I sincerely dedicate this thesis to Maa, Papa and Wadood.

DECLARATION BY THE CANDIDATE

I do hereby declare that the thesis entitled "Identification and characterization of an anti-platelet protein from *Daboia russelii* venom and understanding its molecular mechanism" submitted to the School of Sciences, Tezpur University in part fulfilment for the award of the degree of **Doctor of Philosophy** in Department of Molecular Biology and Biotechnology, is a record of original research work carried out by me. Further, I declare that no part of this thesis has been reproduced elsewhere for award of any other degree.

Date: Place: Tezpur Rafika Yasmin Registration No.: TZ155926 of 2015

TEZPUR UNIVERSITY (A Central University) Department of Molecular Biology and Biotechnology NAPAAM, TEZPUR-784 028, ASSAM, INDIA

Dr. Robin Doley Professor Department Molecular Biology and Biotechnology

Ph. 03712-275412 (O) **E-mail**: <u>doley@tezu.ernet.in</u>

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "Identification and characterization of an anti-platelet protein from *Daboia russelii* venom and understanding its molecular mechanism" submitted to the School of Sciences, Tezpur University in part fulfilment for the award of the degree of **Doctor of Philosophy** in Department of Molecular Biology and Biotechnology, is a record of original research work carried out by by Ms. Rafika Yasmin under my personal supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been reproduced elsewhere for award of any other degree.

Date: Place: Tezpur (Robin Doley)

Acknowledgement

First and foremost, I express sincere gratitude to my supervisor Prof. Robin Doley for his trust in me and providing me the opportunity to pursue my doctoral research under his supervision. I thank him for his constant guidance, encouragement and his patience throughout the course of my PhD. There is so much that I have learnt from him during this journey that I can never thank enough for.

I take this opportunity to acknowledge University Grants Commission, Govt. of India for providing me with Junior Rersearch Fellowship and Senior Research Fellowship; and Department of Biotechnology, Govt. of India for granting the project (BT/PR24531/NER/95/755/2017) which supported this work.

I thank all the Honb'le Vice Chancellors of Tezpur University for providing all the necessary facilities for education and research in the campus. I thank the entire Tezpur University fraternity for their help and support. I thank Pobitora Madame Curie Women's Hostel for being my home away from home.

I extend my heartfelt gratitude to the Department of Molecular Biology and Biotechnology for providing all the necessary facilities for research alongwith the ambience of a family. This place has helped me grow as a person and I shall be forever grateful to it. I thank all the faculty members of the department for extending their laboratory facilities. I sincerely thank my doctoral committee members, Dr. Rupak Mukhopadhyay and Prof. Manabendra Mandal for their valuable suggestions and recomendations. I also thank all the members of the Dept. of MBBT for their help and support.

I express my thanks Dr. Md. Abu Reza from University of Rajshahi, Bangladesh for his generous gift of venom sample. I acknowledge Dr. Zahid Ashraf and his lab from Jamia Millia Islamia University as well as Dr. Karthikeyan Vasudevan and his lab at Centre for Cell and Molecular Biology, Hyderabad for assisting with part of my PhD work. I also thank Translational Health Science and Technology Institute, Faridabad for LC-MS/MS analysis. I thank all the volunteers who donated blood and helped me carry out this work.

I thank my labmates Dr.Simran Kaur, Dr. Archana Deka, Dr. Arpita Devi, Susmita, Mandira, Amit, Mahari, Jyotirmoy, Nyumpi, Plabita and Shristi for creating and maintaining a healthy research environment in the lab. I thank all the project students who have worked with me and helped me learn during the process. I thank Dr. Maitreyee Sharma for her constant presence; and without the way paved by her, pursuing this work would have been extremely difficult. I thank all my seniors and juniors from Dept. of MBBT for their help and friendship.

I thank my friends, Aftab, Shreaya, Manoj, Mandira and Muzamil for always being there. From endless talks over tea to standing by and holding hands during breakdowns, thank you for being there.

I thank Susmita for being my constant, listening, motivating and uplifting; enjoying and celebrating; through tears and laughters and through tough times and good ones.

Most importantly, I thank my family. I thank my grandparents for showering their blessings from wherever they are. I thank Maa, Papa and my little brother, Abdul Wadood for their unconditional love, never-ending support, care and faith in me. No amount of words can summarize my love for you. And I don't say this enough but "Thank You".

