Dedicate this thesis to my beloved parents and inspiration

Maa & Deuta

DECLARATION BY THE CANDIDATE

I hereby declare that the thesis "*Electrochemical investigations on polymer based ternary nanocomposites, exfoliated MAX phase (Ti₃AlC₂) and lithium iron phosphate*", being submitted to **Department of Physics, Tezpur University**, Tezpur, Assam in partial fulfillment for the award of the degree of Doctor of Philosophy in physics and it has not been previously considered for the award of any degree, diploma, associateship, fellowship or any other similar title or recognition from any University, Institute or other organizations.

Date: 01.06.2023 Place: Tezpur

Davalina Sarmah.

(Devalina Sarmah) Enrollment No: PHP17005 Registration Number: TZ121548 of 2012

TEZPUR UNIVERSITY (A Central University established by an Act of Parliament) Napaam, Tezpur- 784028 DISTRICT: SONITPUR, ASSAM, INDIA

Dr. Shyamal Kumar Das Assistant Professor Department of Physics School of Sciences, Tezpur University Phone: 03712-275586 Email: skdas@tezu.emet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "*Electrochemical investigations on polymer* based ternary nanocomposites, exfoliated MAX phase (Ti_3AlC_2) and lithium iron phosphate" submitted to the School of Sciences, Tezpur University in requirement of partial fulfillment for the award of the degree of Doctor of Philosophy in Physics is a record of research work carried out by Ms. Devalina Sarmah under my supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any degree.

Styand Kr Dm.

Date: 01.06.2023 Place: Tezpur

(Shyamal Kumar Das) Principal Supervisor

ACKNOWLEDGEMENT

It gives me immense pleasure and joy to express my heartfelt gratitude to my honored supervisor Late Prof. Ashok Kumar, Professor, Department of Physics, Tezpur University, who guided for the thesis work. Without his inspiration, encouragement and criticism, the present investigation would not have been possible.

It is a matter of immense pleasure for me to express profound sense of gratitude to my honored supervisor Dr. Shyamal Kumar Das for his dynamic and meticulous supervision and encouragement. I am fortunate enough to avail all the resources of his genial inspiration and enthusiastic thoughts. Without his serious involvement, thoughtfulness and patience, it would have been difficult for me to complete this thesis. I will always admire trainings given by him throughout my life.

I would like to express my gratitude to my doctoral committee members, Prof. Dambarudhar Mohanta, Dept. of Physics and Prof. Pabitra Nath, Dept. of Physics, Tezpur University, Assam for their valuable advices and guidance during the tenure of my research work.

I would like to express my sincere thanks to former Vice-chancellor, Prof. M. K. Chaudhuri, Prof. M. M. Sarma, Prof. V. K. Jain and present Vice-chancellor Prof. D. K. Bhattacharyya of Tezpur University for providing all the necessary facilities and atmosphere in the requirement of Ph.D. degree.

I am grateful to Prof. Prof. M. K. Das, Head, Department of Physics for providing the necessary facilities to carry out the research work and for his support.

I am grateful to Inter-University Accelerator Centre (IUAC) for providing ion beam facilities during my Ph. D. work. I would like to thank DST-INSPIRE fellowship for the financial support. I also extend my sincere gratitude to DST-SERB for the AUTOLAB 302N Modular Potentiostat Galvanostat, Netherlands (instrument) where I perform all the important measurements of my thesis. I would like to thank P. K. Kulariya, Sunil Ojha and G. R. Umapathy for extending their help for XRD and FESEM measurements at IUAC. Let me express my sincere gratitude to SAIF, NEHU, Shillong for the TEM measurements; SAIC, Tezpur University for the sophisticated instruments required for material characterization whenever required; IASST for FESEM and Zeta potential facility, Gauhati University for FESEM facility, IIT Roorkee and NEIST Jorhat for XPS facility.

Let me take the opportunity to thank Tezpur University for providing me this great opportunity. The facilities and workaholic environment of Tezpur University have allowed me to enhance my experience both at academic and personal level. I had already been a student of Integrated M.Sc. Department of Physics, Tezpur University and deeply appreciate the constant encouragement and guidance received from all my teachers that motivated me and gave me directions. I am highly grateful to Prof. N. Das and Dr. R. Gogoi for their supports and encouragement.

I am grateful to all the staffs of department of Physics for their help. Special thanks to Narayan da, Patir da, Ratan da, Prakash da, Gogoi da, Biju da and Tridip da for all the help and timely supports.

I also extend my appreciation to the past and present members of Material Research Laboratory and Energy Storage Laboratory, Department of Physics, Tezpur University with whom I had the opportunity to work and have not already mentioned: Smriti ba, Rajiv da, Arati ba, Madhabi ba, Homen da, Rituraj, Bhagyalakhi, Kashmiri, Sunny, Ankush, Kakoli, Atuwar, Ritupurna, Sushmita and Konika. Also, I would like to acknowledge M.Sc. dissertation students Monojit, Sangita, Mrinal, Sehnaz and Niki. Also I would like to thank Ashamoni, Priyanka, Diganata, Sritam, Bhupali and Stuti for their help and discussion.

