Al³⁺ ion storage behavior of LiFePO₄ in aqueous electrolyte

6.1 Introduction

This chapter investigates the probable Al³⁺-ion intercalation/deintercalation in lithium iron phosphate (LiFePO₄) in different Al³⁺-ion conducting aqueous electrolytes. Goodenough and his co-workers first demonstrated the Li⁺-ion storage in phosphoolivines in nonaqueous electrolyte in the year 1997 [1]. LiFePO₄ swiftly proliferated from laboratory scale research to commercial platform with the advent of LFP battery. LiFePO₄ is an important cathode material for lithium-ion batteries because it avoids toxic and scare cobalt with environment friendly and abundant iron species. It exhibits flat charge-discharge profiles at a potential of 3.4 V (vs. Li⁺/Li) with little polarization. The specific theoretical capacity of LiFePO₄ is 170 mAhg⁻¹. Most of the studies on LiFePO₄ were performed in non-aqueous electrolyte. It is interesting to note that the Li⁺-ion electrochemistry of LiFePO₄ in aqueous electrolyte shows contrasting behavior in comparison to nonaqueous electrolyte. There are only few reports on the aqueous Li⁺-ion electrochemistry of LiFePO₄ for rechargeable aqueous batteries [2, 3-9]. Recently, our group also studied the Al³⁺-ion electrochemistry of LiMn₂O₄ in aqueous electrolyte and this study unveils several strange but interesting facts which are uncommon in non-aqueous system [10]. For example, it was found that LiMn₂O₄ converts to amorphous and crystalline phases of MnO₂ during cycling and the cycling stability could be significantly improved by optimization of the electrolyte by incorporating Mn²⁺-ions [10]. In this particular chapter, an attempt has been made to unravel the Al³⁺-ion electrochemistry in LiFePO₄ since nothing is known about it to the best of our knowledge.

6.2 Experimental

6.2.1 Materials: Lithium iron phosphate (LiFePO₄) was directly purchased from SRL chemical. Aluminium chloride hexahydrate (Merck), aluminium sulphate 16-hydrate (Merck), aluminium nitrate monohydrate (Merck), lithium sulphate monohydrate (SRL), hydrochloric acid (Merck), carbon black (Alfa Aesar) and polyvinylidene fluoride (Sigma Aldrich) and N-methyl-2-pyrrolidone (Alfa Aesar) have been used for performing the electrochemical experiments.

6.2.2 Electrode preparation and electrochemical measurement: LiFePO₄ was directly used without any further treatment for the electrochemical analysis. Electrode slurries were prepared by thoroughly mixing LiFePO₄, carbon black and PVDF in mass ratio of 75:15:10 in NMP as medium. Then the slurry was drop coated on Ti foil (1 cm x 1 cm) and finally dried in an oven at 100 °C for 12 h. The mass loading in the prepared electrodes was approximately in the range of 5-6 mg. Cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) measurements were carried out in three electrodes arrangement in AUTOLAB 302N Potentiostat/Galvanostat. The three electrodes were: 1 M KCl electrolyte containing aqueous Ag/AgCl as reference electrode, platinum rod (3 mm diameter) as counter electrode and active material deposited Ti foil as working electrode. CV and GCD were performed in various aqueous electrolytes in the potential window of -0.8 to 1 V unless otherwise stated. Specific capacity (C_{sp}) was calculated using the following equation [6.1]:

$$C_{sp} = \frac{I\Delta T_d}{m}$$
[6.1]

where I, ΔT_d and m are constant discharge/charge current, discharge period, and mass loading in the prepared electrodes respectively. All the electrochemical experiments were performed at room temperature.

6.2.3 Structural and morphological characterizations: Powder X-ray diffraction (P-XRD) measurements were performed for crystallographic phase identification using D8 focus X-ray diffractometer (Cu-K α radiation, $\lambda = 1.5406$ Å), Bruker AXS at a scanning rate of 1° min⁻¹ in 2 θ range of 15-80°. The surface morphology of the electrodes was observed by field emission scanning electron microscopy (FESEM, JEOL JSM 7200F). XPS was carried out in Physical Electronics PHI 5000 Versa Probe III C₆₀ ion gun.

