figure. 6.9	Change in acidity expressed as % lactic acid (v/v) of the	135
	probiotic juices with time.	
Figure. 6.10	Change in pH of the probiotic juices with time.	136
Figure.6.11	Change in TPC of the probiotic juices with time.	136
Figure. 6.12	Change in DPPH free radical scavenging activity of the	137
	probiotic juices with time.	

List of abbreviation

HTST	High Temperature and Short Times
UV	Ultra-Violate
MW-US	Microwave and Ultrasound
ATCC	American Type Cell Culture
HPLC	High Performance Liquid Chromatography
USA	United State of America
BGJ	Bottle Gourd Juice
rpm	Revolutions Per Minute
FCCD	Face Centred Composite Design
MP	Microwave Power
MT	Microwave induced Temperature
UA	Ultrasound Amplitude
UT	Ultrasound exposure Time
TPC	Total Phenolic Content
DPPH	2,2-diphenylpicrylhydrazyl
FCR	Folin-ciocalteu Reagent
BHA	Butylated Hydroxyanisole
UV-VIS	Ultraviolet-visible
TS	Total Solids
TSS	Total Soluble Solids
TA	Titratable Acidity
RP-HPLC	Reverse Phase High Performance Liquid Chromatography
AOAC	Association of Official Analytical Chemists
UHPLC	Ultra-High-Performance Liquid Chromatography
DAD	Diode Array Detector
NO	Nitric Oxide
SOD	Superoxide Radical Scavenging
RP	Reducing Power
ANOVA	Analysis of variance
Df	Degrees of freedom
S.D.	Standard Deviation

RMSE	Root Mean Square Error
SSE	Sum of Square Error
BDL	Below Detectable Limit
ROS	Responsive Oxygen Species
NS	Not satisfactory
FA	Fair
ME	Medium
GD	Good
EX	Excellent
POM	Proportional Odd Modelling
OSS	Overall Sensory Scores
OMF	Overall Membership Function
SFS	Standard Fuzzy Scale
VG	Very Good
SV	Similarity Values
FL-POM	Fuzzy Logic and Proportional Odd Modelling
HPBMC	Human Peripheral Blood Mononuclear Cells
RBC	Red Blood Cells
ES	Erythrocyte Suspension
FBS	Foetal Bovine Serum
CPCSEA	Committee for the Purpose of Control and Supervision of
	Experiments on Animals
OECD	Organization of Economic Co-Operation and Development
Hb	Haemoglobin
PCV	Packed Cell Volume
MCV	Mean Corpuscular Volume
MCH	Mean Corpuscular Haemoglobin
MCHC	Mean Corpuscular Haemoglobin Concentration
WB	White Blood Cell
PDW	Platelet Distribution Width
ALP	Alkaline Phosphatase
AST	Aspartate Aminotransferase
ALPT	Alanine Aminotransferase

DPP4	Dipeptidyl Peptidase-4
FBG	Fasting Blood Glucose
BW	Body Weight
OGTT	Oral Glucose Tolerance Test
IPITT	Intraperitoneal Insulin Tolerance Test
LPS	Lyophilized Lagenaria siceraria
PCR	Polymerase Chain Reaction
LS	Lagenaria siceraria
MCV	Mean Corpuscular Volume
MCH	Mean Corpuscular Haemoglobin
MCHC	Mean Corpuscular Haemoglobin Concentration
IPITT	Intraperitoneal Insulin Tolerance Test
MRS	De Man, Rogosa and Sharpe
BLAST	Basic Local Alignment Search Tool
CLUSTALW	Clustal O and Clustal Omega
LAB	Lactic Acid Bacteria
MHA	Mueller-Hinton agar
MTCC	Microbial Type Culture Collection
LP	Lactobacillus plantarum
LF	

List of Symbols

mAU	Milli absorbance unit
ml	Millilitre
μl	Microlitre
Nm	Nanometer
Da	Dalton
kDa	Kilodalton
mg	Milligram
μg	Microgram
mm	Millimetre
°C	Degree celcius
μm	Micrometre
g	Gram
W	Weight
h	Hour
V	Volume
%	Percentage
m	Minute
U	Unit
mM	Millimolar
М	Molar
<	Lesser than
>	Greater than
cm	Centimetre
nL	Nanolitre
S	Second
ms	Millisecond
ns	Nanosecond
/	Per
μ	Micron
β	Beta
α	Alpha
κ	Kappa
	- *