Declaration

I hereby declare that the thesis entitled "Reduced graphene oxide-poly(3,4ethylenedioxythiophene):poly(styrene sulfonate)-transition metal oxide based ternary nanocomposites as anode catalyst for methanol oxidation", submitted to the School of Sciences, Tezpur University in partial fulfillment of the requirements for the award of the Doctor of Philosophy in Physics, is a record of original research work carried out by me. Any text, figures, theories, results or designs that are not of my own devising are appropriately referenced in order to give due credit to the original author(s). All the sources of assistance have been assigned due acknowledgement. I also declare that neither this work as a whole nor a part of it has been submitted to any other university or institute for any degree, diploma, associateship, fellowship or any other similar title or recognition.

Date: Place: Tezpur (Bhagyalakhi Baruah)

Tezpur University

(A Central University by an act of Parliament)

Department of Physics

Tezpur – 784028, ASSAM, INDIA

Prof. Pritam Deb Professor Department of Physics Tezpur University, Tezpur Ph. 03712-275560 (O) +91-9864175588 (M) Email: pdeb@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "*Reduced graphene oxide-poly(3,4-ethylenedioxythiophene*):*poly(styrene sulfonate)-transition metal oxide based ternary nanocomposites as anode catalyst for methanol oxidation*" submitted to the School of Sciences, Tezpur University in requirement of partial fulfilment for the award of the Doctor of Philosophy in Physics, is a record of original research work carried out by Ms. **Bhagyalakhi Baruah** under my supervision and guidance.

All help received by her from various sources have been duly acknowledged.

No part of the thesis has been submitted elsewhere for award of any other degree.

Date: Place: Tezpur University, Assam (Prof. Pritam Deb) Professor Department of Physics Tezpur University, Assam

Tezpur University (A Central University by an act of Parliament) **Department of Physics**

Tezpur – 784028, ASSAM, INDIA

Dr. Rajib Biswas Assistant Professor Department of Physics Tezpur University, Tezpur Ph. +91-3712- 275564 (O) +91-9954313970 (M) Email: rajib@tezu.ernet.in

CERTIFICATE OF THE CO-SUPERVISOR

This is to certify that the thesis entitled "*Reduced graphene oxide-poly*(3,4ethylenedioxythiophene):poly(styrene sulfonate)-transition metal oxide based ternary nanocomposites as anode catalyst for methanol oxidation", submitted to the School of Sciences, Tezpur University, in partial fulfilment for the award of the Degree of Doctor of Philosophy in Physics is a record of research work carried out by Ms. Bhagyalakhi Baruah under my co-supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award or any other degree.

Date: Place: Tezpur University (**Dr. Rajib Biswas**) Assistant Professor Department of Physics Tezpur University, Assam

Dedicated to

My beloved

Ma & Deuta

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to my Supervisor Prof. Pritam Deb for his unwavering enthusiasm, motivation and continuous support to complete my research work. His dynamic guidance, fruitful discussions and constructive feedbacks extremely influenced my research work and technical writing skills.

I would like to express my sincere gratitude to my Supervisor Late Prof. Ashok Kumar for keeping faith in me and enrolling me in Ph.D. programme under his guidance. I was fortunate enough to get the opportunity to work under his meticulous supervision and avail all resources for his intellectually stimulating guidance, enthusiastic encouragement and relentless support throughout my research work at Tezpur University during his lifetime.

I sincerely acknowledge my Co-Supervisor Dr. Rajib Biswas for his excellent advice, constant inspiration and moral support in carrying out my research work.

I express my sincere gratitude to my DRC committee members, Prof. Dambarudhar Mohanta and Prof. Pabitra Nath, Department of Physics for their motivation, valuable suggestions and comments during my Ph D work. I am thankful to all the faculties of Department of Physics for their timely help and encouragement to carry out research. My deep sense of thanks goes to Patir da and Narayan da for their help and cooperation in official matters. I would like to extend my gratitude to Tezpur University for providing me Institutional Fellowship to carry out my research work.

I would like to acknowledge Dr. Pawan Kulriya of Jawaharlal Nehru University (JNU), Dr. Fouran Singh of Inter-University Accelerator Centre (IUAC), New Delhi, Dr. Saurabh Kumar Sharma of Rensselaer Polytechnic Institute, New York and Dr. Dolly Taparia, IIT Guwahati for extending their help in XRD and Raman measurements. I would like to thank Mr. Joston P. Nongkynrih of Sophisticated Analytical Instrumentation Facility (SAIF), NEHU, Shillong for helping me with TEM measurements. I acknowledge Dr. Manash Ranjan Das and Rupjyoti Dutta of CSIR-NEIST, Jorhat for helping me with XPS characterizations. I am grateful to Biju Boro for SEM measurements. I am also thankful to Prakash Kurmi for XRD and Raman measurements and Naba Gogoi for nitrogen adsorption desorption measurements, SAIC, Tezpur University. I would like to thank my senior cum sister Dr. Arati Sharma for her immense help, mental support and fruitful discussions during my Ph.D. days. I am sincerely grateful to her for sharing her knowledge with me about electrochemical studies.

