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Chapter 2 

 

Theoretical Methods and Methodology 

 

2.1 Density functional theory methods 

DFT is a fundamental premise including the motion and pair correlation to 

achieve electronic ground state, which primarily utters in terms of total electron 

density [1, 2]. Since the beginning, DFT gained enormous attention in realizing 

ground state electronic density, energy of any system such as clusters, solids, 

atoms and molecules in presence or absence of external perturbations [2]. The 

basis of DFT is based on Hohenberg-Kohn (HK) theorem [3], Kohn-Sham (KS) 

principle [4], local density approximation (LDA) and PAW method [5], 

generalized gradient approximation (GGA) [6] and pseudopotential (PP) 

method, which are discussed in the present chapter for in-depth understanding 

of this ab initio-based simulation. These particulars required to contrive the 

basis sets in DFT simulation utilizing Quantum ESPRESSO (QE) package [7].  

DFT is a complementary approach to the traditional methods, which 

disentangle the complexities of many-body problem in quantum systems. 

In this regard, using the contemporary computational codes it becomes 

challenging task to achieve the electronic properties of a system considering a 

many-body problem. A complete quantum-mechanical approach of a system is 

required considering nuclei and electronic wavefunctions; however, the mass of 

an atomic nucleus is much higher than that of mass of electron. Therefore, to 

reduce vast majority of simulation and obtain high accuracy, Born-

Oppenheimer approximation (BOA) [8] is included and their properties are 

decoupled from the valence electrons and ions (discarding the core electrons 

and nuclei). In this case, solving the many-body problem still remains 
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challenging and unclear because it separates electronic and ionic degree of 

freedom and considers low mass electron instead ions for complex quantum 

systems. We consider BO approximation in entire ab initio based DFT 

simulations that has been implemented to achieve the objective of present thesis 

work.  

Initially, the strongly correlated electron system was explained by Thomas-

Fermi (TF) model [9, 10] and Hartree-Fock-Slater [11] method, which are 

considered to be the ancestor of latest DFT method. As per the TF model, the 

class of system containing interacting electrons without relativistic effect in 

Schr𝑜̈dinger equation can be written as, 

𝐻 ≡ 𝑇෠ + 𝑈෡௘௡ + 𝑈෡௘௘           (2.1) 

𝐻 = −
ଵ

ଶ
∑ ∇௝

ଶ
௝ + ∑ 𝑢௘௫௧൫𝒓𝒋൯௝ +

ଵ

ଶ
∑

ଵ

|𝒓ೕି𝒓ೖ|௝ஷ௞         (2.2) 

Here, 𝑇෠ = −
ଵ

ଶ
∑ ∇௝

ଶ
௝  denotes the kinetic energy operator, 𝑈෡௘௡ = ∑ 𝑢௘௫௧൫𝒓௝൯௝  is 

potential energy due to electron-nuclei interaction and 𝑈෡௘௘ =
ଵ

ଶ
∑

ଵ

|𝒓ೕି𝒓ೖ|௝ஷ௞  is 

potential energy due to electron-electron interaction. With the help of TF 

approximation, the kinetic energy T[n(r)] is approximated for a non-interaction 

system with electron density n(r). In TF model, the exchange-correlation energy 

term is ignored and the Hartree approximation remains identical to TF model. 

In this regard, this technique fails to realize the shell model and stabilization of 

molecules.   

The aforementioned shortcomings can be overcome by generalizing the TF 

model implementing in modern DFT approach. The modern DFT approach is 

found to be an exact approach for solving many-electron problem. This 

approach solves the set of equations via iterative scheme, which is based 

preferably on KS scheme. The precursor to modern DFT approach is associated 

with the previous work of Thomas [10], Fermi [9], Dirac [12], von Weizsacker 

[13] and Slater [14]. The beginning of DFT approach was evolved from the 
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ground-breaking research of Hohenberg and Kohn in the year 1964 [3] and 

Kohn and Sham in 1965 [4]. The HK theorem published in 1964 describes that 

the energy ground state is a functional of electron density, where combination 

of energy and electron density can be acquired by minimizing the energy as a 

function of the density at fixed functional. The paper published in 1965 set a 

stage to form the electronic ground state density by considering non-interacting 

orbitals, basically the KS wave functions. The preliminary understanding of the 

HK theorem and KS scheme constructs the ideal system for non-interacting 

Fermions having density n(r) equivalent to interacting Fermions. Taking into 

account the superiority of both the works, the respective theorems are 

explained below for detail understanding. 