6.3 Results and discussion

The microstructure and morphology of LiFePO₄ were investigated by X-ray diffraction and electron microscopy techniques. XRD pattern of LiFePO₄ is depicted in figure 6.1 a. The XRD peaks at $2\theta = 17.28$, 20.83, 22.76, 24.17, 25.70, 29.95, 32.38, 35.85° correspond to the planes (200), (101), (210), (011), (201), (020), (301) and (311) respectively [JCPDS # 83-2092, space group Pnma]. The sharp XRD peak indicates the crystalline nature of LiFePO₄. From SEM micrograph (figure 6.1 b),

flake like LiFePO₄ particles could be observed with a broad size distribution in the range of 200 nm to 1 μ m.

Figure 6.1: (a) XRD pattern and (b) FESEM of LiFePO₄

The electrochemical activity of LiFePO₄ in Li⁺-ion conducting aqueous electrolyte has been investigated previously [3-9]. Therefore, to ascertain a consistent outcome, we initially explored the Li⁺ ion electrochemistry of LiFePO₄ in 0.5 M Li₂SO₄ aqueous electrolyte to observe the process of Li⁺-ion intercalation/deintercalation. Figure 6.2 a shows the cyclic voltamogram of LiFePO₄ at a scan rate of 1 mVs⁻¹ and redox behavior is easily noticeable. A pair of prominent redox peaks could be seen in the cyclic voltammetry measurements. The cathodic and anodic peaks are observed at around -0.16 V and 0.46 V (vs. Ag/AgCl) respectively. The galvanostatic charge/discharge (GCD) measurement (Figure 6.2 b) also supports the cyclic voltammetry result. The GCD measurement was performed at a current density of 0.3 Ag⁻¹. The discharge curves show a plateau around 0.12 V (vs. Ag/AgCl), whereas the charge curves show the plateau at 0.25 V suggesting the intercalation/deintercalation of Li⁺-ions in LiFePO₄. The CV and charge/discharge experimental outcomes are in corroboration with previous reports [11]. This supports that the selected LiFePO₄ could be used for our further studies. In the present case, the estimated discharge capacity of LiFePO₄ is 157 mAhg⁻¹ in the first cycle. There is gradual decrease in specific capacities and the electrode could retain only 28% of specific capacity in the 20th cycle. It is a well-known fact that LiFePO₄ shows severe capacity decline in Li⁺-ion conducting aqueous electrolytes [11].

Figure 6.2: Electrochemical measurements of LiFePO₄. (a) Cyclic voltammetry (CV) at scan rate of 1 mVs⁻¹, (b) galvanostatic charge-discharge (GCD) profile at current density of 0.3 Ag⁻¹ for 20 repeated cycles (inset shows capacity vs. cycle number plot) in 0.5 M Li₂SO₄ aqueous electrolyte; and (c) CV at scan rate of 1 mVs⁻¹ and (d) GCD at current density of 0.3 Ag⁻¹ for 20 repeated cycles (inset shows capacity vs. cycle number plot) in 0.5 M AlCl₃ aqueous electrolyte.

Based on the outcome of Li⁺-ion electrochemistry, the electrochemical activity of LiFePO₄ was exclusively investigated in Al³⁺-ion conducting aqueous electrolytes. Figure 6.2 c shows the CV profile of LiFePO₄ in 0.5 M AlCl₃ aqueous electrolyte at a scan rate of 1 mVs⁻¹. Two prominent redox peaks could be observed. The cathodic and anodic peaks are at -0.26 V (peak A) and 0.55 V (peak B) respectively. The potential is measured w.r.t. Ag/AgCl reference electrode. The charge/discharge profiles obtained at a current density of 0.3 Ag⁻¹ also show discharge and charge potential plateaus around -0.08 V and 0.35 V respectively (Figure 6.2 d), which is fairly in consistent with the redox peak positions as observed in the corresponding CV profiles. It is noted that the charge plateau shifts to 0.5 V in subsequent charge cycles. LiFePO₄ initially exhibits high specific capacity of 140 mAhg⁻¹ and 149 mAhg⁻¹

respectively in the 1st charge and 2nd discharge cycle, however there is severe decline of specific capacities with progressing cycle number similar to our earlier discussed Li⁺-ion study. The discharge capacity is only 3.53 mAhg⁻¹ at the 20th cycle. Following the similar protocol as was reported for LiMn₂O₄, we performed the discharge first. The 1st discharge cycle capacity is found to be small (11 mAhg⁻¹) (Figure 6.3).