Last but not the least; I express my love and deepest gratitude to almighty God for everything.

(Rafika Yasmin)

List of figures

	Figures	Page
Figure 1.1	Overview important platelet receptors and their functions	4
Figure 1.2	A few examples of snake venom proteins affecting different platelet receptors	4
Figure 1.3	Major causes of death according to Global Burden of Diseases Study, 2019	6
Figure 3.1	Electrophoretic profiling of crude Daboia russelii venom	30
Figure 3.2	RP HPLC profile of <i>Daboia russelii</i> venom and distribution of snake venom protein families present in each RP-HPLC fraction	31
Figure 3.3	Relative distribution of various protein families in Daboia russelii venom	65
Figure 3.4	Multiple sequence alignment of identified phospholipase A ₂ enzymes	65
Figure 3.5	Phylogenetic tree of identified phospholipase A2 enzymes	66
Figure 3.6	Partial characterization of Daboia russelii venom	67
Figure 4.1	Fractionation of crude Daboia russelii venom	79
Figure 4.2	Effect of RP-HPLC fractions on platelet aggregation induced by collagen	79
Figure 4.3	Effect of 1µg of P9 on platelet aggregation induced by various agonists	80
Figure 4.4	Dose dependent effect of P9 on platelet aggregation induced by collagen	81
Figure 4.5	Dose dependent effect of P9 on platelet aggregation induced by thrombin	81
Figure 4.6	Partial biochemical characterization of the anti-platelet fraction (P9)	83
Figure 4.7	Identification of the anti-platelet fraction	84
Figure 5.1	Gel filtration chromatiography profile of crude Daboia russelii venom	90
Figure 5.2	Silver stained 12.5% reducing SDS-PAGE of GFC fractions	91
Figure 5.3	PLA ₂ activity of the gel filtration fractions	93

Figure 5.4	Recalcification time of gel filtration fractions	93
Figure 5.5	RP-HPLC of gel filtration peak 10	94
Figure 5.6	Screening for Daboxin P	95
Figure 5.7	Assessment of purity of Daboxin P	95
Figure 5.8	Sequence alignment	96
Figure 5.9	Effect of $1\mu g$ of Daboxin P on platelet aggregation induced by different agonists	98
Figure 5.10	Effect of 1µg of Daboxin P on aggregation of PRP	99
Figure 5.11	Effect of 1µg of Daboxin P on aggregation of differentiated K-562 cells induced by different agonists	99
Figure 5.12	Dose dependent effect of Daboxin P on platelet aggregation induced by collagen	100
Figure 5.13	Effect of Daboxin P on platelet aggregation induced by thrombin	101
Figure 5.14	Comparative effect of on aggregation of washed platelets and platelet-rich plasma	102
Figure 5.15	Dose dependent effect of Daboxin P on thrombin induced intracellular calcium signal	103
Figure 5.16	Effect of alkylation on phospholipase A_2 activity of Daboxin P	105
Figure 5.17	Comparative effect of Daboxin P on platelet functions	105
Figure 5.18	In silico interaction studies between Daboxin P and thrombin	106
Figure 5.19	Contact map of interacting residues of Thrombin with PAR1/4 and Daboxin P	107
Figure 5.20	Binding studies between Daboxin P and thrombin: (A) Fluorescemce emission spectroscopy	108
Figure 5.21	Effect of Daboxin P on functions of thrombin	109
Figure 5.22	Neutralization of antiplatelet activity of 0.1µg Daboxin P by polyvalent antivenom	110
Figure 5.23	Proposed mechanism of anti-platelet activity of Daboxin P	114

List of tables

	Table	Page
Table 1.1	Examples of drugs derived from snake venom toxins for cardiovascular conditions that has been clinically approved or under clinical trials	9
Table 1.2	Daboia russelii venom proteins affecting haemostasis	11
Table 3.1	An overview of different proteins identified from <i>Daboia russelii</i> venom by LC-MS/MS analysis	32-33
Table 3.2	A summary of the peptide fragments obtained in each RP-HPLC fraction	34-64
Table 4.1	Peptide sequences of trypsin digested fragments of P9 obtained by ESI-LC MS/MS	85
Table 5.1	Peptide sequences of trypsin digested fragments of purified protein obtained by ESI-LC MS/MS	96-97
Table 5.2	Binding energy of interactions between Thrombin-PAR1, Thrombin-PAR4 and Thrombin-Daboxin P	106