2.1.1 Hohenberg-Kohn Theorems 

The first theorem states as: 

Theorem 2.1.1: The ground state energy E0 is the unique functional of the ground 

state electron density E0=<Ψ0[n0]|H|Ψ0[n0]>=E0[n]. 

The Coulombic potential present between electrons for determining the 

electronic nature of solids, basically depends on HK functional. Moreover, the 

interacting nucleus, molecules, crystals depend on the effective potential 

operator. Therefore, the HK functional is named as unique functional, because 

it attains constant value for all systems. The non-degenerate ground state 

electron density can be constructed from the Hamiltonian operator, which 

determines the information of expectation values for all states of the system.  

The second theorem states as: 

Theorem 2.1.2: The ground state energy E0 can be proved via Variational principle: 

the electron density n(r), that minimizes the total energy, is the true ground state 

energy E0[n0]≤E[n]. 
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The external potential universally constructs the ground state wavefunctions, 

which establishes all observables of the system such as kinetic energy. 

Moreover, the HK theorems are expanded to more crystal systems and 

dimensions from bulk to low-dimensions, which incorporates various 

parameters such as SOC, spin-polarization etc. Moreover, HK theorems are 

extremely robust, but practically they do not have any provision to compute the 

ground state electron density. In this regard, Kohn and Sham provides a simple 

iterative method scheme for performing ab initio DFT calculations. 

2.1.2 Kohn-Sham approach 

Kohn and Sham advocate the following scheme: 

Theorem 2.1.3: The theorem formulates that for each interacting system S with 

distinct functional, there exist non-interacting system R, described by Hamiltonian 

𝐻ௌ
෢ = 𝑇෠ + 𝑉ௌ

෡ , where 𝑉ௌ
෡  yields the same true ground state electron density nS(r)=nR(r). 

The HK theorem determines uniquely the ground state electron density of the 

system. It is important to obtain suitable potential energy to describe the 

electron density nR(r). The additional system exhibits noninteracting kinetic 

energy functional, the density of that energy functional collects from single-

particle equation to obtain KS orbitals. The single-particle equation relies on the 

electron density n(r), also depends solely on KS orbitals. In this regard, it is 

important that the single-particle equation must be solved self-consistently by 

means of iterative scheme. The ground state energy and electron density can be 

obtained exactly, if the exchange-correlation (XC) term is exactly recognized. It 

is necessary to know the exact value of XC term, because it has all the quantum 

mechanical origin for various fictitious non-interacting and interacting systems. 

Therefore, it has an utmost need to find an appropriate and descent 

approximation to determine the XC term. The simple and mostly employed 

approximation are mentioned in the next subtopics of this chapter.  
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2.1.3 Exchange-Correlation term 

The KS-DFT approach is mainly to solve many-electron Schr𝑜̈dinger equation 

by separating out the discrete single-particle kinetic energy term and Hartree 

term from the interacting XC functional. However, an appropriate discussion on 

XC functional can be understood by quantum mechanical adiabatic process. The 

Hamiltonian for electron density varies adiabatically to reach the ground state 

more rapidly than the motion of nucleus. The XC term accounts for remaining 

interacting and non-interacting kinetic and electrostatic terms, which creates a 

bridge by determining the scaling factor (ξ) to obtain the electron-electron 

coupling term. The interacting and non-interacting terms are transformed 

between 0 and 1, where density is constant under adiabatic process. This 

inference suggests the equation for exchange-correlation energy term, 

𝐸௑஼[𝑛(𝑟)] =
ଵ

ଶ
∫ 𝑛(𝑟)𝑑𝑟 ∫

௡೉಴(௥,௥ᇱ)