My earnest gratitude to all the present members of Materials Research Laboratory (MRL), Department of Physics with whom I got the opportunity to work and share our knowledge; Devalina, Kashmiri, Ankush, Kakoli, Atowar and Sushmita. They are always there whenever I need any help or support during this journey. I would also like to thank past members of Materials Research Laboratory; Dr. Sumeet Kumar, Dr. Jagat Dwipendra Ray, Dr. Rajiv Borah, Dr. Madhabi Devi and Dr. Rituraj Dutta. I would like to acknowledge my M.Sc. project students Princhi, Monika and Mousum for their help in experimental work.

I sincerely thank to all the members of Advanced Functional Material Laboratory (AFML); Meenakshi, Mayuri, Korobi, Saransh, Monika, Sayoree, Liyenda, Anil and Deepshekhar for their incredible help and support.

Special acknowledgment goes to my friends: Priyanka, Ashamoni, Pranamika, Pranjupriya, Sanghamitra, Jimly, Stuti, Namita, Ankita, Hemant, Gautam, Madhurjya, Pragyan and Bijoy for being wonderful friend and making my stay at Tezpur University delightful and enjoyable. My sincere acknowledgement goes to Hemant for his constant motivation and encouragement throughout this journey of Ph.D. I am really very grateful to him for his immense mental support during this period.

I would like to thank Dr. Poppy Hazarika, Dr. Nilima Gogoi, Dr. Pankaj Thakuriya, Dr. Dipraj Saikia and all the colleagues of Duliajan College for their motivation and encouragement.

I am indebted to my parents for their blessings, love, moral support, uninterrupted encouragement and patience. Their constant motivation and faith in me helped to overcome failures and hurdles during that period. I am grateful to my little sister Roon for her unconditional love and support. I am also thankful to all of my family members for showering their love and blessings which always help me to move ahead in life.

(Bhagyalakhi Baruah)

Date:

Pl	ace	•
TI	acc.	

List of Tables

Table caption	Page No.
Types of fuel cells and their features	1
Some physical properties of the materials used in	76-77
synthesis	
Calculated values of anodic electron transfer coefficient	123
(α_a), cathodic electron transfer coefficient (α_c) and	
heterogeneous rate constant (k _s) of the modified	
electrodes	
Kinetic parameters of the modified electrodes obtained	127
from Tafel plot	
Calculated values of electron transfer coefficients (both	155
anodic and cathodic) and heterogeneous rate constant of	
the electrodes	
Values of Tafel slope, electron transfer coefficient and	160
exchange current density from Tafel plot of the modified	
electrodes	
Calculated values of anodic electron transfer coefficient	188
(α_a), cathodic electron transfer coefficient (α_c) and	
heterogeneous rate constant (k_s) of the modified	
electrodes	
Calculated values of Tafel slope, electron transfer	193
coefficient and exchange current density from Tafel plot	
Comparative analysis of major findings of three	208
synthesized systems	
	Types of fuel cells and their features Some physical properties of the materials used in synthesis Calculated values of anodic electron transfer coefficient (α_a) , cathodic electron transfer coefficient (α_c) and heterogeneous rate constant (k_s) of the modified electrodes Kinetic parameters of the modified electrodes obtained from Tafel plot Calculated values of electron transfer coefficients (both anodic and cathodic) and heterogeneous rate constant of the electrodes Values of Tafel slope, electron transfer coefficient and exchange current density from Tafel plot of the modified electrodes Calculated values of anodic electron transfer coefficient (α_a) , cathodic electron transfer coefficient (α_c) and heterogeneous rate constant (k_s) of the modified electrodes Calculated values of Tafel slope, electron transfer coefficient (α_a) , cathodic electron transfer coefficient (α_c) and heterogeneous rate constant (k_s) of the modified electrodes Calculated values of Tafel slope, electron transfer coefficient and exchange current density from Tafel plot Calculated values of Tafel slope, electron transfer coefficient and exchange current density from Tafel plot

List of Figures

Figure No.	Figure caption	Page No.
Figure 1.1	Schematic representation of DMFC	3
Figure 1.2	Schematic of different pathways for MOR	4
Figure 1.3	Schematic diagram of membrane electrode assembly (MEA)	6
Figure 1.4	Schematic for the transport phenomena of reactants in	7
	electrode	
Figure 1.5	Schematic overview of electrode/electrolyte interface	8
	including the triple phased boundary zone	
Figure 1.6	Chemical structure of Nafion	9
Figure 1.7	Graphene: a two-dimensional crystalline allotrope of carbon	17
Figure 1.8	Chemical representations of few of the commonly used	19
	conducting polymers	
Figure 1.9	Chemical structure of PEDOT:PSS	20
Figure 1.10	Conformations of PEDOT:PSS (i) coiled and (ii) linear	21
	structures	
Figure 2.1	Schematic diagram of electrochemical cell with (i) two	40
	electrode and (ii) three electrode configurations	
Figure 2.2	(i) Schematic diagram of an EDL formed outside a positively	42
	charged electrode. (ii) The variation of potential across the	
	electrode-electrolyte interface	
Figure 2.3	Pathway of a general electrode reaction	44
Figure 2.4	Triangular potential waveform used in cyclic voltammetry	44
	showing the variation of potential from an initial value (E_1)	
	to a final value (E_2)	
Figure 2.5	Typical representations of (i) linear sweep voltammetry	45
	(LSV) and (ii) cyclic voltammetry (CV) a redox reaction	
Figure 2.6	CVs of (i) reversible, (ii) quasi-reversible and (iii)	47
	irreversible processes	
Figure 2.7	The graphical display of changes in standard free energy	52
	during a faradaic process. (i) At a potential that corresponds	
	to the equilibrium. (ii) At a potential more positive than the	