My time at Tezpur University is made enjoyable and memorable by my friends that becomes a part of my life. My special thanks to my dear friends Urbashi, Minhaz, Mridushmita, Shyamali, Swapnasikha and Upasana for taking care of my emotions and helps me in growing. I would also to express my thanks to my friends Pritam, Anshuman, Aftab, Priyanka, Gitashree, Durlav, Ankita, Nomita, Sayanti, Nayana and Lavina.

Thank you my best friend Saurav for always being there for me during the ups and downs of my Ph.D. life.

Nothing can repay the continuous encouragement, love, blessing, support and everything that I received from my "Maa and Deuta". I have no words to express my feelings for you. In short, you both mean the world to me and I thank you for everything. I am very much grateful to my brothers Saptarsi (Baba) and Pulastya (Subu) for their unconditional love. I would also like to thank Trideep for encouraging me in the last phase of my Ph.D. tenure.

I thank all those people who helped me in many other ways yet whose name couldn't be mentioned.

At last, I thank almighty for god for keeping me safe, happy and going forward.

Devalina Sarmah

Date: 30.11.2022

(Devalina Sarmah)

LIST OF TABLES

Table No.	Table caption	Page No.
	CHAPTER 2	
Table 2.1	Obtained values of onset decomposition temperature (T $_{onset}$), rapidest decomposition temperature (T $_{rpd}$) and degradation % at 800°C from TG analysis and derivative of weight loss curves	39
Table 2.2	Obtained values of contact angles, polar, dispersive and total surface energies of PEDOTNPs, rGO/PEDOTNPs, MoS ₂ /PEDOTNPs and MoS ₂ -rGO/PEDOTNPs nanocomposites electrodes with water and diiodomethane	46
Table 2.3	Values of equivalent series resistance (R_s), charge transfer resistance (R_{ct}) and Knee frequency (f_{knee}) from EIS measurements	53
Table 2.4	Comparison of calculated parameters of some reported symmetric supercapacitors with the fabricated MoS_2 -rGO/PEDOTNPs // MoS_2 -rGO/PEDOTNPs symmetric supercapacitor	56-57
	CHAPTER 4	
Table 4.1	Comparison of specific capacitance and cycling stability of different electrode materials for electrochemical supercapacitor	91-92
Table 4.2	Electronic energy loss (S_e), nuclear energy loss (S_n) and projected range for 100 MeV O ⁷⁺ obtained from SRIM calculation for SHI irradiation of MoS ₂ -rGO/PPyNTs electrodes	94
Table 4.3	Bragg angles and percentage of crystallinity determined from XRD patterns of pristine and irradiated MoS ₂ -rGO/PPyNTs	97
Table 4.4	electrodes at different fluence Contact angles of pristine and irradiated MoS ₂ -rGO/PPyNTs electrodes with water and diiodomethane and calculated values	105
Table 4.5	of polar, dispersive and total surface energies of the electrodes Cathodic and anodic slopes of peak currents with square root of scan rate $(\vartheta^{\frac{1}{2}})$ and calculated values of electro-active surface	108

	from Randles-Sevcik equation of pristine and irradiated MoS ₂ -	
	rGO/PPyNTs electrodes with variation of fluencies	
Table 4.6	Average heterogeneous rate constant, $K_{s} \ (s^{\text{-1}})$ and electron	109
	transfer coefficient (α) calculated from Laviron's model	
Table 4.7	Specific Capacitance (C_{sp}), Coulombic efficiency (η), Energy	113
	density (E), Power density (P) and Rate capability of the pristine	
	and irradiated electrodes calculated from galvanostatic charge-	
	discharge (GCD) measurements	
Table 4.8	Equivalent series resistance (R_s) and Charge transfer resistance	117
	(R_{ct}) of pristine and irradiated electrodes determined from	
	nyquist plots	

LIST OF FIGURES

Figure No.	Figure caption	Page No.
	CHAPTER 1	
Figure 1.1	Ragone plot for different electrochemical energy storage devices	2
Figure 1.2	Schematic of (a) conventional capacitor, (b) charge storage in an electric double-layer capacitor (EDLC)	5
Figure 1.3	Structures of conducting polymers, (i) polypyrrole, (ii) poly(3,4-ethylene dioxythiophene), and (iii) Polyaniline	9
Figure 1.4	Schematic of graphene nanosheet, reduced graphene oxide and nanoplatelets	10
Figure 1.5	Crystal structure of MoS_2 . (a) The layered MoS_2 crystal is held together by strong in-plane covalent Mo-S interactions and relatively weaker S-S van der Waals interactions. (b) The honeycomb crystal structure of MoS_2 has a lattice constant of 3.16 Å.	12
Figure 1.6	MAX phase (Ti ₃ AlC ₂) to MXene (Ti ₃ C ₂ T _x). Layered ternary Ti ₃ AlC ₂ MAX powder is treated with acidic aqueous solution of hydrofluoric acid (HF), then the Al layer is selectively etched and replaced with surface attached terminations groups (T _x), resulting in multilayered Ti ₃ C ₂ T _x MXenes. Delaminated Ti ₃ C ₂ T _x is prepared by the intercalation of water, cations and DMSO into the interlayer spacing followed by ultrasoncation	14
	CHAPTER 2	