௥ି௥ᇱ
𝑑𝑟′                   (2.3) 

Here, nXC(r, r’) corresponds to the average XC interaction factor. Thus, we can 

determine the exchange-correlation density as, 

∈௑஼ [𝑛(𝑟)] =
ଵ

ଶ
∫

௡೉಴(௥,௥ᇲ)

|௥ି௥ᇲ|
𝑑𝑟′          (2.4) 

The nXC term can be decomposed into two disparate parts expressed as nXC(r, 

r’)=nX(r, r’)+nC(r, r’), where nX(r, r’) is the exchange term and nC(r, r’) is 

correlation term obtained linearly. The exchange term (nX) can be characterized 

by considering the Hartree-Fock (HF) energy term as, 

𝐸௑஼[𝑛(𝑟)] =
ଵ

ଶ
∫ 𝑛(𝑟)𝑑𝑟 ∫

௡೉(௥,௥ᇱ)

௥ି௥ᇱ
𝑑𝑟′                    (2.5) 

The exchange-correlation term XC can be described as𝐸௑஼ = ∫ 𝑛(𝑟) ∈௑஼ [𝑛(𝑟)]𝑑𝑟. 

The true ground state can be obtained by employing the approximations to 

know the exact XC functional. It is important to realize exchange-correlation 

density for each electron to construct appropriate approximations to realize the 
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quantum mechanical origin. The various approximations are discussed in the 

next section of this chapter. 

2.1.4 Local density approximation (LDA) 

In KS-DFT, the ground state energy and electron density are determined for 

many-body system, the exchange-correlation energy functional is required to 

approximate for practical implications. LDA is the simplest approximation to 

scrutinize the unknown value of XC energy density by considering KS orbitals. 

In this regard, the exchange-correlation energy is determined by approximating 

locally the summation of electron density for exchange as well as correlation 

energy of homogeneous electron gas (HEG) model. It is known that HEG can be 

formulated by considering N interacting electrons in a volume V to maintain 

the system neutrality in presence of homogeneously positive charge 

background. To approximate the exchange-energy term in the system, the 

exchange term can be written as, 

𝐸௑
௅஽஺[𝑛] = −

ଷ

ସ
(

ଷ

గ
)

భ

య ∫ 𝑛(𝑟)ସ/ଷ𝑑𝑟         (2.6) 

The correlation energy is expressed analytically in the limits of high and low 

density corresponds to weak and strong correlation. The modest XC functional 

can be described as, 

𝐸௑஼
௅஽஺[𝑛(𝑟)] = ∫ 𝑛(𝑟) ∈௑஼ [𝑛(𝑟)]𝑑𝑟         (2.7) 

The high-density limit for correlation energy density is written as, 

∈஼= 𝐴𝑙𝑛(𝑟௦) + 𝐵 + 𝑟௦(𝐶𝑙𝑛(𝑟௦) + 𝐷)         (2.8) 

The low limit density, 

∈஼=
ଵ

ଶ
(

ௗబ

௥ೞ
+

ௗభ

௥ೞ

య
మ

+ ⋯ )           (2.9) 

Here, [n(r)] is the electron density; εXC is the exchange-correlation energy term 

for density n(r), rS is the dimensionless quantity named as Wigner-Seitz 
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parameter. However, QMC is parameterized over electron density n(r) for 

obtaining accurate results. 

The LDA potential decays slowly in a Coulombic manner with different 

electron density. However, LDA is an effective method for obtaining accurate 

results for inhomogeneous systems. In LDA calculations, the density is 

assumed to remain same throughout, which indicates that the exchange energy 

is considered to be undervaluing. Meanwhile correlation energy is overvalued, 

they tend to cancel each other [15]. Though LDA can describe many physical 

quantities, but it does not support Rydberg series underestimating the band 

gaps and lattice constants. Therefore, LDA provides less description for 

electron-rich species described from band gaps and interplanar distances 

between the atoms and layers stated in this thesis work. In this regard, more 

generalized approximation (discussed in the next section) is required for 

defining exchange-correlation functional in complex systems.  