equilibrium value. (iii) At a potential more negative than the equilibrium value

- Figure 2.8 A plot of current against the overpotential according to 55 Butler-Volmer equation
- Figure 2.9 Tafel plot for anodic and cathodic parts of the current- 56 overpotential curve.
- Figure 2.10 (i) The input sinusoidal potential and (ii) corresponding 57 current signal in output of the electrochemical cell
- Figure 2.11 (i) Nyquist plot and (ii) corresponding simplified Randles 59 equivalent circuit
- Figure 2.12 (i) Nyquist plot for a mixed circuit and (ii) corresponding 60 Randles equivalent circuit
- Figure 2.13 Plots of (i) potential as a function of time and (ii) current as a 63 function of time
- Figure 2.14 A plot showing the capacitive current (i_c) and faradaic 64 current (i_f) as a function of time upon application of a potential step
- Figure 2.15 Different types of N₂ adsorption-desorption isotherms 66 according to IUPAC (International Union of Pure and Applied Chemistry)
- Figure 2.16 Different types of hysteresis loop according to IUPAC's 67 classification
- Figure 3.1 Block diagram of synthesis of GO via Improved Hummers' 78 method
- Figure 3.2 Block diagram of synthesis of α MnO₂ nanorods 78
- Figure 3.3 Block diagram of synthesis of PEDOT:PSS/MnO₂ 80 nanocomposite
- Figure 3.4 Block diagram of synthesis of rGO/PEDOT:PSS/MnO₂ 81 nanocomposite
- Figure 3.5 Schematic representation of formation of 82 rGO/PEDOT:PSS/MnO₂ ternary nanocomposite
- Figure 3.6 Block diagram of synthesis of NiO nanoplate-nanorod 82 structure

Figure 3.7	Block diagram of synthesis of PEDOT:PSS/NiO	84
	nanocomposite	
Figure 3.8	Block diagram of synthesis of rGO/PEDOT:PSS/NiO	85
	nanocomposite	
Figure 3.9	Schematic illustration of formation of rGO/PEDOT:PSS/NiO	86
	ternary nanocomposite	
Figure 3.10	Block diagram of synthesis of NiMn ₂ O ₄ nanoparticles	87
Figure 3.11	Block diagram of synthesis of PEDOT:PSS/NiMn ₂ O ₄	89
	nanocomposite	
Figure 3.12	Block diagram of synthesis of rGO/PEDOT:PSS/NiMn ₂ O ₄	89
	nanocomposite	
Figure 3.13	Schematic illustration of the synthesis of	90
	rGO/PEDOT:PSS/NiMn ₂ O ₄ nanocomposite	
Figure 3.14	Scanning electron microscope (JEOL, model JSM-6390 LV)	93
Figure 3.15	High resolution transmission electron microscopy (JEOL,	95
	model JEM-2100)	
Figure 3.16	Schematic representation of diffraction of X-rays by the	96
	crystal planes	
Figure 3.17	X-ray diffraction measurement unit (D8 Bruker AXS)	97
Figure 3.18	Photograph of Raman spectrometer (Renishaw in-via)	97
Figure 3.19	Photograph of X-ray photoelectron spectrometer (ESCALAB	
	Xi +)	
Figure 3.20	Set-up used for Nitrogen adsorption-desorption	100
	measurements (Quantachrome, model NOVA 1000E)	
Figure 3.21	Photograph of potentiostat/galvanostat (Autolab PGSTAT	102
	302N, Metrohm, Netherlands)	
Figure 4.1	SEM images of (i) MnO ₂ nanorods, (ii) PEDOT:PSS/MnO ₂	109
	nanocomposite and (iii)rGO/PEDOT:PSS/MnO ₂	
	nanocomposite and (iv) EDX spectrum of	
	rGO/PEDOT:PSS/MnO2 nanocomposite. Elemental mapping	
	of rGO/PEDOT:PSS/MnO2 nanocomposite for (v) C, (vi) O,	
	(vii) S and (viii) Mn	
Figure 4.2	TEM images of (i) rGO nanosheet, (ii)-(iii) MnO2 nanorods,	111