Scheme 2.ISchematic of synthesis steps of ternary MoS2-
rGO/PEDOTNP nanocomposites. (a) Exfoliation of
MoS2, (b) graphite oxide to graphene oxide, (c) MoS2-

xv

	GO layer-by-layer structures, and (d) ternary MoS_2 -	
	rGO/PEDOTNP nanocomposites by in-situ reduction	
Figure 2.1	XRD of (a) standard patterns of MoS ₂ (JCPDS no. 77-	34
	1716) (i), bulk MoS_2 (ii), Exfoliated MoS_2 (iii), standard	
	patterns of graphite (JCPDS no. 75-2078) (iv), reduced	
	graphene oxide (rGO) (v), and MoS2-rGO layer-by-	
	layer structures (vi); (b) PEDOTNP, rGO/PEDOTNP,	
	MoS ₂ /PEDOTNP and MoS ₂ -rGO/PEDOTNP	
	nanocomposites	
Figure 2.2	FESEM micrographs of (a, b) bulk MoS ₂ , (c, d)	35
	exfoliated MoS ₂	
Figure 2.3	TEM micrographs, (a) MoS ₂ nanosheets, (b)	36
	rGOnanosheets (inset shows rGOnanosheets at higher	
	magnification), (c) and (d) MoS2-rGO layer-by-layer	
	structures at different magnifications, (e) SEM	
	micrograph of rGO-MoS ₂ layer-by-layer structures, and	
	(f) elemental mapping of C, O, Mo and S in MoS ₂ -rGO	
Figure 2.4	SEM micrographs, (a) PEDOTNP, (b) MoS ₂ -rGO	36
	/PEDOTNP ternary nanocomposites, (c) EDX of MoS_2 -	
	rGO /PEDOTNP ternary nanocomposites	
Figure 2.5	TEM micrographs of (d) and (e) PEDOTNPs, (f)	37
	rGO/PEDOTNPs nanocomposite, (i) MoS ₂ /PEDOTNs	
	nanocomposite, and (j) and (k) MoS2-rGO /PEDOTNPs	
	ternary nanocomposites at different magnifications	
Figure 2.6	(a) TG analysis and (b) derivative of weight loss curves	38
	with temperature of MoS ₂ , rGO, PEDOTNPs,	
	rGO/PEDOTNPs, MoS ₂ /PEDOTNPs and MoS ₂ -	
	rGO/PEDOTNPs nanocomposites	
Figure 2.7	Raman Spectra, (i) (a) PEDOTNPs, (b)	40
	MoS_2 /PEDOTNPs, (c) rGO/PEDOTNPs and (d) MoS_2 -	
	rGO/PEDOTNPs; (ii) bulk and exfoliated MoS ₂ ; and	
	(iii) (a) PEDOTNPs, (b) MoS ₂ /PEDOTNPs, (c)	

rGO/PEDOTNPs and (d) MoS₂-rGO/PEDOTNPs nanocomposites

42

- Figure 2.8 XPS of PEDOTNP, MoS₂-rGO spectra heterostructures, and MoS₂-rGO/PEDOTNP ternary nanocomposites. (a) Survey spectra of PEDOTNP, MoS₂-rGO, and MoS₂-rGO/PEDOTNP, (b) C1s profile of PEDOTNP, (c) O1s profile of PEDOTNP, (d) S2p profile of PEDOTNP, (e) Mo3d profile of MoS₂-rGO heterostructures, (f) C1s profile of MoS₂-rGO heterostructures, (g) Ols profile of MoS₂-rGO heterostructures, S2p profile of MoS₂-rGO (h) Mo3d (i) profile of MoS_2 heterostructures, rGO/PEDOTNP ternary nanocomposites, (j) C1s MoS₂rGO/PEDOTNP profile of ternary nanocomposites, (k) O1s profile MoS₂-rGO/PEDOTNP of ternary nanocomposites, and (f) S2p profile of MoS2rGO/PEDOTNP ternary nanocomposites.
- Figure 2.9N2 adsorption-desorption isotherms, (a) PEDOTNP, (b)rGO/PEDOTNP,(c)MoS2/PEDOTNPnanocomposites,andnanocomposites
- Figure 2.10 Contact angle measurements. (i) Contact angle with 46 water of (a) PEDOTNPs, (c) MoS₂/PEDOTNPs, (e) rGO/PEDOTNPs, (g) MoS₂-rGO/PEDOTNPs nanocomposites, and (ii) with diiodomethane (b) PEDOTNPs, (d) MoS₂/PEDOTNPs, (f) rGO/PEDOTNPs, and (h) MoS₂-rGO/PEDOTNPs nanocomposites
- Figure 2.11
 (a) Cyclic voltammetry (CV) and (b) Galvanostatic
 48

 charge-discharge (GCD) measurements of PEDOTNPs,
 48

 rGO/PEDOTNPs,
 MoS₂/PEDOTNPs and MoS₂

 rGO/PEDOTNPs nanocomposites;
 GCD at different

 current densities for (c) MoS₂-rGO/PEDOTNPs

electrodes, (d) MoS₂/PEDOTNPs electrodes, (e) rGO/PEDOTNPs electrodes, (f) PEDOTNPs electrodes; (g) rate capability plot