2.1.5 Generalized gradient approximation (GGA) 

LDA has limitations in its accuracy for determining most of the physical 

quantities which needs considerable precision. To overcome the limitations of 

LDA, a modification in the approximation was implemented by Hohenberg and 

Kohn [3] by expanding the higher order terms via Fourier series in order to 

obtain the gradient of electron density known as gradient expansion 

approximation (GEA). The GEA method fails to give the accuracy because 

integration of exchange term leads to -1, which contravenes the sum rule. Even 

if the GEA method disobeys the sum rule, it somehow opens an opportunity to 

manifest generalized gradient approximation (GGA) exchange-correlation term 

by determining cut-off parameter of GEA exchange term. The GGA is 

commonly explained in terms of gradient of electron density to obtain true 

electron density in inhomogeneous system. This expansion leads to GGA and 

can be written as, 
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𝐸௑஼
ீீ஺[𝑛(𝑟)] = ∫ 𝐹௑஼൫𝑛(𝑟), ∇𝑛(𝑟)൯𝑛(𝑟) ∈௑஼ [𝑛(𝑟)]𝑑ଷ𝑟      (3.0) 

Here, 𝐹௑஼൫𝑛(𝑟), ∇𝑛(𝑟)൯ is the exchange enhancement factor proposed by Perdew 

and Wang [16], later it was revised to much modest form known as PBE 

suggested by Perdew, Burke and Ernzerhof for solving the equation. The GGA 

term is composed by parameterizing correlation energy and gradient electron 

density for HEG [6]. The shortcomings of LDA are modified by implementing 

GGA for understanding various physical quantities such as surface energies, 

phase stability, magnetic and electronic properties etc. Moreover, GGA and 

LDA schemes are the simplest approximations till date but these are scanty to 

determine the insulator band gap modelled specifically for rare-earth 

compounds. To overcome such drawbacks, hybrid functional must be 

implemented along with augmented recursion method. 

2.1.6 The Plane-wave Pseudopotential approach 

To introduce DFT practically on real systems, it is essential to solve KS 

equations in a computationally efficient way via iterative scheme with highest 

accuracy in the results. The calculation carried out in all the chapters of this 

thesis considers the plane wave pseudopotential method to solve the KS 

equations. This method involves plane wave basis set to characterize the atomic 

orbitals and pseudopotential designate the nucleus and core electrons. 

Alternative methods to describe plane wave pseudopotential does exist in 

simulations include localized basis function for sole atomic orbitals [17]. 

Although the alternate methods are computationally favourable, but these 

methods suffer due to incomplete basis set creating hindrance in obtaining truly 

converged ground state energy as a function of basis set. In this regard, plane 

wave pseudopotential approach is highly considerable over the alternate basis 

sets. Combination of plane waves with pseudopotential can extensively modify 

the exactness of DFT calculation. 
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Currently pseudopotential, also known as effective potential, constructed from 

first-principles calculations by solving KS equation and simplifies the 

information regarding complex systems. The manifestation of pseudopotential 

gives an effort to modify the complication of the motion of core electrons and 

nucleus creating an effective potential term, which modifies the Schr𝑜̈dinger 

equation instead of Coulomb potential term. The atomic orbitals exhibiting 

spherical symmetry conduct the task and express its wavefunction as the 

product of radial and spherical function. The Schr𝑜̈dinger equation can be 

solved by reducing to one-electron particle considering radial function by 

integrating numerically. A schematic illustration of corresponding many-

electron wavefunction expressed with respect to Coulomb potential shown in 

Figure 2.1. The prime motive is to reduce many-electron problem within a 

sphere of effective potential having core electrons with radius rcut-off by a 

debilitated potential having same ground state wave function for similar energy 

eigen value as the initial many-electron wave function outward rcut-off (shown in 

Figure 2.1 with dotted line). Pseudopotentials with higher electron core cut-off 

radius is softer, which converges more promptly. Due to its rapidness, the 

accuracy is compromised to produce realistic characteristics 
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Figure 2.1: Displaying the schematic representation of many-electron wave 

function shown in green dashed line and corresponding pseudo wave function, 

ΨPseudo (green solid line) combining with Coulomb potential shown in red 

dashed line and pseudopotential (red solid line).  