	(iv)-(v) PEDOT:PSS/MnO ₂ nanocomposite and (vi)-(vii)	
	rGO/PEDOT:PSS/MnO ₂ nanocomposite	
Figure 4.3	(i) XRD patterns of (a) rGO and (b) GO, (ii) XRD patterns of	112
	(a) α -MnO ₂ nanorods, (b) PEDOT:PSS (c)	
	$PEDOT:PSS/MnO_2 nanocomposite and (d)$	
	rGO/PEDOT:PSS/MnO ₂ ternary nanocomposite	
Figure 4.4	(i) Raman spectrum of α -MnO ₂ nanorod, (ii) Raman spectra	113
	of (a) PEDOT:PSS, (b) PEDOT:PSS/MnO ₂ nanocomposite,	
	(c) rGO/PEDOT:PSS/MnO ₂ ternary nanocomposite and (d)	
	rGO	
Figure 4.5	(i) XPS survey spectra of (a) α -MnO ₂ nanorod and (b)	115
	rGO/PEDOT:PSS/MnO ₂ nanocomposite. High resolution	
	XPS profile of (ii) Mn 2p, (iii) C 1s, (iv) O 1s and (v) S 2p of	
	rGO/PEDOT:PSS/MnO2 nanocomposite	
Figure 4.6	N ₂ adsorption-desorption isotherms of (i) MnO ₂ nanorods,	116-117
	(ii) PEDOT:PSS/MnO ₂ nanocomposite and (iii)	
	rGO/PEDOT:PSS/MnO2 ternary nanocomposite. Pore size	
	distribution of the corresponding curves are shown in inset	
Figure 4.7	(i) Cyclic voltammograms of MnO ₂ /ITO,	119
	PEDOT:PSS/MnO ₂ /ITO and rGO/PEDOT:PSS/MnO ₂ /ITO	
	electrodes at a scan rate of 50 mV s ⁻¹ . Cyclic	
	voltammograms of (ii) MnO ₂ /ITO, (iii)	
	PEDOT:PSS/MnO ₂ /ITO and (iv)	
	rGO/PEDOT:PSS/MnO ₂ /ITO electrodes at scan rates of 10-	
	100 mV s ⁻¹ in 0.5 M NaOH solution	
Figure 4.8	Linear dependence of anodic and cathodic peak current	120
	PEDOT:PSS/MnO ₂ /ITO and (iii)	
	rGO/PEDOT:PSS/MnO ₂ /ITO electrodes	
Figure 4.9	Dependence of anodic and cathodic peak current densities on	121
square root of scan rate (50-100 mV s ⁻¹) for (i) MnO ₂ /ITO,		
	(ii) PEDOT:PSS/MnO ₂ /ITO and (iii)	
	rGO/PEDOT:PSS/MnO ₂ /ITO electrodes	
Figure 4.6 Figure 4.7	rGO/PEDOT:PSS/MnO ₂ nanocomposite. High resolution XPS profile of (ii) Mn 2p, (iii) C 1s, (iv) O 1s and (v) S 2p of rGO/PEDOT:PSS/MnO ₂ nanocomposite N ₂ adsorption-desorption isotherms of (i) MnO ₂ nanorods, (ii) PEDOT:PSS/MnO ₂ nanocomposite and (iii) rGO/PEDOT:PSS/MnO ₂ ternary nanocomposite. Pore size distribution of the corresponding curves are shown in inset (i) Cyclic voltammograms of MnO ₂ /ITO, PEDOT:PSS/MnO ₂ /ITO and rGO/PEDOT:PSS/MnO ₂ /ITO electrodes at a scan rate of 50 mV s ⁻¹ . Cyclic voltammograms of (ii) MnO ₂ /ITO, (iii) PEDOT:PSS/MnO ₂ /ITO and civ) rGO/PEDOT:PSS/MnO ₂ /ITO electrodes at scan rates of 10- 100 mV s ⁻¹ in 0.5 M NaOH solution Linear dependence of anodic and cathodic peak current densities vs. scan rate (10-40 mV s ⁻¹) for (i) MnO ₂ /ITO, (ii) PEDOT:PSS/MnO ₂ /ITO electrodes Dependence of anodic and cathodic peak current densities vs. scan rate (50-100 mV s ⁻¹) for (i) MnO ₂ /ITO, (ii) PEDOT:PSS/MnO ₂ /ITO electrodes	116-117 119 120

Figure 4.10Plots of anodic and cathodic peak potentials (E_p) vs.122logarithm of scan rate (log v) for (i) MnO₂/ITO, (ii)PEDOT:PSS/MnO₂/ITOandrGO/PEDOT:PSS/MnO₂/ITO electrodes