Figure 6.3: 1st discharge, 1st charge and 2nd discharge GCD pattern of LiFePO₄ in 0.5 M AlCl₃ aqueous electrolyte at current density of 0.3 Ag⁻¹.

We also investigated the Al^{3+} -ion electrochemistry in electrolytes with different molar concentrations. Electrochemical activity of varying degrees could be seen from the CV profiles in all the investigated electrolytes (0.1 M, 0.25 M and 1 M AlCl₃ aqueous electrolytes) as shown in Figure 6.4. However, charge-discharge profiles with significant specific capacities could be achieved only with 0.25 M electrolyte. The discharge capacity is 28 mAhg⁻¹ at current density of 0.3 Ag⁻¹ in the initial cycle. On the other hand, the initial discharge measurement could not be even completed at the similar current density for 1 M AlCl₃ electrolyte (Figure 6.4 d). The measurement always shows a continuous discharge process at -0.4 V, which is likely related to some unknown side reactions of the electrolyte. Interestingly, the measurements could be performed at higher current densities as shown in Figure 6.4 e, f. Similarly, the charge/discharge measurement is very fast in 0.1 M AlCl₃ aqueous electrolyte at current density of 0.3 Ag⁻¹ (Figure 6.4 h). These outcomes signify the importance of optimization of electrolytes for Al³⁺-ion insertion.

Figure 6.4: CV profile of LiFePO₄ at scan rate of 1 mVs⁻¹ in (a) 1 M AlCl₃, (b) 0.25 M AlCl₃, (c) 0.1 M AlCl₃ aqueous electrolytes; GCD of LiFePO₄ in 1 M AlCl₃ aqueous electrolyte at (d) current density of 0.3 Ag⁻¹, (e) current density of 0.75 Ag⁻¹, (f) current density of 1 Ag⁻¹; GCD profile at current density of 0.3 Ag⁻¹ in (g) 0.25 M AlCl₃, (h) 0.1 M AlCl₃ aqueous electrolyte.

We also studied the electrochemical activity of LiFePO₄ in 1 M Al₂(SO₄)₃ and 1 M Al(NO₃)₃ aqueous electrolytes. The charge/discharge profiles (Figure 6.5 a) obtained in 1 M Al₂(SO₄)₃ electrolyte is almost similar to the profiles obtained in 0.5 M AlCl₃ aqueous electrolyte. The potential plateaus are consistent. However, the specific capacity values are much lower than the 0.5 M AlCl₃ aqueous electrolyte. The initial discharge capacity is 33.7 mAhg⁻¹ at current density of 0.3 Ag⁻¹. On the other hand, the electrochemical activity of LiFePO₄ in Al(NO₃)₃ electrolyte is slightly different. There are no noticeable potential plateaus in both charge and discharge cycles and the specific capacities are extremely low (Figure 6.5 b). It also shows high polarization.

Figure 6.5: GCD profile of LiFePO₄ in current density of 0.3 Ag^{-1} in (a) 1 M $Al_2(SO)_4$, and (b) 1 M $Al(NO_3)_3$ aqueous electrolytes.

Figure 6.6: CV measurement of LiFePO₄ at scan rate of 1 mV s⁻¹ in (a) 1 M HCl, (b) pristine water; (c) GCD at current density of 0.3 Ag^{-1} in 1 M HCl aqueous electrolyte.

Since the electrochemical activities are investigated in water-based electrolytes, in order to examine the contribution of any proton intercalation in LiFePO₄, CV and charge/discharge experiments were performed in 1 M HCl and pristine water (Figure 6.6). It is seen that there is no noticeable electrochemical activity in these cases which signifies no proton involvement in the study.