The concept of pseudopotential approximation was first introduced in 1934 by 

Hans Hellmann. The commonly used pseudopotential in modern DFT is norm 

conserving pseudopotentials (NCPP) and ultrasoft pseudopotential (USPP). The 

former pseudopotential basically includes the creation of nodeless pseudo wave 

function ΨPseudo by conserving the norms of many-electron wave functions. 

These pseudopotentials commonly allow basis-set by considering lower cut-off 

energy for describing the electronic wave functions with proper convergence 

with reasonable computing resources. However, NCPP was first introduced in 

1979 by Hamann, Schl𝑢̈ter and Chiang (HSC) [18]. The norm conserving 

pseudopotential generates by inverting the Schr𝑜̈dinger equation at many-

electron Eigen values, given as 

ቂ−
ħమ

ଶ௠೐
∇ଶ + 𝑉௟(𝑟)−∈ ~

௓

௥
ቃ 𝛹~

௓

௥
(𝑟) = 0        (3.1) 

𝑉෠௟(𝑟) = ∑ ∑ |𝑌௠௡ > 𝑉௠௡(𝑟) < 𝑌௠௡|௡௠                    (3.2) 

The norm-conserving pseudopotential acquired here is semi-local with high 

degree of tunability, which performs utilizing single-electron wave functions in 

the similar manner. However, to minimize computational cost Kleinman and 

Bylander [19] reframed the equations independently in non-local form.  

The challenge remains when all elements are treated with nodeless valence 

electrons within pseudopotential framework. In this case, the wavefunctions of 

pseudopotential and many-electron must be commensurate. The electrons in 

valence state are predominantly localized in ionic core making it 

computationally expensive for carrying out the calculations. To overcome the 

limitation of NCPP, Vanderbilt developed an advanced pseudopotential named 

Vanderbilt ultrasoft pseudopotential (USPP), where the need of including ionic 



Chapter 2 
 

 
42 

 

cores has been relaxed [20, 21]. In this case, USPP considers small portion of 

wave function, which is simulated instead of illustrating the full potential wave 

function using plane waves. This helps in reducing the cut-off energy of plane 

wave in the simulations. The compensation in plane wave cut-off energy lowers 

the cost of computation in many other computational efforts needed for 

improvement.   

2.1.7 The projector augmented wave (PAW) method 

The PAW method is a technique, which manoeuvre by reducing the linear 

augmented plane wave method (LAPW) and pseudopotential method allows 

for ab initio DFT calculations with higher computational efficacy. The PAW 

approach was first proposed by P. E. Bl𝑜̈chl in the year 1994 [5]. The linear 

methods basically allot full-wave potential functions, while pseudopotential 

method combined with plane wave basis set simplifies the computational effort 

of many-electron system. The amalgamation of both the aforementioned 

method avoids use of wave functions in vicinity to ion cores and oscillates 

rapidly due to the orthogonality required to express electron wavefunctions. In 

this context, while simulating the electron wavefunction it requires higher 

computational expense to describe the valence electron states involving plane 

wave basis sets. The PAW method overcome the aforementioned issue by 

reconstructing faster oscillating wavefunctions into tranquil wavefunction, 

which is evidently convenient for high-end computation and promotes many-

body wavefunction from these tranquil wavefunctions. Moreover, the PAW 

method sheds apotheosis in step-by-step manner for clarity in understanding 

[22]. 