124

- Figure 4.11 (i) Cyclic voltammograms of (a) MnO₂/ITO, (b) PEDOT:PSS/MnO₂/ITO and (c) rGO/PEDOT:PSS/MnO₂/ITO electrodes in presence of 0.5 M methanol containing in 0.5 M NaOH as background electrolyte at a scan rate 50 mV s⁻¹; (ii) Cyclic voltammograms of rGO/PEDOT:PSS/MnO2/ITO electrode in 0.5 M NaOH solution in presence of 0.1 M, 0.5 M, 1 M, 1.5 M and 2 M methanol at a scan rate 50 mV s⁻¹; (iii) Cyclic voltammograms of rGO/PEDOT:PSS/MnO2/ITO electrode in presence of 0.5 M methanol at different scan rates (a) 10 mV s⁻¹, (b) 30 mV s⁻¹, (c) 50 mV s⁻¹, (d) 70 mV s⁻¹, (e) 90 mV s^{-1} , (f) 110 mV s^{-1} , (g) 130 mV s^{-1} and (h) 150 mV s^{-1} (Inset shows linear dependence of anodic peak current density on square root of scan rate)
- Figure 4.12 Tafel plots obtained from rising part of the cyclic 126 voltammograms of (i) PEDOT:PSS/MnO₂/ITO and (ii) rGO/PEDOT:PSS/MnO₂/ITO electrodes in presence of 0.5 M methanol at scan rate 50 mV s⁻¹
- Figure 4.13 (i) Chronoamperometric curves of (a) MnO₂/ITO, (b) 128 PEDOT:PSS/MnO₂/ITO and (c) rGO/PEDOT:PSS/MnO₂/ITO electrodes at an applied potential of 0.32 V (ii) Cyclic stability of rGO/PEDOT:PSS/MnO₂/ITO electrode upto 1000 CV cycles at a scan rate 50 mV s⁻¹ (iii) Nyquist plots of rGO/PEDOT:PSS/MnO₂/ITO electrode before and after 1000 CV cycles in presence of 0.5 M methanol containing in 0.5 M NaOH electrolyte

- Figure 4.14 TEM micrographs of rGO/PEDOT:PSS/MnO₂ 129 nanocomposite after 1000 CV cycles in presence of 0.5 M methanol containing in 0.5 M NaOH at resolutions of (i) 50 (iii) XRD patterns of nm and (ii) 20 nm, (a) rGO/PEDOT:PSS/MnO₂ nanocomposite and (b) rGO/PEDOT:PSS/MnO₂/ITO electrode after 1000 CV cycles in 0.5 M methanol containing solution
- Figure 4.15 Survey spectra of rGO/PEDOT:PSS/MnO₂ 131 (i) (a) nanocomposite (b) rGO/PEDOT:PSS/MnO₂/ITO electrode after 1000 CV cycles. Core-level XPS spectra of (ii) Mn 2p, (iii) C 1s, (iv) O 1s (v) S 2p regions of (a) rGO/PEDOT:PSS/MnO₂ nanocomposite (b) rGO/PEDOT:PSS/MnO₂/ITO electrode after 1000 CV cycles in 0.5 M methanol containing in 0.5 M NaOH solution
- Figure 5.1 SEM images of (i) NiO, (ii) PEDOT:PSS/NiO and (iii) 142 rGO/PEDOT:PSS/NiO nanocomposites. (iv) EDX spectrum of rGO/PEDOT:PSS/NiO nanocomposite. The elemental mapping of the elements (v) C, (vi) O, (vii) S and (viii) Ni in rGO/PEDOT:PSS/NiO nanocomposite
- Figure 5.2 TEM images of (i) rGO nanosheet, (ii) and (iii) NiO, (iv) and 144 (v) PEDOT:PSS/NiO nanocomposite, (vi) and (vii) rGO/PEDOT:PSS/NiO nanocomposite
- Figure 5.3 (i) XRD patterns of (a) GO, (b) rGO and (c) PEDOT:PSS; 145 (ii) XRD patterns of (a) NiO, (b) PEDOT:PSS/NiO nanocomposite and (c) rGO/PEDOT:PSS/NiO ternary nanocomposite
- Figure 5.4 (i) Raman spectra of NiO and (ii) Raman spectrum of (a) 146 PEDOT:PSS, (b) PEDOT:PSS/NiO nanocomposite, (c) rGO/PEDOT:PSS/NiO nanocomposite and (d) rGO
- Figure 5.5 (i) Survey XPS spectra of (a) NiO 147 and (b) rGO/PEDOT:PSS/NiO nanocomposite. Core-level XPS spectra of (ii) Ni 2p, (iii) O 1s, (iv) C 1s and (v) S 2p regions in rGO/PEDOT:PSS/NiO nanocomposite