List of keywords

Chapter 1	Daboia russelii, Daboia russelii venom, Russell's viper, Cardiovascular diseases, Anti-platelet proteins
Chapter 2	Proteomics, LC-MS/MS, Reverse-phase HPLC, Electrophoresis, <i>Daboia russelii</i> , Platelet aggregation, Fluorescence emission spectroscopy, Molecular docking
Chapter 3	Proteome analysis, Mass spectrometry, <i>Daboia russelii</i> venom, Bangladesh, Phospholipase A ₂ , Procoagulant
Chapter 4	<i>Daboia russelii</i> venom, Russell's viper, Anti-platelet protein, Dabocetin, Daboxin P, Snaclec, PLA ₂
Chapter 5	Daboxin P, Anti-platelet protein, Thrombin, K-562 cells, calcium influx, Fura-2AM, Fura-4 AM, Daboia russelii

List of abbreviations

%	Percentage
μ	Micron
μg	Micro gram
μl	Micro litre
μΜ	Micro molar
٥C	Degree celcius
3FTx	Three finger toxin
Å	Angstrom
AA	Arachidonic acid
ACE	Angiotensis-converting enzyme
AD50	Aggregation dose 50
ADP	Adenosine diphosphate
APS	Ammonium persulfate
APTT	Activated partial thromboplastin time
AU	Absorbance unit
BCIP	5-Bromo-4-chloro-3-indolyl phosphate
BPF	Bradykinin potentiating factor
BSA	Bovine serum albumin
$CaCl_2$	Calcium chloride
CNBr	Cyanogen bromide
Col	Collagen
CRISP	Cystein rich secretory proteins
CVD	Cardiovascular disease
Da	Dalton
Dab	Daboxin P
Dis	Disintegrin
DTNB	5,5'-dithio-bis-(2-nitrobenzoic acid)
DTT	Dithiotreitol
g	Gravitational force
GBD	Global burden of disease
GFC	Gel filtration chromatography

GP	Glycoprotein
GPC	Glutaminyl-peptide cyclotransferase
GPCR	G-protein coupled receptor
HCl	Hydrogen chloride
hr	Hour
kDa	Kilo dalton
KSPI	Kunitz-type serine protease inhibitor
LAAO	L-amino acid oxidase
LC-MS/MS	Liquid chromatography-mass spectrometry/mass spectrometry
Μ	Molar
mA	Milli ampere
mAU	Milli absorption unit
mg	Milligram
MeCN	Acetonitrile
min	Minute
ml	Millilitre
mM	Milli molar
NaCl	Sodium chloride
NaHCO ₃	Sodium bicarbonate
NBT	Nitro blue tetrazolium
NCBI	National Centre for Biotechnology Information
NCT	Normal clotting time
NH ₄ HCO ₃	Ammonium bicarbonate
nM	Nano molar
NP	Natriuretic peptide
OD	Optical density
PAGE	Polyacrylamide gel electrophoresis
PAR	Protease activated receptor
p-BPB	P-bromophenacyl bromide
PBS	Phosphate buffered saline
рН	Power/Potential of Hydrogen
PLA ₂	Phospholipase A ₂
PM	Peptidomimetic

PMA	Phorbol 12-myristate 13-acetate
p-NA	P-Nitroaniline
PPP	Platelet poor plasma
PRP	Platelet rich plasma
PT	Prothrombin time
RBC	Red blood cells
RP-HPLC	Reverse-phase high pressure liquid chromatography
RT	Recalcification time
RVV	Russell's viper venom
S	Second
SD	Standard deviation
SDS-PAGE	Sodium dodecyl sulphate- polyacrylamide gel electrophoresis
sec	Second
Snaclec	Snake C-type lectin
sPLA2	Secretory phospholipase A2
SVMP	Snake venom metalloprotease
SVSP	Snake venom serine protease
TCA	Trichloroacetic acid
TEMED	Tetramethyl ethylenediamine
TFA	Trifluoroacetic acid
Thr	Thrombin
TXA_2	Thromboxane A ₂
U	Enzyme unit
V	Volt
VEGF	Vascular endothelial growth factor
VNGF	Venom nerve growth factor
vWF	Von willebrand factor
Z	Charge