- Figure 2.12 (a) CV measurements of MoS_2 -rGO/PEDOTNP electrode at scan rates of 1 mVs⁻¹ to 5 mVs⁻¹, (b) plot of log (peak current) vs. log (sweep rate) for 1 mVs⁻¹ to 5 mVs⁻¹, (c) relative contribution of diffusive and capacitive controlled charge storage processes at different scan rates for 1 mVs⁻¹ to 5 mVs⁻¹ and (d) Capacitive- controlled and diffusion-controlled charge storage processes for 1 mVs⁻¹ to 5 mVs⁻¹
- Figure 2.13 (a) Cycling stability up to 3000 cycles and (b) electrochemical impedance spectroscopy (EIS) measurements of PEDOTNPs, rGO/PEDOTNPs, MoS₂/PEDOTNPs and MoS₂-rGO/PEDOTNPs electrodes
- Figure 2.14 (a) Schematic representation of MoS₂-rGO/PEDOTNPs
 // MoS₂-rGO/PEDOTNPs symmetric supercapacitor,
 (b) CV for potential window optimization, (c) CV at different scan rates, (d) GCD at different current densities, and (e) rate capability plot of MoS₂-rGO/PEDOTNPs // MoS₂-rGO/PEDOTNPs symmetric supercapacitor
- Figure 2.15(a) Cycling stability plot of MoS2-rGO/PEDOTNPs //
MoS2-rGO/PEDOTNPs symmetric supercapacitor up to
10,000 cycles (inset shows the first and last two cycles),
and (b) Ragone plot of MoS2-rGO/PEDOTNPs // MoS2-
rGO/PEDOTNPs symmetric supercapacitor.
- Figure 2.16(a, b) *Ex-situ* XRD pattern ofbare Ni foam, pristine:MoS2-rGO/PEDOTNPselectrode,MoS2-rGO/PEDOTNPs electrode after 1000 and 10,000 GCDcycles; SEM micrographs of (c), (d) pristine MoS2-rGO/PEDOTNPs electrode at resolution of 10 μm and 2

52

50

58

 μ m, respectively, (e, f, g) MoS₂-rGO/PEDOTNPs electrode after 10,000 GCD cycles at resolution of 10 μ m and 2 μ m, respectively.

CHAPTER 3

Scheme 3.I	Schematic presentation of synthesis of layer-by-layer	72
	self-assembly of MoS ₂ -GO and MoS ₂ -rGO/PPyNTs	
	nanocomposite	
Figure 3.1	Zeta potential curves of (a) CTAB exfoliated MoS_2 and	72
	(b) graphene oxide (GO)	
Figure 3.2	SEM micrographs of (a) MoS ₂ -GO, (b) MoS ₂ -rGO, (c)	73
	MoS2-rGO/PPyNTs and (d) MoS2-rGO/PPyNTs at	
	different magnifications and (e) EDX spectrum of	
	MoS ₂ -rGO/PPyNTs	
Figure 3.3	TEM Image of (a) MoS_2 , (b) reduced graphene oxide	74
	(rGO), (c) MoS ₂ -rGO, (d) PPyNTs, (e) rGO-PPyNTs	
	and (f) MoS ₂ -rGO/PPyNTs	
Figure 3.4	XRD spectra of (a) bulk MoS ₂ , intercalated MoS ₂ ,	75
	Exfoliated MoS_2 , GO and rGO, (b) MoS_2 /GO and	
	MoS ₂ /rGO, (c) PPyNTs, MoS ₂ -PPyNTs, rGO-PPyNTs,	
	MoS ₂ -rGO/PPyNTs	
Figure 3.5	TGA thermographs of PPyNTs, rGO-PPyNTs, MoS ₂ -	76
	PPyNTs, MoS ₂ -rGO/PPyNTs	
Figure 3.6	Nitrogen adsorption-desorption isotherms of (a) rGO-	77
	PPyNTs, (b) MoS ₂ -PPyNTs and (c) MoS ₂ -	
	rGO/PPyNTs	
Figure 3.7	CV curve of PPyNTs, rGO-PPyNTs, MoS ₂ -PPyNTs	78
	and MoS_2 -rGO/PPyNTs at a scan rate of 20 mVs ⁻¹ and	
	(b) CV of MoS ₂ -rGO/PPyNTs at various scan rates	
	ranging from 10-100 mVs ⁻¹	
Figure 3.8	GCD curve of (a) PPy, rGO-PPyNTs, MoS_2/PPy and	80
	MoS ₂ -rGO/PPyNTs at current density 1 Ag ⁻¹ , (b) shows	
	the GCD of MoS2-rGO/PPyNTs at current densities	

	from (1-6) Ag ⁻¹ , (c) MoS ₂ -PPyNTs ,(d) rGO-PPyNTs	
	and (e) PPyNTs at current density range (1-6) Ag ⁻¹ , and	
	(f) specific capacitance vs. current density plot	
Figure 3.9	(a) Ragone plot and (b) Cycling stability with cycle	81
	numbers for the PPyNTs, rGO-PPyNTs, MoS ₂ /PPy and	
	MoS ₂ -rGO/PPyNTs electrode	
Figure 3.10	Cycling stability of MoS ₂ -rGO/PPyNTs electrode with	82
	cycle numbers at the current density of 10 Ag ⁻¹ for	
	10,000 repeated GCD cycles	
Figure 3.11	SEM micrographs of (a) and (b) MoS_2 -	83
	rGO/PPyNTs/ITO electrode before cycling at two	
	different magnifications and (c) and (d) MoS_2 -	
	rGO/PPyNTs/ITO electrode after cycling at two	
	different magnifications	
Figure 3.12	Nyquist plots for (a) PPyNTs, (b) rGO-PPyNTs, (c)	84
	MoS ₂ -PPyNTs, (d) MoS ₂ -rGO/PPyNTs	
Figure 3.13	CV for potential window optimization (a), (b) GCD at	85
	1 Ag ⁻¹ current density for first 20 th cycles, (d) GCD at	
	different current densities, and (e) rate capability plot of	
	MoS ₂ -rGO/PPyNTs// MoS ₂ -rGO/PPyNTs symmetric	
	supercapacitor	
Figure 3.14	Cycling stability plot of MoS2-rGO/PPyNTs // MoS2-	86
	rGO/PPyNTs symmetric supercapacitorfor5000 cycles,	
	and (b) Ragone plot of MoS_2 -rGO/PPyNTs //MoS ₂ -	
	rGO/PPyNTs symmetric supercapacitor	