- Figure 5.6 Nitrogen adsorption-desorption isotherms of (i) NiO, (ii) 49-150 PEDOT:PSS/NiO nanocomposite and (iii) rGO/PEDOT:PSS/NiO nanocomposite. Inset figures show pore size distribution curve
- Figure 5.7 (i) Cyclic voltammograms of obtained for NiO/ITO, 151
 PEDOT:PSS/NiO/ITO and rGO/PEDOT:PSS/NiO/ITO electrodes in 0.5 M NaOH electrolyte solution at a scan rate of 50 mV s⁻¹. Cyclic voltammograms of (ii) NiO/ITO, (iii)
 PEDOT:PSS/NiO/ITO and (iv) rGO/PEDOT:PSS/NiO/ITO electrodes in different scan rates (10-100 mV s⁻¹) in 0.5 M NaOH solution.
- Figure 5.8 The graph between peak current densities (I_p) and scan rate 152 (v) (upto 40 mV s⁻¹) for (i) NiO/ITO, (ii) PEDOT:PSS/NiO/ITO and (iii) rGO/PEDOT:PSS/NiO/ITO electrodes
- Figure 5.9 The plots of peak current densities against the square root of 154 scan rate ($v^{1/2}$) of (i) NiO/ITO, (ii) PEDOT:PSS/NiO/ITO and (iii) rGO/PEDOT:PSS/NiO/ITO electrodes
- Figure 5.10 The graphs for anodic peak voltage (E_{pa}) and cathodic peak 155 voltage (E_{pc}) with logarithm of different scan rates (log v) for
 (i) NiO/ITO, (ii) PEDOT:PSS/NiO/ITO and (iii) rGO/PEDOT:PSS/NiO/ITO electrodes
- Figure 5.11 voltammograms of (a) NiO/ITO, 157 (i) Cyclic (b) PEDOT:PSS/NiO/ITO and (c) rGO/PEDOT:PSS/NiO/ITO electrodes in presence of 0.5 M methanol containing in 0.5 M NaOH electrolyte solution at a scan rate 50 mV s^{-1} ; (ii) voltammograms of rGO/PEDOT:PSS/NiO/ITO Cyclic electrode in 0.5 M NaOH electrolyte solution containing 0.1 M, 0.5 M, 1 M, 1.5 M, 2 M and 2.5 M of methanol at a scan rate of 50 mV s⁻¹; (iii) Cyclic voltammograms of rGO/PEDOT:PSS/NiO/ITO electrode in presence of 0.5 M methanol containing in 0.5 M NaOH electrolyte solution at various scan rates (a) 10 mV s⁻¹, (b) 30 mV s⁻¹, (c) 50 mV s⁻¹

¹,(d) 70 mV s⁻¹, (e) 90 mV s⁻¹, (f) 110 mV s⁻¹, (g) 130 mV s⁻¹ and (h) 150 mV s⁻¹ and inset figure shows corresponding plot between anodic peak current density and square root of scan rate

- Figure 5.12 (i) Linear sweep voltammetry curves of (a) NiO/ITO, (b) 159 PEDOT:PSS/NiO/ITO and (c) rGO/PEDOT:PSS/NiO/ITO electrodes recorded at a scan rate of 1 mV s⁻¹ in mixed electrolyte solution of 0.5 M NaOH and 0.5 M methanol. (ii) Tafel plots of (a) NiO/ITO, (b) PEDOT:PSS/NiO/ITO and (c) rGO/PEDOT:PSS/NiO/ITO electrodes
- Figure 5.13 (i) Chronoamperometric curves of (a) NiO/ITO, (b) 160
 PEDOT:PSS/NiO/ITO and (c) rGO/PEDOT:PSS/NiO/ITO electrodes in 0.5 M methanol containing in 0.5 M NaOH at an applied potential 0.34 V; (ii) Cyclic stability of rGO/PEDOT:PSS/NiO/ITO electrode for 1000 CV cycles in 0.5 M methanol containing in 0.5 M NaOH at a scan rate 50 mV s⁻¹. (iii) EIS curves of rGO/PEDOT:PSS/NiO/ITO electrode in 0.5 M methanol containing in 0.5 M NaOH at a scan rate 50 mV s⁻¹. (iii) EIS curves of rGO/PEDOT:PSS/NiO/ITO electrode in 0.5 M methanol containing in 0.5 M NaOH at a scan rate 50 mV s⁻¹. (iii) EIS curves of rGO/PEDOT:PSS/NiO/ITO electrode in 0.5 M methanol containing in 0.5 M NaOH
- Figure 5.14 TEM micrographs of rGO/PEDOT:PSS/NiO nanocomposite 162 after 1000 CV cycles in 0.5 M methanol containing in 0.5 M NaOH solution at resolutions of (i) 100 nm and (ii) 50 nm, XRD of (a) rGO/PEDOT:PSS/NiO (iii) patterns nanocomposite and (b) rGO/PEDOT:PSS/NiO/ITO electrode after 1000 CV cycles in 0.5 M methanol containing in 0.5 M NaOH
- Figure 5.15 163 (i) Survey spectra of (a) rGO/PEDOT:PSS/NiO nanocomposite (b) rGO/PEDOT:PSS/NiO/ITO electrode after 1000 CV cycles. Core-level XPS spectra of (ii) Ni 2p, (iii) O 1s, (iv) C 1s (v) S 2p regions of (a) rGO/PEDOT:PSS/NiO nanocomposite (b) rGO/PEDOT:PSS/NiO/ITO electrode after 1000 CV cycles in 0.5 M methanol containing in 0.5 M NaOH solution