The formalism of PAW method is considered by mapping Hilbert space (HS) 

exhibiting robust oscillatory behaviour for many-electron wavefunctions, which 

reduces the wavefunction for orthogonal core electrons named as pseudo (ps) 

HS. The valence state wavefunction is transformed linearly to PS wavefunctions 

making it computationally efficient than many-electron wavefunction. The 
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linear transformation alter ps wave function to many-electron wavefunction can 

be written as, 

|𝛹⟩ = 𝑇|𝛹෪ൿ            (3.3) 

Here, 𝑇 = 1 + ∑ 𝑇ሖோோ  and R is the atomic position, 𝑇ሖோ is non-zero value within 

augmented region ΩR. This signifies that the |𝛹⟩ and |𝛹෪ൿ coalesce outside the 

augmented sphere. The full set of ps wavefunction can be considered inside 

|𝛹෪ൿ, which maintains the orthogonality with core electrons. Near the edge of 

each atom, ps wavefunction is mapped into ps partial waves given as, |𝛹⟩ =

[1 + 𝑇ሖோ]|𝛹෩௖ ⟩, c represents the small explication of atomic position R. The linear 

transformation can be identified and transform radial Schr𝑜̈dinger equation 

|𝛷௜⟩. The linear operator can be termed as, 

 𝑇 = 1 + ∑ (|𝛷௖⟩ −௜ |𝛷෩௖ൿ)⟨𝑝́௖|              (3.4) 

Here, ⟨𝑝́௖| is the projector operator and can be expressed as ൻ𝑝௖| =

∑ (〈𝑓௞|𝛷௟
෪〉௖ௗ)ିଵ⟨𝑓ௗ|ௗ  with the condition⟨𝑝 ௖́|⟩ = 𝛿௖ௗ.  

Here, ⟨𝑓ௗ| is an arbitrary and linear arrangement of equations.  

2.1.8 van der Waals interaction in DFT 

The exchange-correlation formalism discussed in section 2.1.3 fails to analyze 

vdW interaction in strongly correlated system, which is predominantly an 

important phenomenon to understand. To agree upon such systems, random 

phase approximation (RPA) is utilized to realize the correlation energy of 

strongly correlated system [23] and solves the many-body perturbation theory 

through density functional perturbation theory (DFPT). Till date, various 

methods have been characterized to treat vdW corrections with DFT. This 

particularly varies from meticulous dispersion functionals extract from ab initio 

DFT calculations to parameterizing fully empirical corrections. Most efficient 

description of dispersion correction is explained explicitly by non-local 

correlation functional. The adiabatic connection-fluctuation dissipation theorem 



Chapter 2 
 

 
44 

 

(ACFDT) mostly elevated due to its determination of the correlation energy 

term extending a computationally effective approach describing various 

structural information of crystals, lattice constants and atomic energies [24]. In 

this regard, it is likely to mention that ACFDT-RPA approach balances well 

with ionic, metallic, vdWs interacted systems and gives an effective information 

of weak binding energy on metallic surfaces [25], binding energies in layered 

Fermi systems such as graphene [26] and ferromagnetic systems like CrBr3 [27].  

The vdWs density functional theory method (vdW-DFT) [28] provides a 

conclusive non-local interaction straightly into the XC functional, contrary to 

ACFDT-RPA approach. The vdW-DFT can be expressed in terms of exchange, 

correlation and non-local term in XC energy [29], 

𝐸௑஼ = 𝐸௑
ீீ஺/ா೉ + 𝐸஼

௅஽஺/ீீ஺
+ 𝐸஼

௡௟         (3.5) 

Here, the first term described as exchange contribution from GGA or in true 

form, the second term is the correlation contribution characterized locally 

within LDA or GGA and the third term is the non-local term to be 

approximated [30]. Moreover, vdW-DFT has various applications and can solve 

many-body problem by modifying LDA or GGA along-side dispersion 

correction required to analyse variety of physical properties of solids [31] with 

efficient computational expense. The modified dispersion correction with 

empirical parameters is used promptly named as DFT-D method [32]. Grimme 

proposed an alternate empirical method named DFT-D2 for illustrating the 

binding energies extracted from experiments [51]. The inclusion of vdW 

correction solely append to the total energy of solid having strong interatomic 

interaction with high accuracy, simple and post-processing data.  