CHAPTER 4

Figure 4.1FESEM images of MoS_2 -rGO/PPyNTs electrodes (a)96pristine and irradiated with fluence of (b) $3.3x10^{11}$, (c) 10^{12} , (d) $3.3x10^{12}$, (e) 10^{13} ionscm⁻² at magnification25 kx and resolution 1 µm, (f) and (g) are at fluence $3.3x10^{12}$ ionscm⁻² and (h) $1x10^{13}$ ionscm⁻² at 1 µmresolution and different magnifications

хх

- Figure 4.2 XRD pattern of (i) bulk MoS₂, exfoliated MoS₂, reduced graphene oxide and polypyrrole nanotubes and (ii) MoS₂-rGO/PPyNTs electrodes, (a) Pristine, and irradiated with fluence of (b) 3.3×10^{11} , (c) 10^{12} , (d) 3.3×10^{12} and (e) 10^{13} ionscm⁻²
- FTIR spectra of MoS₂-rGO/PPyNTs electrodes (a) Figure 4.3 pristine (i), and irradiated with fluence of (ii) 3.3×10^{11} , (iii) 10^{12} , (iv) 3.3×10^{12} , (v) 10^{13} ions cm⁻², (b) plots of areas of IR active modes of pristine and irradiated MoS₂-rGO/PPyNTs electrodes with fluences, (c) plots of $\log \frac{[I(\phi)]}{I_0}$ vs. fluences of the FTIR bands at 3426, 1556, 1231 and 930 cm⁻¹ of MoS₂-rGO/PPyNTs electrodes
- Figure 4.4 100 Raman spectra of MoS₂-rGO/PPyNTs ternary nanocomposites (i) pristine (a) and irradiated nanocomposite at fluences (b) 3.3×10^{11} , (c) 10^{12} , (d) 3.3×10^{12} , (e) 10^{13} ions cm⁻², and (ii) LA peak corresponding to (a) bulk MoS₂, (b) exfoliated MoS₂, (c) pristine MoS₂-rGO/PPyNTs, and irradiated at fluences (d) 3.3×10^{11} , (e) 10^{12} , (f) 3.3×10^{12} , (g) 10^{13} ionscm⁻²
- Figure 4.5 Analysis of Raman Spectra of MoS₂-rGO/PPyNTs 102 electrodes (a) Raman shift in positions of E_{2g}^{1} and A_{1g} modes of MoS₂ with fluence, (b) variation of FWHM of E_{2g}^{1} and A_{1g} mode of MoS₂ vs. SHI irradiation fluence (c) Variation of strain of E_{2g}^{1} and A_{1g} modes of MoS₂ vs. fluence, (d) In-plane and (e) out-of-plane strain as a function of peak position vs. fluence
- Figure 4.6 Raman spectra of (i) rGO in MoS₂-rGO/PPyNTs 102 electrodes (a) pristine and irradiated nanocomposite at fluences (b) 3.3x10¹¹, (c) 10¹², (d) 3.3x10¹², (e) 10¹³ ions cm^{-2} , and (ii) plot of I_D/I_G ratio as a function of fluence

97

- Figure 4.7Contact angle measurements of MoS_2 -rGO/PPyNTs105electrodes (a) Contact angle with polar liquid water for
(i) pristine, (ii) $3.3x10^{11}$, (iii) 10^{12} , (iv) $3.3x10^{12}$, (v) 10^{13}
ionscm⁻² SHI fluences and (b) with apolar liquid
diiodomethane for (i) pristine and irradiation fluence at
(ii) $3.3x10^{11}$, (iii) 10^{12} , (iv) $3.3x10^{12}$, (v) 10^{13} ionscm⁻²
- Figure 4.8Cyclicvoltammogramsof MoS_2 -rGO/PPyNTs106electrodes (a) pristine and irradiated electrode with SHIfluence of (b) $3.3x10^{11}$, (c) 10^{12} , (d) $3.3x10^{12}$, (e) 10^{13} ionscm⁻² in presence of 0.1 M KCl containing 10 mM[Fe(CN)_6]^{-3/-4} at scan rates of 10, 30, 50, 70, 90, 100,125, 150, 175 and 200 mVs⁻¹
- **Figure 4.9** Analysis of cyclic voltammograms in 0.1 M KCl 108 containing 10 mM $[Fe(CN)_6]^{-3/-4}$ solution. Variation of (a) cathodic and (b) anodic peak currents with square root of scan rate $\vartheta^{\frac{1}{2}}$ and, (c) cathodic and (d) anodic peak potential vs. logarithmic of scan rate $\log \vartheta$ for pristine and irradiated electrodes
- Figure 4.10Cyclic voltammograms of (a) pristine and irradiated110ternary MoS2-rGO/PPyNTs nanocomposite electrodeswith fluence of (b) $3.3x10^{11}$, (c) 10^{12} , (d) $3.3x10^{12}$ and(e) 10^{13} ionscm⁻² in 1 M KCl electrolyte at scan rates of10, 20, 30, 40, 50, 70 and 90 mVs⁻¹