- Figure 6.1 SEM micrographs of (i) NiMn₂O₄, (ii) 175 PEDOT:PSS/NiMn₂O₄ and (iii) rGO/PEDOT:PSS/NiMn₂O₄ nanocomposites. EDX (iv) spectrum of rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite. EDX mapping of rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite showing the distribution of elements (v) C, (vi) O, (vii) S, (viii) Mn and (ix) Ni
- Figure 6.2 TEM micrographs of (i) rGO nanosheet, (ii) and (iii) 176 NiMn₂O₄ nanoparticles, (iv) and (v) PEDOT:PSS/NiMn₂O₄ nanocomposite, (vi) and (vii) rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite
- Figure 6.3 (i) XRD patterns of (a) GO, (b) rGO and (c) PEDOT:PSS, 177 (ii) XRD patterns of (a) NiMn₂O₄, (b) PEDOT:PSS/NiMn₂O₄ nanocomposite and (c) rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite
- Figure 6.4 (i) Raman spectrum of NiMn₂O₄, (ii) Raman spectra of (a) 178 PEDOT:PSS, (b) PEDOT:PSS/NiMn₂O₄ nanocomposite, (c) rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite and (d) rGO
- Figure 6.5 (i) XPS survey spectra of (a) NiMn₂O₄ and (b) 181
 rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite. High resolution
 XPS profile of (ii) Mn 2p, (iii) Ni 2p, (iv) C 1s, (v) O 1s and
 (vi) S 2p of rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite
- Figure 6.6 N₂ adsorption-desorption isotherms of (i) NiMn₂O₄, (ii) 182-183 PEDOT:PSS/NiMn₂O₄ and (iii) rGO/PEDOT:PSS/NiMn₂O₄ nanocomposites. Inset figures show pore size distribution
- Figure 6.7
 Cyclic
 voltammograms
 of
 (i)
 NiMn₂O₄/ITO,
 184

 PEDOT:PSS/NiMn₂O₄/ITO
 and
 rGO/PEDOT:PSS/NiMn₂O₄/ITO
 electrodes in 0.5 M NaOH

 solution at a scan rate of 50 mV s⁻¹. Cyclic voltammograms
 of
 (ii)
 NiMn₂O₄/ITO,
 (iii)
 PEDOT:PSS/NiMn₂O₄/ITO and

 (iv) rGO/PEDOT:PSS/NiMn₂O₄/ITO,
 (iii)
 PEDOT:PSS/NiMn₂O₄/ITO electrodes at different
 scan rates from 10 to 100 mV s⁻¹ in 0.5 M NaOH solution

Figure 6.8 The variation of anodic and cathodic peak current densities 185

 (I_p) vs. scan rate (v) (10-40 mV s⁻¹) of (i) NiMn₂O₄/ITO, (ii) PEDOT:PSS/NiMn₂O₄/ITO (iii) and rGO/PEDOT:PSS/NiMn₂O₄/ITO electrodes Figure 6.9 Dependence of anodic and cathodic peak current densities on 186 square root of scan rate (50-100 mV s⁻¹) for (i) NiMn₂O₄/ITO, (ii) PEDOT:PSS/NiMn₂O₄/ITO and (iii) rGO/PEDOT:PSS/NiMn₂O₄/ITO electrodes Figure 6.10 Plots of anodic and cathodic peak potentials (E_p) vs. 187 logarithm of scan rate (log v) for (i) NiMn₂O₄/ITO, (ii) PEDOT:PSS/NiMn₂O₄/ITO and (iii) rGO/PEDOT:PSS/NiMn₂O₄/ITO electrodes Figure 6.11 (i) Cyclic voltammograms of (a) NiMn₂O₄/ITO, 191 (b) PEDOT:PSS/NiMn₂O₄/ITO and (c) rGO/PEDOT:PSS/NiMn₂O₄/ITO electrodes in presence of 0.5 M methanol containing in 0.5M NaOH as supporting electrolyte at a scan rate of 50 mV s⁻¹ (ii) Cyclic voltammograms of rGO/PEDOT:PSS/NiMn₂O₄/ITO electrode in presence of 0.1 M, 0.5 M, 1 M, 1.5 M, 2 M, 2.5 M, 3 M, 3.5 M and 4 M methanol at a scan rate of 50 mV s^{-1} ; (iii) Cyclic voltammograms of rGO/PEDOT:PSS/NiMn₂O₄/ITO electrode in presence of 0.5 M methanol containing in 0.5 M NaOH at various scan rates (a) 10 mV s⁻¹, (b) 30 mV s⁻¹, (c) 50 mV s⁻¹, (d) 70 mV s⁻¹, (e) 90 mV s⁻¹, (f) 110 mV s⁻¹, (g) 130 mV s⁻¹ and (h) 150 mV s⁻¹ and inset figure shows corresponding plot between anodic peak current density and square root of scan rate Figure 6.12 (i) Linear sweep voltammetry curves of (a) NiMn₂O₄/ITO, 192 PEDOT:PSS/NiMn₂O₄/ITO (b) and (c)

rGO/PEDOT:PSS/NiMn₂O₄/ITO electrodes in presence of 0.5 M methanol containing in 0.5 M NaOH at a scan rate of 1 mV s⁻¹. (ii) Tafel plots (η vs. log i) for the data obtained from rising part of LSV curves of (a) NiMn₂O₄/ITO, (b) PEDOT:PSS/NiMn₂O₄/ITO and (c)