2.1.9 Coulomb interaction in DFT 

Beyond HF, the electron-electron coupling in strongly correlated systems, such 

as lanthanides and actinides, transition metals, organometallic, can be 

constructed from ab initio DFT simulations, but fails to achieve the correlation 
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effect in such systems. The electrons act anonymously in such strongly 

correlated systems. In strongly correlated systems, the condition of particular 

electron relies robustly on the condition of neighbouring electrons of the 

system, which interacts or correlates with each other via Coulomb interaction. 

The orbitals such as s and p consisting of electrons behave like a wave and can 

be convoyed to a single-particle picture. In this regard, the weakly correlated 

systems are dissipated over the entire solid and reasonably explained within 

DFT framework. On the other hand, the f and d orbitals accumulate in the edge 

of atoms and are strongly correlated to each other. In this regard, LDA fails to 

depict strong correlation between excited and ground state energy properties, 

because the electrons act as wave like nature.  

In general, strongly correlated systems can be understood from electronic band 

structure containing electronic states with attenuated bands. These attenuated 

bands exist near the Fermi level for such strongly coupled Coulomb materials. 

In this case, it is not feasible to disregard the correlation effect for 

understanding various physical phenomenon like electronic, magnetic, 

topological and transport properties. The limitations of DFT with strongly 

correlated systems are repercussions of scanty exchange-correlation energy 

approximations, irrespective of LDA or GGA formalism. In this regard, it is 

important to add a correction term to reduce computational expenses suggested 

by DFT+U approach [33, 34]. This correction term includes the total energy 

subtended from KS orbitals, which identifies electron-electron interaction term 

in a constant field and double counting term. Apart from DFT+U, it has another 

approximate method named GW approximation [35] similar to RPA method 

[36]. The DFT+U method is the buoyant method for utilizing high-end 

computational simulation efficiently for replicating electronic and structural 

properties of correlated systems. However, its calculation restricts itself when 

the calculation is performed beyond static mean-field theory [37]. In this regard, 

Hubbard model and DFT++ provides an interface to model Hamiltonians to 

handle computational efficacy and solve the dynamical mean field theory 
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(DMFT) maintaining the periodicity in bulk to low-dimensions [38]. The 

magnetic behaviour in monolayer limit coupled with metallic material can be 

understood by Anderson impurity model (AIM) as a prototypic model for 

electronically localized states.  

2.2 Wannier tight binding Hamiltonian method (WTBH) 

The tight-binding method (TB) is a semi-empirical technique to investigate 

electronic states by expressing Hamiltonian onto localized atomic orbitals. 

There are various conventions to establish TB models such as Slater-Koster 

approach [39], discrete k.p model [40] and maximally localized Wannier 

functions (MLWF) [41] onto a crystal lattice. In this regard, we consider MLWF 

method alongside ab initio DFT calculation mentioned in the subsequent 

chapter of current thesis work. The introduction of Wannier functions (WF) [42] 

were propelled in the year 1937 and manifested to be one of the potent methods 

to study various phenomenon in condensed matter physics such as topological 

phases, magnetization, polarizability [41]. The WFs consider fully 

orthonormalized basis set that behaves as a connection between delocalized 

plane wave illustration from First-principles DFT simulation, basically used to 

determine various physical properties and a localized atomic orbital more likely 

to describe the forces and bonds associated with it. The Wannier tight binding 

Hamiltonian (WTBH) can be initiated using Wannier90 package [43] to 

construct MLWF, established on ab initio DFT calculations. Moreover, to obtain 

MLWF it needs various options to automate wannierization of energy bands in 

a particular energy range by disentangling the bands to investigate various 

physical properties such as topology, magnetic properties etc.  

Computationally, Wannier function bears several advantages because of 

maximally localized atomic orbitals. This allows WTBH to regulate 

comparatively coarse real-space grid by performing Fourier transform of the 

Hamiltonian and derive over first Brillouin zone at high-symmetry points [44]. 