111

Figure 4.11 Galvanostatic charge-discharge (GCD) measurements of (i) ternary MoS₂-rGO/PPyNTs, (a) pristine and irradiated with fluences (b) $3.3x10^{11}$, (c) 10^{12} , (d) $3.3x10^{12}$, (e) 10^{13} ionscm⁻² in 1M KCl solution in 1 Ag⁻¹ current density; (ii) GCD curves of $3.3x10^{12}$ ions cm⁻² irradiated electrode at current densities of 1, 3, 5, 7, 9, 11 Ag⁻¹ in 1M KCl solution, (iii) rate capability of pristine and irradiated ternary MoS₂-rGO/PPyNTs electrodes and (iv) Ragone plot of pristine and irradiated ternary MoS₂-rGO/PPyNTs electrodes

xxii

- Figure 4.12Cycling stability analysis MoS_2 -rGO/PPyNTs115electrodes. (i) Cycle number vs. specific capacitance of
(a) pristine and irradiated with fluences (b) $3.3x10^{11}$, (c)10^{12}, (d) $3.3x10^{12}$, (e) 10^{13} ionscm⁻² in 1M KCl solution
in 5 Ag⁻¹ current density up to 5000 cycles and (ii) cycle
number vs. capacitive retention (%) for $3.3x10^{12}$
ionscm⁻² irradiated electrode up to 10,000 cycles at
current density of 5 Ag⁻¹ in 1M KCl electrolyte
- Figure 4.13Nyquist plot of MoS2-rGO/PPyNTs electrodes (a)116pristine and irradiated with fluence (b) $3.3x10^{11}$, (c) 10^{12} , (d) $3.3x10^{12}$, (e) 10^{13} ionscm⁻² in 1M KClelectrolyte. Inset shows the equivalent circuit

CHAPTER 5

Figure 5.1	(a) XRD pattern and (b) FESEM image of pristine	126
	Ti ₃ AlC ₂	
Figure 5.2	Cyclic voltammetry of Ti_3AlC_2 in (a) 1 M H ₂ SO ₄ and	127
	(b) 1 M AlCl ₃ aqueous electrolyte; Galvanostatic	
	charge/discharge measurements of Ti ₃ AlC ₂ in (c) 1 M	
	H ₂ SO ₄ and (d) 1 M AlCl ₃ aqueous electrolyte	
Figure 5.3	CV measurements in 1 M H_2SO_4 electrolyte for Ti_3AlC_2	128
	electrodes treated in 1M AlCl ₃ for 10 min for both	
	positive and negative electrodes. Treatment potentials	
	are (a) 5 V and (b) 8 V; (c) comparison of CV profiles	
	of negative electrode with pristine Ti_3AlC_2 for 3 mVs ⁻¹	
	scan rate	
Figure 5.4	XRD patterns of pristine Ti_3AlC_2 , and both positive and	128
	negative Ti ₃ AlC ₂ electrodes treated in 1 M AlCl ₃	
	electrolyte at 3 V and 8 V potentials	
Figure 5.5	CV measurements in 1 M H_2SO_4 electrolyte for Ti_3AlC_2	129
	negative electrodes treated in 1 M AlCl ₃ electrolyte at 8	
	V for a duration of 10 min and 1 h	

Figure 5.6	CV in 1M AlCl ₃ electrolyte. (a) Pristine and negative electrode, (b) pristine Ti_3AlC_2 positive electrode treated in 5 V and 8 V dc potential	129
Figure 5.7	CV measurements taken in $1M H_2SO_4$ for Ti_3AlC_2 electrodes treated in 5 M NaOH electrolyte for (a) 2 h and (b) 6 h at 8 V power supply	130
Figure 5.8	XRD of Ti_3AlC_2 treated in 5 M NaOH electrolyte for 6 h	130
Figure 5.9	CV profiles in 1 M H ₂ SO ₄ for the following electrodes: pristine Ti ₃ AlC ₂ , 6 h treated (in 5 M NaOH electrolyte) Ti ₃ AlC ₂ and 12 h treated (in 5 M NaOH electrolyte)	131
Figure 5.10	(a) CV profiles in 1 M H ₂ SO ₄ for the following electrodes: 5 M and 10 M NaOH electrolyte treated Ti_3AlC_2 electrodes, Duration = 6 h and (b) XRD patterns of Ti_3AlC_2 treated in 8V potential for 6h at 10M NaOH electrolyte	132
Figure 5.11	CV profiles in 1 M H ₂ SO ₄ for the following electrodes: 10 M and 12.5 M NaOH electrolyte treated Ti_3AlC_2 electrodes, Duration = 6 h	132
Figure 5.12	Cyclic voltammetry of Ti_3AlC_2 electrodes treated in hybrid electrolyte (1 M AlCl ₃ / 5 M NaOH) in (a) 1 M H ₂ SO ₄ and (b) 1 M AlCl ₃ aqueous electrolyte at the scan rate of 1 mVs ⁻¹	133
Figure 5.13	Electrochemical measurements of Ti_3AlC_2 electrodes treated in hybrid electrolyte (1 M AlCl ₃ / 5 M NaOH) (a) galvanostatic charge/discharge measurements in 1 M AlCl ₃ aqueous electrolyte, (b) specific capacitance vs. cycle numbers at current densities of 0.4 Ag ⁻¹ and 0.02 Ag ⁻¹ for discharge and charge cycles respectively, (c) capacitance versus cycle numbers and (d) capacity retention (%) vs. cycle numbers for 1000 repeated GCD cycles in 1 M AlCl ₃ aqueous electrolyte at 1 Ag ⁻¹ and 0.02 Ag ⁻¹ for discharge and charge cycles respectively	134