rGO/PEDOT:PSS/NiMn₂O₄/ITO electrodes

- Figure 6.13 (i) Chronoamperometric curves of (a) NiMn₂O₄/ITO, (b) PEDOT:PSS/NiMn₂O₄/ITO and (c) rGO/PEDOT:PSS/NiMn₂O₄/ITO electrodes in 0.5 Μ methanol solution containing in 0.5 M NaOH at an applied V: potential 0.21 (ii) Cyclic stability of rGO/PEDOT:PSS/NiMn₂O₄/ITO electrode for 1000 CV cycles in 0.5 methanol solution containing in 0.5 M NaOH at a scan rate of 50 mV s⁻¹. (iii) EIS curves of rGO/PEDOT:PSS/NiMn₂O₄/ITO electrode in 0.5 M NaOH solution in presence of 0.5 M methanol before and after 1000 CV cycles.
- Figure 6.14 TEM micrographs of rGO/PEDOT:PSS/NiMn₂O₄ 196 nanocomposite after 1000 CV cycles in 0.5 M methanol containing solution at resolution of (i) 100 nm and (ii) 50 nm, (iii) XRD patterns of (a) rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite and (b) rGO/PEDOT:PSS/NiMn₂O₄/ITO electrode after 1000 CV cycles in 0.5 M methanol containing solution
- Figure 6.15 (i) Survey spectra of (a) rGO/PEDOT:PSS/NiMn₂O₄ 197-198 nanocomposite (b) rGO/PEDOT:PSS/NiMn₂O₄/ITO electrode after 1000 CV cycles, Core-level XPS spectra of (ii) Mn 2p, (iii) Ni 2p, (iv) C 1s, (v) O 1s and (vi) S 2p regions of (a) rGO/PEDOT:PSS/NiMn₂O₄ nanocomposite (b) rGO/PEDOT:PSS/NiMn₂O₄/ITO electrode after 1000 CV cycles in 0.5 M methanol containing in 0.5 M NaOH solution

195

List of Abbreviations

Abbreviation	Meaning
APS	Ammonium peroxydisulfate
BET	Brunauer-Emmett-Teller
BJH	Barret-Joyner-Halenda
CA	Chronoamperometry
CE	Counter electrode
CH ₃ OH	Methanol
CNF	Carbon nanofibre
CNT	Carbon nanotube
СО	Carbon monoxide
CO ₂	Carbon dioxide
СОН	Aldehyde
СР	Conducting polymer
CPE	Constant phase element
CQD	Carbon quantum dot
CV	Cyclic voltammetry
DI	Deionized water
DMFC	Direct methanol fuel cell
EDL	Electric double layer
EDX	Energy Dispersive X-ray
EIS	Electrochemical impedance spectroscopy
FeCl ₃	Ferric chloride
GCE	Glassy carbon electrode
GO	Graphite oxide
НСО	Bicarbonate
НСОО	Formic acid
H ₂ O	Water
HRTEM	High resolution transmission electron microscopy
ITO	Indium tin oxide
LSV	Linear sweep voltammetry
MEA	Membrane electrode assembly

MnO ₂	Manganese dioxide
MOR	Methanol oxidation reaction
MTMO	Mixed transition metal oxide
MWCNT	Multi-walled carbon nanotube
NiMn ₂ O ₄	Nickel manganite
NiO	Nickel oxide
ORR	Oxygen reduction reaction
PA	Polyacetylene
PAni	Polyaniline
PEDOT	Poly(3, 4 ethylene dioxythiophene)
PEM	Proton exchange membrane
PEMFC	Proton exchange membrane fuel cell
PFSA	Perfluorosulfonic acid
PPy	Polypyrrole
PSD	Pore size distribution
PSS	Poly(styrenesulfonic acid)
Pt	Platinum
PTFE	Polytetrafluoroethylene
PTh	Polythiophene
PVP	Polyvinylpyrrolidone
RE	Reference electrode
rGO	Reduced graphene oxide
SCE	Saturated calomel electrode
SEM	Scanning electron microscopy
SHE	Standard hydrogen electrode
SWCNT	Single-walled carbon nanotube
TMO	Transition metal oxide
TPB	Triple phase boundary
WE	Working electrode
XRD	X-ray diffraction

List of Symbols

Symbol	Meaning
А	Surface area
C _{dl}	Double layer capacitance
D	Diffusion coefficient
ΔE_p	Peak to peak separation
E _{pa}	Anodic peak potential
E _{pc}	Cathodic peak potential
E_{f}^{0}	Formal potential
F	Faraday constant
i_0	Exchange current density
ic	Capacitive current
$\mathbf{i_f}$	Faradaic current
I _{pa}	Anodic peak current
I _{pc}	Cathodic peak current
ks	Heterogeneous rate constant
N _A	Avogadro's number
R	Universal gas constant
R _{ct}	Charge transfer resistance
R _s	Solution resistance
r _k	Kelvin radius
r _p	Pore radius
S_{BET}	BET specific surface area
Т	Temperature
t _a	Thickness of the adsorbed gas
v _m	Quantity of monolayer adsorbed gas
X _C	Capacitive reactance
X_L	Inductive reactance
Z	Electrochemical Impedance
Ζ′	Real Impedance
Ζ''	Imaginary Impedance

Z_{W}	Warburg impedance
α	Charge transfer coefficient
β	Tafel slope
Γ^*	Surface coverage
γ	Surface tension of liquid
δ	Thickness of Nernst diffusion layer
η	Overpotential
ν	Scan rate
σ	Warburg coefficient
φ	Phase shift
ω	Frequency