To understand the phase transformation upon the electrochemical activity of Al^{3+} ion in LiFePO₄ during discharge and charge processes, the cycled electrodes

were interrogated by *ex-situ* electron microcopy and spectroscopy techniques. *Ex-situ* FESEM images, as shown in Figure 6.7 (a-c), of the LiFePO₄ electrodes after 1st discharge and 1st charge show no evidence of noticeable disintegration of the electrode upon Al³⁺-ion reactivity. This is in contrary to the report on LiMn₂O₄ electrode where complete disintegration of the electrode was seen during the 1st discharge cycle itself [10].

Figure 6.7: *Ex-situ* FESEM of LiFePO₄ (a) pristine electrode, (b) after 1^{st} charge, (c) after 1^{st} discharge.

However, certain changes are noticeable in the *ex-situ* XRD patterns. Figure 6.8 shows the *ex-situ* XRD patterns of LiFePO₄ electrodes after 1st discharge, 1st charge and 2nd discharge cycles along with the XRD pattern of pristine LiFePO₄. The XRD profiles were analyzed with High Score-Plus software (Figure 6.9). It appears that the XRD pattern of the electrode after 1st discharge cycle is almost similar to the pristine LiFePO₄ except emergence of two sharp peaks at $2\theta = 38.3^{\circ}$ and 40° which could be attributed to the presence of Fe₂O₃ (ICSD-98-005-1122). The XRD pattern is also similar to Al_{0.031}Li_{0.969}FePO₄ phase (ICSD- 98-016-0778). Quantification analysis suggests the existence of 41% of Al_{0.031}Li_{0.969}FePO₄, 12% of Fe₂O₃ and 47% of LiFePO₄ in the electrode after completing the 1st discharge cycle. However, the XRD patterns of 1st charge and 2nd discharge states electrodes are analogous, but slightly different from the 1st discharge state and the pristine LiFePO₄. The characteristic XRD peak at $2\theta = 17.28$ ° for the pristine LiFePO₄ corresponds to the (200) plane of LiFePO₄. After 1st charge and 2nd discharge, this particular peak almost disappeared with concomitant emergence of a new XRD peak around $2\theta = 18.11^{\circ}$. Thereafter, the XRD peaks of the pristine material at $2\theta = 22.76^{\circ}$ and 24.17° are replaced by a new peak at $2\theta = 23.84^{\circ}$ for both charge/discharge states. Another peak of LiFePO₄ at 2θ = 29.95 ° almost vanished and three consecutive new peaks appeared at $2\theta = 29.73^{\circ}$, 30.37° and 30.91° for both charge/discharge stages.

CHAPTER 6

Moreover, the peak intensity of the pristine peak at $2\theta = 35.74^{\circ}$ decreased 2^{nd} significantly for both 1st charge and discharge state electrodes. The electrochemical of in reaction mechanism Li⁺-ion LiFePO₄ is an intercalation/deintercalation process and it is well evidenced. On contrary to Li⁺-ion insertion mechanism, in case of A1³⁺ ion electrochemical reaction in LiFePO₄, ex-situ XRD results suggest that it is not only intercalation/deintercalation but conversion mechanism is also possible. Considering the macroscopic size of the investigated LiFePO₄, surface adsorption process is expected to be negligible.

Figure 6.8: *Ex-situ* XRD patterns of pristine LiFePO₄ after 1^{st} charge/discharge and 2^{nd} discharge states.

Apart from it, *ex-situ* XPS has also been carried out for the pristine electrode and charge/discharge electrodes and the spectra are depicted in Figure 6.10. As shown in the Figure 6.10 b, aluminum peak could be observed at 75.2 eV for both charged/discharged state and the same is absent for pristine LiFePO₄ electrode [12].

Figure 6.9: (a-c) Screen shot of XRD analysis of HighScore Plus software.