E

Figure 5.14	(a) CV profiles of Ti ₃ AlC ₂ electrodes treated in1 M	135
	AlCl ₃ added 12.5 M NaOH hybrid electrolyte. The CV	
	was performed in 1 M AlCl3 aqueous electrolyte at scan	
	rates of 1 mVs ⁻¹ to 10 mVs ⁻¹ , (b) Comparison of CV	
	profiles of pristine Ti_3AlC_2 and Ti_3AlC_2 electrodes	
	treated in1 M AlCl3 added 12.5 M NaOH hybrid	
	electrolyte. The CV was performed in 1 M AlCl ₃	
	electrolyte, and (c, d) GCD measurements in 1 M AlCl ₃	
	electrolyte for Ti_3AlC_2 electrodes treated with 1 M	
	AlCl ₃ added 12.5 M NaOH electrolyte	
Figure 5.15	CV measurements in 1 M AlCl ₃ electrolyte for Ti ₃ AlC ₂	136
	electrodes treated in 1 M AlCl ₃ added 5 M NaOH and 1	
	M NaCl added 5 M NaOH electrolytes	
Figure 5.16	Electrochemical measurements of Ti ₃ AlC ₂ electrodes	137
	treated in hybrid electrolyte (1 M AlCl ₃ / 5 M NaOH)	
	(a) Cyclic voltammetry in 1 M AlCl ₃ aqueous	
	electrolyte at scan rates of 1 to 10 mVs ⁻¹ , (b) variation	
	of peak currents with square root of scan rates, (c) area	
	separation under CV curve for diffusive controlled	
	processes at 1 mVs^{-1} of scan rate and (d) relative	
	contribution of diffusive and capacitive controlled	
	charge storage processes at different scan rates	
Figure 5.17	FESEM images of (a) pristine Ti ₃ AlC ₂ , (b, c) Ti ₃ AlC ₂	138
	electrodes treated in hybrid electrolyte (1 M AlCl ₃ / 5 M	
	NaOH), (d) 5 M NaOH treated Ti_3AlC_2 electrode, and	
	(e, f) Ti_3AlC_2 electrode treated in hybrid electrolyte (1	
	M AlCl ₃ / 1 M NaOH)	
Figure 5.18	(a) XRD patterns and (b) Raman spectra of pristine	139
	Ti_3AlC_2 and Ti_3AlC_2 treated in hybrid electrolyte (AlCl ₃	
	/ NaOH)	
Figure 5.18	Nyquist plots of pristine Ti ₃ AlC ₂ and hybrid electrolyte	139
	(in 5 M NaOH + 1 M AlCl ₃) treated Ti_3AlC_2 electrodes;	

E

	inset shows the zoomed portion in the high frequency	
	region	
Scheme 5.I	Probable mechanism for exfoliation of MAX phase with	140
	the hybrid electrolyte (1 M AlCl ₃ added 5 M NaOH)	

CHAPTER 6

Figure 6.1	(a) XRD pattern and (b) FESEM of LiFePO ₄	146
Figure 6.2	Electrochemical measurements of LiFePO ₄ . (a)	147
	Cyclic voltammetry (CV) at scan rate of 1 mV s ⁻¹ , (b)	
	galvanostatic charge-discharge (GCD) profile at	
	current density of 0.3 Ag ⁻¹ for 20 repeated cycles	
	(inset shows capacity vs. cycle number plot) in 0.5 M	
	Li_2SO_4 aqueous electrolyte; and (c) CV at scan rate of	
	1 mVs ⁻¹ and (d) GCD at current density of 0.3 Ag^{-1} for	
	20 repeated cycles (inset shows capacity vs. cycle	
	number plot) in 0.5 M AlCl ₃ aqueous electrolyte	
Figure 6.3	1^{st} discharge, 1^{st} charge and 2^{nd} discharge GCD	148
	pattern of LiFePO ₄ in 0.5 M AlCl ₃ aqueous electrolyte	
	at current density of 0.3 Ag ⁻¹	
Figure 6.4	CV profile of LiFePO ₄ at scan rate of 1 mV s^{-1} in (a) 1	149
	M AlCl ₃ , (b) 0.25 M AlCl ₃ , (c) 0.1 M AlCl ₃ aqueous	
	electrolytes; GCD of LiFePO4 in 1 M AlCl3 aqueous	
	electrolyte at(d) current density of 0.3 Ag^{-1} , (e) current	
	density of 0.75 Ag ⁻¹ , (f) current density of 1 Ag ⁻¹ ;	
	GCD profile at current density of 0.3 Ag ⁻¹ in (g) 0.25	
	M AlCl ₃ , (h) 0.1 M AlCl ₃ aqueous electrolyte	
Figure 6.5	GCD profile of LiFePO ₄ in current density of 0.3 Ag ⁻	150
	1 in (a) 1 M Al ₂ (SO) ₄ , and (b) 1 M Al(NO ₃) ₃ aqueous	
	electrolytes	
Figure 6.6	CV measurement of LiFePO ₄ at scan rate of 1 mV s ⁻	150
	¹ in (a) 1 M HCl, (b) pristine water; (c) GCD at current	
	density of 0.3 Ag ⁻¹ in 1 M HCl aqueous electrolyte	

