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ABBREVIATIONS 

Abbreviations/ Symbol Name 

PPyNTs Polypyrrole nanotubes 

PEDOT Poly(3,4-ethylenedioxythiophene) 

FESEM  Field Emission Scanning Electron Microscopy  

FTIR  Fourier-transform infrared spectroscopy  

XRD  X-ray diffraction 

XPS  X-ray photoelectron spectroscopy  

HRTEM  High Resolution Transmission Electron Microscopy  

ITO  Indium tin oxide 

IUAC Inter University Accelerator Centre  

MeV Mega electron volt 

cm  Centimeter  

MO  Methyl orange 

CTAB Cetrimonium bromide  

rGO Reduced graphene oxide 

DD water Double distilled water 

NMP N-Methyl-2-pyrrolidone  

PVDF Polyvinylidene fluoride  

SEM Scanning Electron Microscopy  

TGA  Thermogravimetric analysis  

TMDC Transition-metal dichalcogenide  

w.r.t With respect to 

g/l    Gram per litre 

BET    Brunaur-Emmett-Teller  

EDL    Electric double layer 

EIS    Electrochemical impedance spectroscopy  

MHz    Megahertz  

%    Percent 

AIB    Aluminum ion battery 

Al3+ ion    Aluminum ion 

A/g    Ampere per gram  

CV    Cyclic voltammetry 
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 GCD Galvanostatic charge-discharge 

Ti3AlC2 Titanium Aluminum Carbide  

LiFePO4 Lithium Iron phosphate  

h hour  

M Molar  

mA Mili ampere  

MoS2 Molybdenum disulfide 

NaOH Sodium Hydroxide  

KCl Potassium chloride  

GO Graphene oxide 

AlCl3 Aluminium chloride 

Al2(SO4)3 Aluminium sulfate  

Al(NO3)3 Aluminium nitrate  

oC Degree Celsius 

Wh Watt-hour 

Ω Ohm  

η Coulombic efficiency 

Csp Specific capacitance 

Rs Equivalent series resistance 

Rct Charge transfer resistance 

Se Electronic energy loss 

Sn Nuclear energy loss 
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