Fe 2P XPS peak (Figure 6.10 c) was analyzed to understand the change in the oxidation states of Fe. As observed from (Figure 6.10 c) Fe 2P spectrum, two main peaks at 711.15 eV for Fe $2p_{3/2}$ and 725eV for Fe $2p_{1/2}$ with shake up satellite at

716.53 eV for Fe $2p_{3/2}$ and 730.7 eV for Fe $2p_{1/2}$ could be noticed, which suggests Fe (II) oxidation state in pristine LiFePO₄ [13]. The XPS spectrum of the 1st charge cycle (Figure 6.10 c) shows that the main peaks are centered at 712.5 eV and 726.3 eV, which is corresponding to Fe (III) oxidation state [14]. These peaks imply the presence of FePO₄ in the electrode after completion of 1st charge process. Again, after completing 1st discharge cycle, XPS peaks are almost similar to pristine electrode. Therefore, Fe(II) states has been recovered after 1st discharged process. XPS spectra of 2P phosphorous (Figure 6.10 e) show a single doublet component attributed to P $2p_{3/2}$ and P $2p_{1/2}$ [15]. The presence of single doublets in all P 2P spectra suggests only one phosphorous environment which signify (PO₄)³⁻ of LiFePO₄ [15]. But the global amount of phosphorous was observed continuously decreasing from the pristine electrode to the 1st discharged stage electrode as was revealed from

Figure 6.10: *Ex-situ* XPS spectra of (a) summary of pristine and tested electrodes, (b) aluminum 2p spectra, (c) iron 2p spectra, (d) oxygen 1s spectra, and (e) phosphorous 2p spectra for pristine LiFePO₄ and after 1st charge/discharge states.

quantitative analysis. Oxygen 1s spectrum shows (figure 6.10 d) that XPS peak at 531.3 eV for pristine electrode attributed to oxygen present in the phosphate group $((PO_4)^{3-})$. This peak has been shifted to slightly higher binding position (531.7 eV) for the electrodes after 1st charge and discharge. This slight shift of binding energy may result from the accumulation of auxiliary oxygenated species on the electrode surface [15].

Based on the electrochemical outcome and post-mortem analysis of the electrodes, it could be inferred that there is a possibility of Al³⁺-ion electrochemically reacting with LiFePO₄. However, it also appears that structural Li⁺-ion also plays a significant role in the charge-discharge process. A comparison of the charge discharge curves, as shown in Figure 6.2 b and Figure 6.2 d, indicates that the features of charge

Figure 6.11: GCD profile in mixture of 0.5M Li₂SO₄ and 0.5 M AlCl₃ (1:1) aqueous electrolyte of LiFePO₄ at current density of 0.3 Ag⁻¹.

and discharge profiles are almost identical for both Li⁺-ion and Al³⁺-ion conducting aqueous electrolytes. First, there is gradual decline of specific capacities in both cases. Second, the charge/discharge potential plateaus in both cases are almost coinciding with each other. However, a close inspection indicates that a polarization value of 0.42 V is seen in the case of Al³⁺-ion conducting aqueous electrolyte, whereas it is 0.14 V for the Li⁺ ion counterpart. Experiments were performed in an aqueous electrolyte with a mixture (1:1 v/v) of 0.5 M Li₂SO₄ and 0.5 M AlCl₃. As shown in Figure 6.11, it could be seen that the polarization value in this case is 0.3 V which is

an intermediate value of pristine 0.5 M Li₂SO₄ and 0.5 M AlCl₃ electrolytes. Moreover, the charge discharge profiles also shift to higher and lower potential plateaus during respective subsequent charging and discharging cycles similar to the charge/discharge profiles as obtained at pristine 0.5 M AlCl₃ electrolyte. This signifies the difficulty in Al³⁺-ion insertion and extraction from LiFePO₄. This is in contrary to LiMn₂O₄ study where the charge and discharge potential plateaus are almost superimposed on each other in subsequent cycles [10]. The 1st discharge cycle in case of LiMn₂O₄ is completely different from its subsequent cycles and it also leads to disintegration of the electrode with concomitant formation of MnO₂. Such behavior could not be seen at all in case of LiFePO₄. It appears that Li⁺-ion intercalation and deintercalation take place in case of LiFePO₄ even in Al³⁺ conducting aqueous electrolyte.