Figure 6.7	<i>Ex-situ</i> FESEM of LiFePO ₄ (a) pristine electrode, (b)	151
	after 1 st charge, (c) after 1 st discharge	
Figure 6.8	Ex-situ XRD patterns of pristine LiFePO ₄ after 1 st	152
	charge/discharge and 2 nd discharge states	
Figure 6.9	(a-c) Screen shot of XRD analysis of HighScore Plus	153
	software	
Figure 6.10	Ex-situ XPS spectra of (a) summary of pristine and	154
	tested electrodes, (b) aluminum 2p spectra, (c) iron	
	2p spectra, (d) oxygen 1s spectra, and (e) phosphorous	
	2p spectra for pristine LiFePO ₄ and after 1 st	
	charge/discharge states	
Figure 6.11	GCD profile in mixture of 0.5 M Li_2SO_4 and 0.5 M	155
	AlCl ₃ (1:1) aqueous electrolyte of LiFePO ₄ at current	
	density of 0.3 Ag ⁻¹	
Figure 6.12	(a) Capacity vs. cycle number plot of LiFePO ₄ in 0.5	156
	M AlCl ₃ aqueous electrolyte at current density of 1	
	Ag ⁻¹ , inset shows the color change of the electrolyte	
	after cycling, and (b) UV-Visible spectra of the	
	electrolytes before and after GCD cycling, inset	
	shows the UV-Visible spectrum of 0.5 M AlCl ₃ from	
	200 nm to 600 nm	
Figure 6.13	GCD profile of LiFePO ₄ at current density of 1 Ag ⁻¹	157
	in (a) 0.12 M FeCl ₃ added in 0.5 M AlCl ₃ , (b) 0.06 M	
	FeCl ₃ added in 0.5 M AlCl ₃ , (c) 0.03 M FeCl ₃ added	
	in 0.5 M AlCl ₃ , (d) 0.18 M FeCl ₃ added in 0.5 M AlCl ₃	
	aqueous electrolyte and (e) Capacity retention vs.	
	cycle number plot of LiFePO4 in different	
	concentrations of FeCl3 added in 0.5 M AlCl3 aqueous	
	electrolyte at the current density of 1 Ag ⁻¹	

E

ABBREVIATIONS

Abbreviations/ Symbol	Name
PPyNTs	Polypyrrole nanotubes
PEDOT	Poly(3,4-ethylenedioxythiophene)
FESEM	Field Emission Scanning Electron Microscopy
FTIR	Fourier-transform infrared spectroscopy
XRD	X-ray diffraction
XPS	X-ray photoelectron spectroscopy
HRTEM	High Resolution Transmission Electron Microscopy
ITO	Indium tin oxide
IUAC	Inter University Accelerator Centre
MeV	Mega electron volt
cm	Centimeter
MO	Methyl orange
СТАВ	Cetrimonium bromide
rGO	Reduced graphene oxide
DD water	Double distilled water
NMP	N-Methyl-2-pyrrolidone
PVDF	Polyvinylidene fluoride
SEM	Scanning Electron Microscopy
TGA	Thermogravimetric analysis
TMDC	Transition-metal dichalcogenide
w.r.t	With respect to
g/l	Gram per litre
BET	Brunaur-Emmett-Teller
EDL	Electric double layer
EIS	Electrochemical impedance spectroscopy
MHz	Megahertz
%	Percent
AIB	Aluminum ion battery
Al ³⁺ ion	Aluminum ion
A/g	Ampere per gram
CV	Cyclic voltammetry

GCD	Galvanostatic charge-discharge
Ti ₃ AlC ₂	Titanium Aluminum Carbide
LiFePO ₄	Lithium Iron phosphate
h	hour
М	Molar
mA	Mili ampere
MoS_2	Molybdenum disulfide
NaOH	Sodium Hydroxide
KCl	Potassium chloride
GO	Graphene oxide
AlCl ₃	Aluminium chloride
$Al_2(SO4)_3$	Aluminium sulfate
Al(NO ₃) ₃	Aluminium nitrate
°C	Degree Celsius
Wh	Watt-hour
Ω	Ohm
η	Coulombic efficiency
C_{sp}	Specific capacitance
R _s	Equivalent series resistance
R _{ct}	Charge transfer resistance
Se	Electronic energy loss
S _n	Nuclear energy loss

F