In this regard, this method is computationally very much efficient to carry out 
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simulations of higher computational cost, such as determining Chern number, 

Z2 invariant, Berry phase, spin-texture, chirality, Landau level etc. Such 

interesting physical quantities can be achieved based on localized phenomenon 

[45] like defects [46], excitons [47], electron-electron interaction [48], electron-

phonon coupling [49] and proximity effect [50], which can be easily modelled in 

Wannier basis sets.  

2.2.1 Modelling of Wannier tight binding Hamiltonian 

method (WTBH) 

The preliminary formalism of wannierization of band is well validated. A set of 

Bloch eigenvectors |𝜓௡,𝒌ൿ pronounces the single-particle state for periodic 

crystal system exhibiting translational symmetry with band index n and crystal 

momenta k. The behaviour of jumping of electrons from one orbital state to 

another can be parameterized by considering localized atomic orbitals instead 

of Bloch electrons because the hindmost is delocalized. WFs are one of the most 

essential tools to choose localized orbitals with high accuracy and can be 

modelled by inverse Fourier transform of a Bloch electron state. In this regard, 

the real-space Wannier TB Hamiltonian can be constructed by discretizing the 

electron state via Fourier transform [41], 

|𝑹௡⟩ =
௏

(ଶగ)య ∫ |𝜓ሖ
௡,𝒌ൿ

஻௓

஻௓
exp (−𝑖𝒌. 𝑹)𝑑𝒌                   (3.6) 

Here, R is the unit cell constructed from WFs, V depicts volume of the unit cell. 

The unitary matrix considers the Bloch states in momentum space to a 

transformed Bloch state |𝜓ሖ
௡,𝒌ൿ depending on the gauge transformation of WFs 

[41], 

|𝜓ሖ
௡,𝒌ൿ = ∑ 𝑈௠௡

(𝒌)
௠ |𝜓௠,𝒌ൿ          (3.7) 

Here, n and m are band indices. It is important to construct MLWFs, 𝑈௠௡
(𝒌) is 

taken into consideration to minimize the Wannier spread functional. The TB 
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Hamiltonian Hab(k) for reciprocal space can be obtained by Fourier 

transforming the real-space Hamiltonian Hab(R) to momentum space, 

𝐻௔௕(𝒌) = ∑ exp൫𝑖𝒌. (𝑹 + 𝑇௕ − 𝑇௔)൯𝑹 𝐻௔௕(𝑹)       (3.8) 

Here, the parenthesis ab denotes hopping of electron from orbital a of 

variational cell and b in unit cell of Wannier TB Hamiltonian. 

𝛺 = ∑ [〈𝑟ଶ〉௡௡ − 𝑟̅௡
ଶ]           (3.9) 

Here, 𝒓ത௡ = ⟨0𝑛|𝒓|0𝑛⟩ and 〈𝑟ଶ〉௡ = ⟨0𝑛|𝑟ଶ|0𝑛⟩. The minimum energy is obtained 

iteratively, constructed on primary guess of localized orbitals. 

Wannier tight binding Hamiltonian method promotes the energy bands and 

eigenvectors very much accurately. This method has many advantages over 

simpler TB method without erroneously, but Wannier functions creates bridge 

between localized orbital and ab initio technique making complicated 

calculations much easier and computationally efficient.  

2.3 Concluding Remarks 

In conclusions, advances in scaling quantum materials by solving quantum 

mechanical equations as a function of size restricts their novel aspects in 

understanding coupled systems like 2D vdW heterostructures. In this regard, 

solving many-body problem quantum mechanically from DFT and WTBH 

approach, are one of the substantial tools to investigate electronic, topological 

and magnetic properties of vdW quantum systems. For solving HK and KS 

theorems, DFT is legitimately precise technique for calculation of electronic 

properties using pseudopotential plane wave basis sets. While WTBH method 

rely on localized Wannier basis sets with coarse real-space grid using full 

potential basis sets. Thus, integration of DFT and WTBH provides an exact 

accuracy and reducible simulation to achieve various properties of complicated 

vdW quantum systems, where the computational cost becomes less expensive. 

This creates a bridge between First-principles simulations and WTBH for 
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determining various properties (topological, magnetic, electronic and transport) 

of strongly correlated systems.  
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