Figure 6.12: (a) Capacity vs. cycle number plot of LiFePO₄ in 0.5 M AlCl₃ aqueous electrolyte at current density of 1 Ag⁻¹, inset shows the color change of the electrolyte after cycling, and (b) UV-Visible spectra of the electrolytes before and after GCD cycling, inset shows the UV-Visible spectrum of 0.5 M AlCl₃ from 200 nm to 600 nm.

The cycling stability of the LiFePO₄ electrode is also investigated. It is observed that LiFePO₄ shows a charge capacity of 139 mAhg⁻¹ and discharge capacity of 48 mAhg⁻¹ in the first cycle in 0.5 M AlCl₃ electrolyte at the current density of 1 Ag⁻¹ (figure 6.12 a). Later on, the electrode exhibits poor capacity retention. The electrode stability has also been tested in other concentration of aqueous AlCl₃ electrolyte (such as 0.25 M and 0.1 M) and it is found that 0.5 M electrolyte shows

better electrochemical activity in comparison to the rest of the concentrations. It was found that the color of the AlCl₃ electrolyte changes from colorless to orange while performing the experiments all the time as shown in the inset of Figure 6.12 a. Therefore, the electrolyte was analyzed with UV-Visible spectroscopy. As shown in Figure 6.12 b, UV-Visible spectrum of pristine 0.5 M AlCl₃ electrolyte indicates having absorption peak in the range of 200-300 nm. However, the UV-Visible spectrum of the same electrolyte after 100 charge/discharge cycles with LiFePO₄ electrode exhibits two broad peaks around 380 nm and 470 nm. The change of color of the electrolyte to orange may indicates existence of iron species in the electrolyte.

Figure 6.13: GCD profile of LiFePO₄ at current density of 1 Ag⁻¹ in (a) 0.12 M FeCl₃ added in 0.5 M AlCl₃, (b) 0.06 M FeCl₃ added in 0.5 M AlCl₃, (c) 0.03 M FeCl₃ added in 0.5 M AlCl₃, (d) 0.18 M FeCl₃ added in 0.5 M AlCl₃ aqueous electrolyte and (e) Capacity retention vs. cycle number plot of LiFePO₄ in different concentrations of FeCl₃ added in 0.5 M AlCl₃ aqueous electrolyte at the current density of 1 Ag⁻¹.

Therefore, we compared the result with the UV-Visible spectrum of (concentration 0.18 M) FeCl₃ dissolved in AlCl₃ electrolyte and observed a broad peak which is almost superimposing in the same range of electrolyte after discharge. On hindsight, we decided to add certain fraction of FeCl₃ in 0.5 M AlCl₃ aqueous electrolyte and performed electrochemical experiments. Experiments have been performed in

different concentrations of FeCl₃ such as 0.18 M (Figure 6.13 d), 0.12 M (Figure 6.13 a), 0.06 M (Figure 6.13 b), and 0.03 M (Figure 6.13 c). Improvements in specific capacities could be noticed upon addition of FeCl₃ in the electrolyte. The capacity versus cycle number plot (shown in Figure 6.13 e) indicates that LiFePO₄ could retain discharge capacity of 19 mAhg⁻¹ at the 100th cycle in 0.18 M FeCl₃ added AlCl₃ electrolyte, whereas this value is only 2.63 mAhg⁻¹ for 0.03 M FeCl₃ added AlCl₃ electrolyte and 1.8 mAhg⁻¹ for pristine AlCl₃ electrolyte. The measured current density was identical in all cases (1 Ag⁻¹). It signifies that there is possibility of leaching of iron species from the electrolytes. It is noted here that we could not perform experiments beyond 0.18 M FeCl₃ due to deposition of orange colored byproduct in the counter electrode.

6.4 Conclusion

In summary, the Al^{3+} ion electrochemical behavior of LiFePO₄ in aqueous electrolyte is illustrated. The electrochemical and post-mortem analysis reveal that a complex electrochemical mechanism undergoes while Al^{3+} -ion reacts with LiFePO₄. While specific capacity decline was observed during cycling, it was shown that it could be mitigated by optimization of the electrolyte. In this context, addition of iron chloride in the electrolyte could stabilize the cycling profiles by almost 23.5 %.

6.5 References

- Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries. *Journal of the electrochemical society*, 144(4): 1188, 1997.
- [2] Sauvage, F., Tarascon, J.M., and Baudrin, E. Insights into the potentiometric response behaviour vs. Li⁺ of LiFePO₄ thin films in aqueous medium. *Analytica chimica acta*, 622(1-2): 163-168, 2008.
- [3] Manickam, M., Singh, P., Thurgate, S., and Prince, K. Redox behavior and surface characterization of LiFePO₄ in lithium hydroxide electrolyte. *Journal* of power sources, 158(1): 646-649, 2006.

- [4] Noerochim, L., Yurwendra, A.O., and Susanti, D. Effect of carbon coating on the electrochemical performance of LiFePO₄/C as cathode materials for aqueous electrolyte lithium-ion battery. *Ionics*, 22(3): 341-346, 2016.
- [5] Mi, C.H., Zhang, X.G., and Li, H.L. Electrochemical behaviors of solid LiFePO4 and Li_{0.99}Nb_{0.01}FePO₄ in Li₂SO₄ aqueous electrolyte. *Journal of Electroanalytical Chemistry*, 602(2): 245-254, 2007.
- [6] Vujković, M., Stojković, I., Cvjetićanin, N., and Mentus, S. Gel-combustion synthesis of LiFePO₄/C composite with improved capacity retention in aerated aqueous electrolyte solution. *Electrochimica Acta*, 92: 248-256, 2013.
- [7] Manjunatha, H., Venkatesha, T.V., and Suresh, G.S. Kinetics of electrochemical insertion of lithium ion into LiFePO₄ from aqueous 2 M Li₂SO₄ solution studied by potentiostatic intermittent titration technique. *Electrochimica acta*, 58: 247-257, 2011.
- [8] He, P., Zhang, X., Wang, Y.G., Cheng, L., and Xia, Y.Y. Lithium-ion intercalation behavior of LiFePO₄ in aqueous and nonaqueous electrolyte solutions. *Journal of the Electrochemical Society*, 155(2): 144, 2007.
- [9] Love, C.T., Korovina, A., Patridge, C.J., Swider-Lyons, K.E., Twigg, M.E., and Ramaker, D.E. Review of LiFePO₄ phase transition mechanisms and new observations from x-ray absorption spectroscopy. *Journal of The Electrochemical Society*, 160(5): A3153, 2013.
- [10] Nandi, S., and Das, S.K. An electrochemical study on LiMn₂O₄ for Al³⁺ ion storage in aqueous electrolytes. *Physical Chemistry Chemical Physics*, 23(35): 19150-19154, 2021.
- [11] He, P., Liu, J.L., Cui, W.J., Luo, J.Y., and Xia, Y.Y. Investigation on capacity fading of LiFePO₄ in aqueous electrolyte. *Electrochimica acta*, 56(5): 2351-2357, 2011.
- [12] González, J.R., Nacimiento, F., Cabello, M., Alcántara, R., Lavela, P., and Tirado, J.L. Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries. *RSC advances*, 6(67): 62157-62164, 2016.
- [13] Castro, L., Dedryvère, R., Ledeuil, J.B., Bréger, J., Tessier, C., and Gonbeau,D. Aging mechanisms of LiFePO₄//graphite cells studied by XPS: redox

reaction and electrode/electrolyte interfaces. *Journal of The Electrochemical Society*, 159(4): A357, 2012.

- [14] Yamashita, T., and Hayes, P. Analysis of XPS spectra of Fe²⁺ and Fe³⁺ ions in oxide materials. *Applied surface science*, 254(8): 2441-2449, 2008.
- [15] Castro, L., Dedryvere, R., El Khalifi, M., Lippens, P.E., Bréger, J., Tessier, C., and Gonbeau, D. The spin-polarized electronic structure of LiFePO₄ and FePO₄ evidenced by in-lab XPS. *The Journal of Physical Chemistry C*, 114(41): 17995-18000, 2010.